
Edited by 
Saïd Salhi · John Boylan

The Palgrave Handbook of 
Operations Research



The Palgrave Handbook of Operations Research



Saïd Salhi · John Boylan
Editors

The Palgrave
Handbook

of Operations
Research



Editors
Saïd Salhi
Kent Business School
University of Kent
Canterbury, UK

John Boylan
Lancaster University
Lancaster, UK

ISBN 978-3-030-96934-9 ISBN 978-3-030-96935-6 (eBook)
https://doi.org/10.1007/978-3-030-96935-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Cover illustration: Andriy Onufriyenko

This Palgrave Macmillan imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-96935-6


Said would like to dedicate this book to his beloved wife Pauline for her patience
and hard work in keeping our family of five wonderful children, namely, Riadh,
Tarek, Louisa, Nassim and Salim, safely under one roof. Said would also like to
dedicate this book to all his Ph.D. students through the last thirty years and also
to his first beatiful grand-daughter Izabella Molly who was born to our fantastic
daughter-in law Francesca and our amazing son Riadh during the preparation

of this manuscript.
John would like to dedicate this book to his wife, Jan, in acknowledgement of all
her love and support, and to all those OR people he has worked with over the

years, both in academia and in industry.



Preface

Operations Research (OR) is a fast-evolving field, which is having a signifi-
cant impact on its neighbouring disciplines of Business Analytics and Data
Science, and on contemporary business and management practices. It can be
a difficult field to navigate, because of the multiplicity of academic journals
devoted to it, and the need for extensive prior knowledge to comprehend
the more technical articles in OR. We have therefore set ourselves the ambi-
tious task of synthesising the state of the art in major aspects of Operations
Research, as well as showcasing some of the latest developments, both in
theory and in practical application.

Views differ on what should be included within the scope of Opera-
tions Research. Most would agree that optimisation (including heuristics) and
simulation methods, that can be used for Prescriptive Analytics, would fall
under the banner of OR. But what about forecasting methods that can be
used for Predictive Analytics? At a more fundamental level, should ‘soft OR’
be in scope or out of scope? We have taken the view that an inclusive stance
is the most helpful, both for theory and practice. Real-world problems often
require consideration from both ‘softer’ and ‘harder’ perspectives and need
consideration of both predictive and prescriptive problems.

In accordance with our inclusive approach to OR, we have divided the
book into six parts, more or less evenly balanced, making up 28 chapters.
Part I covers Discrete (Combinatorial) Optimisation (DO); Part II deals with
Continuous (Global) Optimisation (CO); Part III discusses Heuristic Search
Optimisation (HSO); Part IV covers Forecasting, Simulation and Prediction
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(FSP); and Part V treats Problem Structuring and Behavioural OR (PSB). The
book finishes with Part VI, which presents some ‘Recent OR Applications’
(RORA), including big data.
The part on Discrete (Combinatorial) Optimisation, which also includes

combinatorial optimisation, contains five chapters. The first chapter covers
bilevel discrete optimisation with a focus on computational complexity, by
Kochetov, Plyasunov and Panin. This is followed by location problems with
uncertainty, namely single source, covering and hub hubs, by Azizi, Sergio
and Irawan. The next chapter presents a survey on integrated routing prob-
lems, including inventory routing and location routing, by Guastaroba, Mor
and Speranza. Models and applications for various knapsack problems are
discussed by Wilbaut, Hanafi, Coelho and Lucena. The fifth and last chapter
in this part of the book is on models and algorithms for rank aggregation by
Alcaraz, Landete and Monge.

Combinatorial (Global) Optimisation, which also includes global opti-
misation, has five chapters starting with the work of Jones and Florentino
on multi-objective optimization, with an emphasis on compromise program-
ming and its applications. Chapter 7 is given by T. Drezner, where she covers
competitive location problems. Fernandez and Toth discuss the interval tools
that are used in branch and bound including potential software. This is
followed by Chapter 9, on continuous location problems, by Z. Drezner.
Recent developments and challenges in Data Envelopment Analysis (DEA)
are presented by Emrouznejad, Yang, Khoveyni and Michali in the last
chapter of this part.

Heuristic Search Optimisation five chapters, starting with an overview
on heuristics and metaheuristics by Salhi and Thompson, followed by a
chapter on formulation space search by Mladenovic, Brimberg and Urosevic.
Chapter 13 deals with an evolutionary approach, namely, sine cosine algo-
rithm which is produced by Rawat, Singh and Bansal. A new methodology
on heuristic search called less is more is introduced by Mladenovic, Z.
Drezner, Brimberg and Urosevic while the last chapter in this part outlines
the new era of metaheuristics including hybridisation and learning by Salhi
and Thompson.

Forecasting, Simulation and Prediction deals with stochasticity in general
and contains six chapters. The first chapter, Chapter 16, is by Goodwin and
Fildes on forecasting with judgment, followed by an analysis on simulation
with input uncertainty, produced by Barton, Lam and Eunhye. Chapter 18
is given by Xu and Zhang on fuzziness for multi-attribute decision making.
An introductory chapter on measures in reliability is delivered by Wu and
Coolen, followed by Chapter 20, which deals with queueing theory, with
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an emphasis on variable speeds by, Yajima and Phun-Duc. The last chapter
in this part discusses forecasting and its beneficiaries by Rostami-Tabar and
Boylan.

Problem Structuring and Behavioural OR covers the ‘softer’ aspects of
OR. It consists of three chapters, starting with the work of Kunc and
Katsikopoulos on recent developments and future perspectives on behavioural
OR, followed by a chapter on problem structuring methods (PSM) by Franco
and Rouwette. The last chapter of this part, Chapter 24, is presented by
Lami and White, and also discusses PSM but with a focus on its impact and
relevance in the digital age.
The last part, on Recent OR Applications, contains four chapters. It starts

with a discussion on recent advances in big data analytics by Li, Kong, Zheng
and Pan, followed by a chapter on OR models for humanitarian logistics
by Ghavamifar and Torabi. A chapter on the delivery with drones with an
emphasis on the last mile is given by Chen and Demir, followed by the last
chapter of the book, Chapter 28, on an application of radiotherapy using
DEA by Ehrgott, Raith, Shentall, Simpson and Stubington.
This handbook aims to cover a wide spectrum of OR, though we appre-

ciate there are areas that we would love to have covered but could not due
to authors’ circumstances, especially some theoretical areas of OR and other
applications. We are also pleased and proud to note that our contributing
authors are drawn from a diverse pool of people, coming from a large number
of countries, gender, religion and seniority.

We hope this edited Handbook on OR will be a useful addition to
researchers, students and practitioners alike.

Canterbury, UK
Lancaster, UK
November 2021

Saïd Salhi
John Boylan
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1
Bilevel Discrete Optimisation: Computational

Complexity and Applications

Yury Kochetov , Alexander Plyasunov, and Arteam Panin

1.1 Introduction

The first bilevel optimisation problem was formulated by the German
economist Heinrich Freiherr von Stackelberg as the economic two players
game in 1934 [1]. Therefore, bilevel optimisation problems are sometimes
called Stackelberg games and their solutions are called the Stackelberg equi-
libria. In 1973, Jerome Bracken and James T. McGill proposed a modern
formulation of the bilevel programming problems (BPPs) [2]. These prob-
lems contain two levels of decision-making: upper and lower. Each level
has its optimisation problem. The upper-level problem is called the leader’s
problem. The lower-level problem is the follower’s problem. Each problem
has its objective function, constraints, and decision vector as variables. The
lower-level problem is a parametric optimisation problem with an upper-level
decision vector as the parameter. The follower’s problem is used to form an
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extreme constraint to the leader’s problem. This constraint is usually written
as a set-theoretic inclusion [3]. It implies that the lower-level variables are the
optimal solution to the lower-level problem parameterised by the upper-level
variables.
This extreme constraint is the reason why the bilevel problems turned out

to be surprisingly difficult to solve. For example, the linear programming
problem is polynomially solvable, but its bilevel analogue is NP-hard in the
strong sense. Moreover, to check the feasible domain is empty or not is an
NP-hard problem in the strong sense too. This property is preserved for very
special cases of the bilevel linear programming problems with the follower’s
variables in the leader’s constraints.

Currently, there are no direct or simple modifications of standard
approaches to design exact and approximate algorithms for the bilevel cases.
The main reason is that the set of feasible solutions usually turns out to
be non-convex and disconnected. For the bilevel mixed-integer linear prob-
lems, the optimal value of its linear programming relaxation cannot guarantee
a lower bound for the integer global minimum. Moreover, if the optimal
solution to the relaxed problem is a feasible solution to the original bilevel
problem, then it does not follow that it is the optimal solution to the original
problem. If we look at one of the standard approaches for solving optimi-
sation problems, namely local search, then even in this case we will not be
successful. This is due to the non-polynomiality of even the simplest neigh-
bourhoods since they require the optimal solution to the follower’s problem
which, as a rule, is NP-hard.

What makes bilevel models highly relevant is that they are typically char-
acterised by very large unexpected effects on the economy and surrounding
environment. Given the far-reaching future impacts of the decisions, it is
not surprising that the interest in bilevel optimisation has grown strong
especially among researchers dealing with large-scale public sector decision-
making problems. To date, a huge number of articles have appeared that
study the bilevel models from theoretical and empirical sides. Similarly, there
is a rapid increase in the number of papers devoted to bilevel programming
applications in various fields of science and industry.
This chapter is organised as follows. Section 1.2 presents bilevel discrete

optimisation in general formulation, definitions of feasible and optimal
solutions for this ill-posed problem, main concepts, and examples. The rela-
tionship of the bilevel problems with Stackelberg games and multi-objective
problems is discussed here. A short survey of exact and approximate methods,
including metaheuristics as the most strong technique for application, is given
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in Sect. 1.3. Section 1.4 addresses important questions related to the compu-
tational complexity of bilevel discrete optimisation and the approximation
complexity. Section 1.5 provides an overview of the literature with practical
bilevel problems in economics, industry, transport, engineering, facility loca-
tion, network design, etc. Finally, Sect. 1.6 concludes the paper and shows
some future research directions and perspectives.

1.2 Main Definitions and Properties

Let us consider a sequential game where the first player (leader) chooses her
solution (vector x ∈ X ) and incorporates the optimal reaction (vector y ∈ Y )
of the second player (follower) into her optimisation process. This game can
be described mathematically as bilevel programming problem:

min
x∈X,y∈Y F(x, y)

s.t. G(x, y) ≤ 0,

y ∈ opt (x),

where opt (x ) is the set of optimal solutions to the follower’s problem
parameterised by the vector x:

min
y∈Y f (x, y)

s.t. g(x, y) ≤ 0.

In this formulation, F (x, y) is the leader’s objective function and f (x, y) is
the follower’s objective function. The leader’s and the follower’s constraints
are defined by the vector functions G (x, y) and g (x, y), respectively. In
this program, the leader is free, whenever the set opt (x ) does not shrink
to a singleton, to select an element of opt (x ) that suits her best. This case
corresponds to the optimistic formulation. Alternatively, in the pessimistic
formulation, we consider the case when the leader protects herself against
the worst possible situation. To this end, we change the objective function of
the leader as follows:

min
x∈X max

y∈opt (x) F(x, y)
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and must guarantee that the follower cannot violate the upper-level
constraints. In other words, all optimal solutions for the follower’s problem
must satisfy these joint (or coupling) constraints [4]. As a result, the
pessimistic bilevel problems are very difficult to solve. Most theoretical
and algorithmic contributions relate to the optimistic formulations. Detail
discussion of the pessimistic formulations can be found in [4, 5].

In real-world applications, we often know nothing about follower
behaviour. In such a case, the optimistic and pessimistic solutions show the
lower and upper bounds for the optimal value of the objective function of the
leader. We deal with the ill-posed problem indeed in the case of the multiple
optimal solutions for the follower’s problem. The difference between the opti-
mistic and pessimistic approaches can also be explained from the follower
viewpoint. The optimistic solution results from the friendly or cooperative
behaviour of the players, while an aggressive follower produces the pessimistic
solution.

Program BPP is often called the upper (first level, outer, leader) problem.
The mathematical program parameterised by the vector x is the lower
(second level, inner, follower) problem. The set of follower’s optimal solutions
opt (x) = {y | y ∈ argmin{ f (x, y′) | y′ ∈ sol(x)}} is also called the set of
rational reactions where sol(x) = {y | g(x, y) ≤ 0} is the set of follower’s
feasible solutions.
The set of feasible optimistic solutions for the BPP is defined as Sol =

{(x, y) | G(x, y) ≤ 0, y ∈ opt (x)}. This set is usually non-convex and
might be disconnected. Sometimes, it is called the inducible region. The set of
optimal optimistic solutions for the BPP is the set of the best feasible optimistic
solutions for the leader, that is the set {(x, y) | (x, y) ∈ argmin{F(x ′, y′) |
(x ′, y′) ∈ Sol}}. The relaxed constraint region is defined as S = {(x, y) |
G(x, y) ≤ 0, g(x, y) ≤ 0}.

For a better understanding of the bilevel formulations, let us consider an
example of the bilevel knapsack problem [6]. Two players hold their own
knapsacks and choose items from a common item set. Firstly, the leader
packs some items into her knapsack. Later on, the follower packs some of
the remaining items into his knapsack. The objective of the follower is to
maximise the total profit of the items in his knapsack. The objective of the
hostile leader is to minimise this profit. In other words, we face the following
bilevel discrete optimisation problem with n items, pi is the profit of item i,
coefficients ai and bi are its weights for the leader and the follower, A and B
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are the capacities of the leader’s and the follower’s knapsacks, respectively.

min
x,y∈{0,1}

n∑

i=1

pi yi

n∑

i=1

ai xi ≤ A;

y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y∈{0,1}

n∑

i=1

pi yi

n∑

i=1

bi yi ≤ B;

yi ≤ 1 − xi , 1 ≤ i ≤ n.

Note that we have to solve the NP-hard problem for arbitrary feasible solu-
tion x to calculate the value of the leader’s objective function. Thus, the
finding of the best leader’s solution is a very hard problem. Below, we will see
that it is harder than NP-complete problem, unless P = NP. This example is
also interesting because the optimistic and pessimistic solutions coincide here
even if the set opt (x ) contains multiple solutions. The upper-level constraint
contains only the leader’s variables. The follower cannot violate them. It is a
simple case of BPPs.

For the pessimistic case, we have to modify the definition of feasible solu-
tion. The set of feasible pessimistic solutions is the set of pairs (x, y) ∈ Sol
which satisfy two conditions:

– G(x, y) ≤ 0, ∀ y ∈ opt (x);
– F(x, y) ≥ F(x, y)), ∀ y ∈ opt (x).

For given x, all optimal follower’s solutions must satisfy the joint
constraints and y is the worst answer of the follower according to the leader
objective function [7]. Optimal solution in pessimistic case is the best feasible
pessimistic solution for the leader.



8 Y. Kochetov et al.

Consider some properties of the bilevel discrete optimisation problems. Let
us find the minimum of the leader’s objective function F (x, y) for (x, y) ∈ S
in the relaxed constraint region. In other words, the leader makes a decision
instead of the follower. It is so called high point relaxation. In that case, the
optimal solution (with rare exceptions) will be infeasible for original bilevel
problem. This is due to the non-optimality of the follower’s response to the
leader’s decision. But we have got a lower bound for the global optimum.
The next unusual property deals with the integrality constraints. For the

classical discrete optimisation, relaxation of this type of constraints lead to
a lower bound. Moreover, if the optimal solution to the relaxed problem is
integer, we have got the optimal solution to the initial discrete problem. It is
not the case for the bilevel discrete optimisation. Let us consider an illustra-
tive example of the pure integer bilevel linear problem proposed by James T.
Moore and Jonathan F. Bard [8]:

min
x,y

F(x, y) = −x − 10y

s.t. x ≥ 0, integer ; y ∈ opt (x);

min
y

f (x, y) = y

s.t. − 25x + 20y ≤ 30; x + 2y ≤ 10;

2x − y ≤ 15; 2x + 10y ≥ 15; y ≥ 0, integer .

The solution (x, y) = (8, 1) with the value F(x, y) = −18 is optimal to
the relaxation and it is integer. But the optimal integer solution is (x∗, y∗) =
(2, 2) with the value of −22 (see Fig. 1.1).
The lower green lines show the feasible domain to the relaxation. As we

can see, it is a non-convex area for this linear bilevel program. Moreover,
the feasible domain of linear BPP, even with continuous variables, may be
disconnected in general case [9]. Therefore, the idea of the simplex method
does not work here. The red domain is the convex hull for the feasible discrete
points. It is a small part of the relaxed constraint region S .

Let us slightly modify this example and include a new upper-level
constraint x + y = 5. Now only three integer points (2, 3), (3, 2), (4, 1)
satisfy all constraints. The first one is the most interesting for the leader with
value of −32 but y = 3 is not optimal for the follower’s problem with x = 2.
For the second point, we have the same property. Hence, the last point is
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Fig. 1.1 The illustrative example

optimal now with a value of −15. Note that it is not a vertex of the convex
hull of the integer feasible discrete points. Moreover, if we move this new
constraint to the lower level, we have got another bilevel problem with an
optimal value of −32.

Bilevel programming problems can be divided into three categories: (1)
all solutions are real-valued vectors; such problems are known as contin-
uous BPPs, (2) all solutions are discrete-valued vectors, discrete BPPs, (3)
all solutions are vectors of continuous or discrete components, mixed BPPs.
Further in this section, we consider various reformulations and generalisa-
tions of bilevel problems and their connections with Stackelberg games and
multi-criteria optimisation problems.
The bilevel optimisation problem can be considered as a generalisation of

the two-stage Stackelberg game [10]. For the first time, such a game was
studied by Von Stackelberg in the context of unbalanced economic markets
[1]. Indeed, BPPs are more or less similar to Stackelberg games in game
theory [11]. In Stackelberg games, the lower-level problem is an equilibrium
problem, while in bilevel optimisation, an optimisation problem arises in the
lower level. A Stackelberg game may differ from the BPP when the reaction
set of the lower-level decision-maker is not a singleton for some decisions of
the leader. As a result, a solution of the static Stackelberg game may not be a
solution to the BPP [12].
The optimal solution of the BPP is not necessarily a Pareto optimal

solution of the corresponding bi-objective problem composed with the
upper-level and the lower-level objectives and vice versa [13, 14]. The rela-
tionship between the bilevel problem and bicriteria optimisation is illustrated
in [15–18]. In [19–23] the authors propose a methodology in which the
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BPP is transformed to an equivalent multi-objective optimisation problem.
A specific cone dominance concept is used. An application of these results to
solve linear bilevel optimisation problems is given in [24]. The discrete bilevel
problems with multiple followers are studied in [25–27]. The bilevel prob-
lems with multiple leaders are considered in [28, 29]. Nine different kinds of
relationships between followers can be found in [30]. A surprising fact is that
the globally optimal solutions to the bilevel optimisation problem need not
remain globally optimal if a constraint is added to the lower-level problem
which is inactive at the optimal solution [31, 32].

1.3 Computational Methods

The main purpose of this section is to present some state-of-the-art exact
methods, metaheuristics, and hybrids of metaheuristics with exact methods to
bilevel discrete optimisation. We have to skip the approximation schemes and
polynomial-time approximation algorithms with a guaranteed performance.
Some negative results in this area for the BPPs establish the inapproximability
of various �P

2 -hard optimisation problems [33–35], unless P = NP. Never-
theless, the first approximation scheme for a �P

2 -hard optimisation problem
is designed in [36]. It is excellent result for the bilevel knapsack problem from
Sect. 1.2 for the case bi = ai , ∀i . To the best of our knowledge, it is the first
and still unique PTAS for the �P

2 -hard BPP.

1.3.1 Exact Methods

This class of methods can be divided into four types. The first one includes
reformulation approaches. The BPP is reformulated as a single-level opti-
misation problem with a large number of variables and (or) constraints.
Another approach here is the mathematical decomposition to reduce the orig-
inal bilevel problem to the single-level problems. The second type includes
branch and bound/branch and cut techniques. It is the basis of the mixed-
integer bilevel optimisation solvers [37, 38] (see also [39, 40]). The third type
includes the parametric programming approaches. The fourth type includes
hybrid methods which may have the characteristics of the first three types.

The methods are based on reformulations. An algorithm based on the
Benders decomposition method is proposed in [41]. The KKT optimality
conditions are used as a reformulation procedure. The only assumption of
the proposed algorithm is that although integer variables could appear in both
levels, they should be controlled by the upper optimisation problem.
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In [42], the linear BPP with binary leader variables and continuous
follower variables is considered. The bilevel problem is reduced to a single-
level problem using KKT conditions, a suitable linearisation technique, and
the Benders decomposition method is applied.

In [43], a decomposition algorithm based on a column-and-constraint
generation scheme using a single-level reformulation is proposed to solve the
general bilevel mixed-integer linear problem. Another approach for binary
lower-level problems is recently proposed in [44].

An algorithm for solving bilevel problems with boolean variables based on
optimal value reformulation and the cutting plane technique is proposed in
[45]. A similar technique is used in [46]. Some new results in this area are
obtained in [47, 48].

The branch and bound/branch and cut methods. The first branch and
bound method for discrete bilevel optimisation is developed in [8]. The
bilevel problems with the linear programming problem at the lower level and
the integer programming problem at the upper level are studied in [49]. A
branch and bound method is designed for this special case.

In [50], a class of the BPP is considered where the leader controls contin-
uous and discrete variables and wants to minimise a convex nonlinear
objective function. The follower’s objective function is a convex quadratic in
a continuous decision space. All constraints are linear. A branch and bound
algorithm is developed to find the global optima.

A new version of the branch and bound method for the mixed-integer
upper- and lower-level problems with joint constraints at the upper level is
proposed in [51]. The linking variables are discrete and all discrete variables
are bounded. The high point relaxation is used to find the optimal solution
in optimistic case.

In [52], two exact algorithms are proposed. The first one is based on the
cutting plane technique, and the second one belongs to the class of branch
and cut algorithms. In [6, 53], an algorithm based on a branch and cut
approach is proposed for the BPP problems without continuous variables and
without joint constraints at the upper level. A generalisation of this algorithm
that allows a mixed-integer environment at both levels is proposed in [54].
Other efficient cutting plane algorithms can be found in [51, 55–58]. Some
valid inequalities and facets for the network pricing problem with connected
toll arcs and its variants are designed in [59].

Parametric programming approaches. Two exact algorithms for the
integer and mixed-integer bilevel programming problems via multi-
parametric programming are proposed in [60]. The first algorithm addresses
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the integer case of the linear BPP and employs a reformulation linearisa-
tion technique to construct a parametric convex hull representation of the
inner problem constraint set. The second algorithm addresses the mixed-
integer case and employs a similar convexification procedure as the previous
algorithm. In contrast to the first algorithm, where a continuous multi-
parametric programming approach is used, the second algorithm utilises
multi-parametric mixed-integer programming to solve the inner problem.

In [61], exact global optimisation algorithms are presented for two classes
of BPP, namely: the mixed-integer linear BPP and the mixed-integer convex
quadratic BPP. The proposed algorithms are a result of multi-parametric
programming theory. The main idea here is to recast the lower-level problem
as a multi-parametric programming problem where the optimisation variables
of the upper-level problem (both continuous and integer) are considered as
parameters for the lower-level problem. The resulting exact parametric solu-
tions are then substituted into the upper-level problem and it is solved as a
set of single-level deterministic mixed-integer programs.

A BPP with only integer decision variables at the lower level and
constraints at both levels is studied in [62]. The leader has integer or contin-
uous decision variables. The solution approach is based on the theory of
parametric integer programming and runs in polynomial time when the
number of decision variables of the follower is fixed.

Non-standard solution methods. In [63], an algorithm based on the
concept of k-th best solution, first developed for the linear case, is devel-
oped for the integer linear fractional BPP. The correctness of this algorithm is
shown in [64]. Upper approximations of the optimal objective function value
of the lower-level problem are used for solving mixed-integer BPP in [65].

A multi-way branching method is used for solving the mixed-integer
bilevel linear program in the case all leader variables are integer and bounded
[66]. An exact algorithm for solving the discrete linear bilevel optimisation
problems using multi-way disjunction cuts to remove infeasible solutions for
the bilevel problem from the search space is presented in [67]. Additional
information about the exact methods for solving (mixed-integer) linear bilevel
optimisation can be found in [61].

1.3.2 Metaheuristics

The word heuristic (from the Greek word heuriskein) means the art of
discovering new strategies to solve problems. The suffix meta (Greek) means
upper-level methodology. The term metaheuristic has been introduced by
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Fred Glover [68]. Unlike exact methods, metaheuristics allow finding effec-
tive approximate solutions to large-scale problem instances in a reasonable
time without guarantee to get global optimal solutions or even solutions with
small deviation from the optimal value. Metaheuristics became popular in the
last 30 years. They demonstrate efficiency and effectiveness to solve large and
sophisticated problems in many applications [69–71].

Due to the intrinsic complexity of bilevel models, BPPs have been recog-
nised as one of the most difficult classses to solve. Hence, metaheuristic
algorithms have been applied here. We can divide them into two classes [70]:
population-based search and single-solution-based search. Single-solution-
based algorithms (e.g. local search, variable neighbourhood search, tabu
search, simulated annealing) manipulate and transform a single solution
during the search while in population-based algorithms (e.g. particle swarm,
evolutionary algorithms) a whole population of solutions is evolved. These
two families have complementary characteristics: single-solution-based meta-
heuristics are exploitation-oriented. They have the power to intensify the
search in local regions. Population-based metaheuristics are exploration-
oriented. They allow better diversification in the whole search space.

Metaheuristics are approximate algorithms. In bilevel problems, there is
a limitation that forces us to solve the lower-level problem exactly. This
fact makes it impossible to use metaheuristics directly to the bilevel prob-
lems. The following classification distinguishes metaheuristics according to
the way they work with the lower-level problem: (1) Single-level transforma-
tion approach; (2) Nested sequential approach; (3) Multi-objective approach;
(4) Co-evolutionary approach.

In the single-level transformation approach, we try to reformulate the BPP
into a single-level optimisation problem. Then, the classical metaheuristics
can be used to solve the single-level problem.

In the nested sequential approach, the lower-level optimisation problem is
solved in nested and sequential ways to evaluate the solutions generated at
the upper level of the BPP.

In the multi-objective approach, the BPP is transformed into a multi-
objective optimisation problem. Then, any multi-objective metaheuristic can
be used to solve the generated problem.

Finally, the co-evolutionary approach is the most general methodology to
solve the BPPs. In this case, metaheuristics for different levels of the problem
coevolve in parallel and exchange information during the search.

A detailed description of this classification with links to corresponding
algorithms can be found in [70]. For solving bilevel linear problems, heuristic
approaches such as evolution algorithms, tabu search, simulated annealing,
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grid search, and other algorithms can be found in [71, 72]. Computational
results for the metaheuristics to the (r |p)-centroid problem and other bilevel
competitive facility location models can be found in [70, 73]. Implementa-
tion of genetic and memetic algorithms, ant colony systems, tabu search, local
search, particle swarm optimisation, simulated annealing, and other heuristic
approaches are presented in [70, 71, 74, 75].

Let us return to the definition of a feasible solution to the BPP. The set of
feasible solutions is defined as Sol = {(x, y) | G(x, y) ≤ 0, y ∈ opt (x)}.
Hence, we need an optimal solution to the follower’s problem to get a feasible
solution for given x. As a result, metaheuristics have to include an exact
method for this aim. Thus, they are hybrid methods. Now we will consider
the case when the follower’s problem has multiple solutions. For the opti-
mistic case, we face an additional problem to pick up the best solution for the
leader in the set opt (x ). To this end, we must solve the following optimisation
problem for given x:

min
y∈Y F(x, y)

s.t. G(x, y) ≤ 0,

f (x, y) = f ∗(x),

g(x, y) ≤ 0,

where f ∗(x) is the optimal value to the follower’s problem. If this auxiliary
problem is infeasible then we must change the solution for the leader. Note
that we need the optimal solution here. Hence, we need an exact method
again.

In the pessimistic case, we have a more sophisticated position. As we have
noted in Sect. 1.2, the leader wishes to protect herself against the worst
possible answer of the follower and upper-level joint constraints must be satis-
fied for all possible answers. Hence, we need to solve the following bilevel
optimisation problem:

min
x∈X max

y∈opt (x) F(x, y),

s.t. G(x, y) ≤ 0,∀y ∈ opt (x), x ∈ X.
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For given x, we can find the worst follower’s answer by solving new auxiliary
problem:

max
y∈Y F(x, y)

s.t. f (x, y) = f ∗(x),

g(x, y) ≤ 0.

Later on, we must be sure that all optimal solutions to the follower’s problem
satisfy the joint constraints. If the follower’s variables are not presented in the
upper-level constraints then this step can be omitted [3]. Otherwise, we need
to check all solutions in the set opt (x ).

Let G(x, y) = (G1(x, y), . . . ,Gm(x, y)) and we wish to find an optimal
solution for the follower which does not satisfy the leader’s constraints. Thus,
we solve m problems for given x:

α j = max{G j (x, y)| f (x, y) = f ∗(x), g(x, y) ≤ 0}, j = 1, . . . ,m.

If max α j > 0 then we have infeasible solution in pessimistic case and
the point x must be replaced. The pessimistic case is the most difficult and
interesting line for future research.
The following simple example illustrates that the optimistic and pessimistic

bilevel problems are similar but their optimal solutions can differ considerably
[4].

min
x∈{−1,0,1} x

x ≥ y, y ∈ opt (x),

and opt (x ) is the set of optimal solutions to the follower’s problem:

max
y∈{−1,0,1} y

2

The follower’s problem is optimised by y ∈ {−1, 1}, independent of the
leader’s decision. The pessimistic bilevel problem requires x to exceed 1,
resulting in an optimal objective value of 1. In contrast, the optimistic bilevel
problem requires x to exceed −1, which results in an optimal objective value
of −1.
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1.4 Computational and Approximation
Complexity

According to the principle of bounded rationality [76], economic agents
cannot use excessively large resources to find the optimal solution. In
operations research, the interaction of economic agents is described by math-
ematical models. Therefore, computational resources are the most critical
type of resource here. From this point of view, the theory of computational
complexity is a natural mathematical tool for describing and investigating
the behaviour of economic agents based on the principle of bounded ratio-
nality [77]. Thus, the knowledge of the relations of the optimisation problem
with complexity classes allows us to estimate what computational resources
are needed to find a rational solution.

When we discuss the computational complexity of the single-level prob-
lems, we usually refer to the complexity classes P and NP for the decision
problems and the classes PO, NPO for the optimisation problems. The pecu-
liarity of bilevel (multi-level) problems is that many of them are outside
of these classes. Therefore, we are forced to introduce the concepts of a
polynomial and approximation hierarchy of complexity classes for the BPP.

1.4.1 Polynomial Hierarchy

We remind the notations used in computational complexity theory to
describe the polynomial hierarchy of complexity classes [78, 79]. The first
two main classes of the decision problems P and NP are defined with deter-
ministic and non-deterministic Turing machines [78]. The class P contains
the decision problems solvable in polynomial time on deterministic Turing
machines. The class NP is defined as the class of the decision problems solv-
able in polynomial time on non-deterministic Turing machines. It means that
we can verify the answer Yes in time polynomial in the size of the input data
of the problem. The third class co-NP consists of decision problems whose
complements belong to the class NP. It means that we can verify the answer
No in time polynomial in the size of the input data of the problem. These
classes form the first level of the polynomial hierarchy. They are denoted as
�P

1 , �
P
1 , and �P

1 , respectively. The second level of the polynomial hierarchy
is defined with deterministic and nondeterministic oracle Turing machines
[78].

A decision problem belongs to the class �P
2 if there exists a determin-

istic Turing machine with an oracle that solves this problem in polynomial
time, using as oracle some language (decision problem) from the class NP. A
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Fig. 1.2 The first two levels of hierarchy

decision problem belongs to the class �P
2 if there exists a non-deterministic

Turing machine with an oracle that solves this problem in polynomial time,
using as oracle some language from the class NP. The class �P

2 consists of
decision problems whose complements belong to �P

2 . The class �P
2 is often

denoted as PN P and the class �P
2 is denoted as N PNP . Figure 1.2 shows all

inclusions between hierarchy classes on the first two levels.
It is clear that this hierarchy can be expanded if we take the class �P

k−1 as
the oracle. It is known that if NP �= co-NP then these inclusions are strict
[78]. The notions of completeness and hardness commonly used for the class
NP are translated directly to the classes �P

k . In particular, the k-level optimi-
sation problems with binary variables, linear constraints, and linear objective
functions are �P

k -hard [80]. We will focus our attention on the class �P
2

as the most appropriate for the BPP and difficult from the point of view of
optimisation methods. A compendium of �P

2 -complete/hard problems can
be found in [81], [82], with more recent updates available online.

1.4.2 Σ P
2 -Hard Bilevel Programming Problems

The structure of the bilevel problems makes their standard decision problem
a natural candidate for membership in the �P

2 class. This is the case if the
lower-level parametric problem lies in the class NPO. If the standard decision
problem for the lower-level parametric problem is NP-complete, then as a
rule, the corresponding bilevel problems turn out to be �P

2 -hard.
Three �P

2 -hard bilevel knapsack problems can be found in [36]. One of
them we have discussed in Sect. 1.2. Let us formulate two remaining prob-
lems. In the first one [83], the leader controls the capacity x of the knapsack
while the follower controls all items and decides which of them are packed
into it. The objective function of the leader depends on the capacity x and the
packed items, whereas the objective function of the follower solely depends
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on the packed items.

min
x,y

{
Ax +

n∑

i=1

ai yi

}
s.t. C ≤ x ≤ C

′
, y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y

n∑

i=1

bi yi s.t.
n∑

i=1

bi yi ≤ x; yi ∈ {0, 1}, 1 ≤ i ≤ n.

In the second problem [84], players pack items into the same knapsack with
a prespecified capacity of C . The leader controls part of the item set. The
follower controls the rest of this set. The leader starts the game by packing
some of her items into the knapsack. Later on, the follower adds some further
items from his set. The objective function of the leader depends on all items
packed by the leader and the follower, whereas the objective function of the
follower solely depends on his items.

min
x,y

⎧
⎨

⎩

m∑

j=1

a j x j +
n∑

i=1

a
′
i yi

⎫
⎬

⎭ s.t. x j ∈ {0, 1}, 1 ≤ j ≤ m, y ∈ opt (x),

where opt (x ) is the set of optimal solutions of the lower-level problem:

max
y

n∑

i=1

bi yi s.t.
n∑

i=1

c
′
i yi ≤ C −

m∑

j=1

c j x j , yi ∈ {0, 1}, 1 ≤ i ≤ n.

To show the �P
2 -hardness of these bilevel knapsack variants, the following

�P
2 -complete decision problem (Subset-Sum-Interval) is used [85].
Instance: A sequence q1, q2, ..., qk of positive integers; two positive integers R

and r with r ≤ k.
Question: Does there exist an integer S with R ≤ S < R + 2r such that

none of the subsets I ⊆ {1, ..., k} satisfies �i∈I qi = S?
Reducibilities guarantee �P

2 -hardness of all three bilevel knapsack variants
under the optimistic and pessimistic scenarios [36].

In the field of bilevel facility location, we have some variants of (r |p)-
centroid problem which are �P

2 -hard [86, 87]. Let us consider a two-
dimensional Euclidean plane in which n clients are located. We assume that
each client j has a positive demand w j . Let X be the set of p points where
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the leader opens her facilities and let Y be the set of r points where the
follower opens his facilities. The distances from client j to the closest facility
of the leader and the closest facility of the follower are denoted as d (j, X )
and d (j, Y ), respectively. The client j prefers Y over X if d( j, Y ) < d( j, X)

and prefers X over Y otherwise. By

U (Y ≺ X) := { j | d( j, Y ) < d( j, X)}

we denote the set of clients preferring Y over X . The total demand captured
by the follower by locating his facilities at Y while the leader locates her
facilities at X is given by

W (Y ≺ X) :=
∑

(w j | j ∈ U (Y ≺ X)).

For X given, the follower tries to maximise his own market share. The
maximal value W ∗(X) is defined to be

W ∗(X) := max
Y,|Y |=r

W (Y ≺ X).

This maximisation problem will be called the follower problem. The leader
tries to minimise the market share of the follower. This minimal value
W ∗(X∗) is defined to be

W ∗(X∗) := min
X,|X |=p

W ∗(X).

For the best solution X∗ of the leader, her market share is
∑n

j=1 w j −
W ∗(X∗). In the (r |p)-centroid problem, the goal is to find X∗ and W ∗(X∗).
The discrete (r |p)-centroid problem and the (r |p)-centroid problem on a

network are �P
2 -hard [86]. The hardness proof uses a reduction from the

�P
2 -complete decision problem ∃∀3SAT [86]. It is shown in [87] that the

(r |p)-centroid problem in the plane is �P
2 -hard. The hardness proof uses a

reduction from the �P
2 -complete decision problem ∃∀3, 4SAT [87]. Based

on this reducibility, the following results are also obtained:

– the discrete (r |p)-centroid problem is �P
2 -hard even the clients and

facilities are placed in the two-dimensional Euclidean plane;
– the (r |p)-centroid problem on a network is �P

2 -hard even for planar graphs
with vertices in the two-dimensional Euclidean plane and weights of the
edges are Euclidean distances between corresponding points.
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Another �P
2 -hard problem of competitive facility location is considered in

[88]. The hardness proof uses a reduction from the �P
2 -complete decision

problem ∃1∀3Sat [88].
In [89, 90], there is a leader–follower location and pricing problem that

is also �P
2 -hard. In [89] the hardness proof uses a reduction from the �P

2 -
complete standard decision problem of the (r |p)-centroid problem. In [90]
the hardness proof uses a reduction from the �P

2 -complete decision problem
∃∀3, 4SAT [87].
The bilevel problem of strategic base station placement in cognitive radio

networks is studied in [91]. It is shown that the problem is �P
2 -hard. The

proof uses a reduction from the �P
2 -complete decision problem ∃∀3, 4SAT

[87].
�P

2 -hard problems of public–private partnership can be found in [92, 93].
In [92], it is shown that the problem without tax benefits and infrastruc-
ture projects still remains �P

2 -hard even in the case of a three-year planning
horizon and the optimistic and pessimistic setting. The hardness proofs use
a reduction from the �P

2 -complete decision problem Subset-Sum-Interval
[85].

1.4.3 Approximation Hierarchy

Let us consider the computational complexity of finding near optimal solu-
tions for bilevel discrete optimisation problems. In the classical case, we study
the computational complexity from the point of view of approximate algo-
rithms with a performance guarantee for the optimisation problems from the
class NPO [79]. By definition, this class consists of optimisation problems
for which the standard decision problem belongs to class NP. The class PO is
the subclass of the NPO problems that admitting an exact polynomial-time
algorithm.

Remind some definitions from [79]. Given an optimisation problem Q
in NPO, an approximation algorithm A for Q , and a function r : N �→
(1,∞), we say that A is an r (n)-approximate algorithm for Q if, for any
instance x with a non-empty set of feasible solutions, the performance ratio
of the feasible solution y = A(x) with respect to x verifies the following
inequality:

R(x, A(x)) = max

(
f (x, y)

f ∗(x)
,

f ∗(x)
f (x, y)

)
≤ r(|x |),
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where f (x, y) is the value of the objective function of the problem on a
feasible solution y for x, f (x∗) is the optimal value of the objective function
for x.

An algorithm A is said to be a polynomial-time approximation scheme
(PTAS) for Q if, for any instance x and for any rational value r > 1, A
returns an r-approximate solution of x in time polynomial in |x |.

An algorithm A is said to be a fully polynomial-time approximation
scheme (FPTAS) for Q if, for any instance x and for any rational value r > 1,
A returns an r-approximate solution of x in time polynomial both in |x | and
1/(r − 1).
The class FPTAS is the class of NPO problems that admitting a fully

polynomial-time approximation scheme, while the class PTAS is the class of
NPO problems that admitting a polynomial-time approximation scheme.

Given a class of functions F , F -APX is the class of all NPO problems Q
such that, for some function r ∈ F , there exists a polynomial-time r (n)-
approximate algorithm for Q .

Denote by APX, Log-APX, Poly-APX, Exp-APX classes F -APX with F
equal to the set of constant functions, to the set O(log n) functions, to the
set ∪k>0O(nk) functions, and to the set ∪k>0O(2n

k
) functions, respectively.

The classes APX, Log-APX, Poly-APX, and Exp-APX consist of the prob-
lems for which there exist polynomial approximate algorithms with constant,
logarithmic, polynomial, and exponential performance guarantee, respec-
tively. In the last three cases, the values of the above-mentioned functions
depend on the length of the problem input data.
To determine the approximation complexity of an optimisation problem,

it is enough to find its position in the hierarchy of approximation classes:

PO ⊆ FPT AS ⊆ PT AS ⊆ APX ⊆ Log-APX ⊆ Poly-APX

⊆ Exp-APX ⊆ N PO.

Assuming P �= N P , these inclusions are proper [79, 94].
This hierarchy is used to describe the properties of optimisation problems

from the class NPO. To compare the approximability properties of arbitrary
two problems from the class NPO, reducibility that preserves approximability
is used [79, 94]. Similar approximation classes for the BPPs can be found in
[89]. The definition of each of these new approximation classes is obtained
from the original one by replacing the polynomial-time deterministic algo-
rithm by a polynomial-time deterministic algorithm with an oracle from the
class NP.
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Bilevel knapsack problems are studied in [36, 95]. In [36], a polynomial-
time approximation scheme is developed for the bilevel knapsack problem
proposed in [6]. It is the first approximation scheme for a �P

2 -hard optimi-
sation problem in the history of approximation algorithms.
The question of the complexity of the approximation of optimisation

problems associated with pricing processes is presented in [96–100]. In [96],
it is shown that the unit demand envy-free pricing problem is APX-hard.
APX-hardness of the Stackelberg network pricing problem is shown in [97].
The Stackelberg minimum spanning tree game is also APX-hard [98]. In [99],
it is shown that the bilevel problem with the mill pricing belongs to the class
Log-APX.
The approximability of the bilevel facility location and pricing problems

is discussed in [100]. It is shown that such problems with different pricing
strategies are Poly-APX-hard if we can open a fixed number of facilities.
Without the last constraint, such problems are complete in the class Poly-
APX. The approximability of the discrete bilevel strategic planning model
for public–private partnership is discussed in [101]. It is shown that this
problem is NPO-hard, and the investor’s problem is NPO-complete. As in
the previous case, AP-reducibility is used to give these results. Unless P=NP,
there cannot exist polynomial-time approximate algorithms with guaran-
teed perfomance that correspond to the classes APX , Log-APX , Poly-APX ,
and Exp-APX , and there also cannot exist polynomial-time approximation
schemes for the investor’s problem at the lower level. Hence, we have the
same negative result for the bilevel linear problem.

1.5 Applications

The mixed-integer bilevel programming problems have a wide range of
applications in various spheres of life. A comprehensive overview of such
applications can be found in [9, 71]. A lot of results are related to the
chemical industry, network design, environmental problems, military applica-
tions, competitive facility location, pricing, interdiction problems, and many
others. Moreover, the review [9] contains some studies on the natural gas
cash-out problem, the deregulated electricity market equilibrium problem,
biofuel problems, a problem of designing coupled energy carrier networks,
and so forth. Most part of them deals with the bilevel models with continuous
variables. Below we present some applications of integer or mixed-integer
bilevel models.
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Network design. The term network design means any model that involves
the variables to define the structure of a graph or a network. In many cases,
we discuss a transportation network. Usually, the objective of network design
models is to satisfy data communication requirements and minimise the
total expenses. Requirement scope can vary widely from one network design
project to another based on geographic particularities and the nature of the
data requiring transport.
The network design problem is first modelled as a bilevel program by Gao

et al. [102]. The leader determines new road links to minimise the system
travelling costs. The follower’s problem is design to characterise the user equi-
librium. Fontaine and Minner [103] reformulate the network design problem
as a mixed-integer linear problem using the same approach as Labbé et al.
[104]. An improved Benders decomposition technique is devised. In a recent
paper, Fontaine and Minner [105] apply this decomposition method to an
extended version of the problem. Different vehicle flow patterns are consid-
ered in a time-varying fashion. Bagloee et al. [106] study the interaction of
two types of vehicles in the follower’s problem, and propose a hybrid algo-
rithm that combines a generalised Benders decomposition with the branch
and bound approach. In [107] the joint design and pricing problems are
considered. These problems are related to designing freight carrying services
and determining their associated prices as observed by the shipper firms. In
[108] the bilevel model for the discrete network design problem on trains
and its solution method based on the genetic algorithm are proposed.

Interdiction games play an important role in military and drug enforce-
ment applications. In both cases, the goal is to disrupt elements of a
transportation network to reduce as much as possible the enemy’s move-
ments on the network. In [109] a bilevel problem of network interdiction
is proposed and studied. In [110], the discrete network design problem
is defined as a bilevel optimisation problem. The leader wants to identify
the optimal network structure and minimise the network travel time. The
follower problem represents the network user’s reaction as a static traffic
assignment problem under user equilibrium. The bilevel optimisation model
for the hazardous materials (hazmat) transportation problem with lane reser-
vation is studied in [74]. The problem lies in selecting lanes to be reserved
in the network and planning paths for hazmat transportation tasks. The
trade-off among transportation cost, risk, and impact on normal traffic is
considered. In the context of vehicle transportation in congested roads,
an optimisation framework to integrate the operator decisions on network
pricing, regulation, and expansion while accounting for the shipments of
hazardous materials is proposed in [75].
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Defence and cybersecurity applications. The literature on the Stack-
elberg security games and the bilevel defender–attacker models is quite
extensive. A large part of publications are devoted to applied problems of
ensuring the security of objects (see [111–113] and references in them). For
example, in security resource optimisation problems, research has led to deci-
sion aids for real-world security agencies which need to deploy patrols and
checkpoints to protect targets from terrorists and criminals. Stackelberg secu-
rity games are a powerful tool to study a competition between a defender
and an adversary. The defender commits to a mixed strategy—a randomised
resource allocation specified by a probability distribution over deterministic
schedules—which takes into account the adversary’s best response to his
observation of the mixed strategy.

In [73, 114–120], another line of research deals with the r-interdiction
median problems with fortification are studied. The leader protects q objects,
and the follower attacks r unprotected objects. The defensive maximal
covering location model as a leader–follower attacker–defender game–theo-
retic model is studied in [73].

Among modern publications, we can also highlight papers [121–123]. In
the attacker–defender model [121], a more general situation is considered.
The attacker and the defender have various means (methods) for attacking
and defending objects, respectively. The losses of the attacking side and the
result of the attack depend on the means. In such a situation, the attacking
side enters into a game interaction with the defence side and take into
account the response of the other side which, choosing its solution, aims to
inflict maximum losses for the attacker. To find the optimal solution of the
bilevel mixed-integer problem, the feasible region is split into subsets and the
bilevel problem is reduced to a sequence of bilevel subproblems. Each bilevel
subproblem is reformulated as a mixed-integer programming problem. Previ-
ously, the same idea was used to design exact polynomial-time algorithms for
the bilevel problems with knapsack problem and continuous variables at the
lower level [7, 124–127].

In [122], the leader does not know the attack scenario and the follower’s
priorities for selecting targets for the attack. But, she can consider several
possible scenarios that cover the follower’s plans. The leader’s problem is to
select the set of objects for protection to minimise the total costs of protecting
the objects and eliminating the consequences of the attack associated with
the reassignment of the facilities for customer service. Reformulation of the
bilevel problem as some single-level problems is proposed.

In the bilevel optimisation framework, a leader chooses her solution
assuming that a follower answers by an optimal reaction according to the
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lower-level problem. However, the lower-level problems might be nontrivial.
In practice, it might be inexactly solved by metaheuristics. Zare et al. [123]
study a broad class of bilevel optimisation problems where the follower might
not optimally react to the leader’s actions. The authors provide algorithmic
implementations of a new framework for a class of nonlinear bilevel knap-
sack problems and illustrate the impact of incorporating this realistic feature
in the context of defender-attacker problems.

Recently proposed attacker-defender models for power system vulnera-
bility assessment perform a worst-case analysis considering both natural-
occurring events and malicious attacks. The worst-case analysis is crucial
for vulnerability assessment and mitigation of critical infrastructure such as
power systems. Defence applications including electric grid defence planning
and defence models in interdiction problems can be found in [71].

Information protection and cybersecurity discrete bilevel problems can be
found in review [9]. In the bilevel formulation from [128], the goal of the
destructive agent is to minimise the number of power system components
that must be destroyed in order to cause a loss of load greater than or equal
to a specified level. The system operator will implement all feasible corrective
actions to minimise the level of system load shed. The resulting nonlinear
mixed-integer bilevel programming formulation is transformed into an equiv-
alent single-level mixed-integer linear program and solved by commercially
available software.
The bilevel model specifically allows one to define different objective

functions for the terrorist and the system. Researchers have begun to look
into some new ways of addressing the security assessment problem. For
example, in [129], a multiagent system is proposed capable of assessing
power system vulnerability, monitoring hidden failures of protection devices,
and providing adaptive control actions to prevent catastrophic failures and
cascading sequences of events.

Attack tree is another widely used combinatorial model in the cyberse-
curity analysis [130]. Defence trees have been developed to investigate the
effect of defence mechanisms using measures such as attacker’s cost and secu-
rity cost, return on investment and return on the attack. In an attack response
tree, an attacker–defender game is used to find an optimal policy from the
countermeasures’ pool.

Cybersecurity is becoming an area of growing concern in the electric
power industry with the development of the smart grid. A false data injec-
tion attack has recently attracted the ever wider interest of researchers. A
special type of false data injection attack or a Load redistribution (LR)
attack is developed in [131]. The damage from LR attacks to power system



26 Y. Kochetov et al.

operations can manifest in an immediate or a delayed fashion. For the imme-
diate attacking goal, the most damaging attack can be identified through a
max–min attacker–defender model.

Facility location. Facility location problems arise as real-life applications
in both public and private sectors try to determine the optimal location
for facilities such as warehouses, plants, distribution centres, shopping malls,
hospitals, and post offices. They can have different objectives such as maximi-
sation of the profit obtained from customers and minimisation of the total
cost incurred by locating facilities and serving customers. There are many
different bilevel settings for the facility location models [71, 73, 132, 133].
For example, mathematical models and computational methods for the clas-
sical competitive facility location model so-called (r |p)-centroid problem, can
be found in [70].
The facility location problems with customer’s preferences are studied in

[134–141]. In these problems, the upper-level problem describes the facility
location process as opposed to the lower-level problem that describes the
customer allocation process. In [142], there is the problem of locating differ-
entiated waste collection centres. Another bilevel programming problem of
locating waste collection centres can be found in [143]. The model of
competitive facility location and pricing is investigated in [90]. The choice
of prices is based on the Bertrand model of price competition and the possi-
bility of splitting a client’s demand if it is profitable for both players. In [144],
a firm wants to open p facilities to enter a market and maximise its market
share, where other firms already operate. Customers can patronise any open
facility and maximise their utility function. A comprehensive overview of
bilevel facility location models can be found in [145].
The mixed-integer bilevel problem of strategic base stations placement

in cognitive radio networks is considered in [91]. Two operators want to
exploit the unused capacity of the primary network and maximise their profits
derived from operating the base stations installed and clients served. The
leader is aware of the future arrival of the follower, who is able to capture
clients by placing its own base stations. It has also to limit the interfer-
ence power at some measurement points defined by the primary user. The
authors develop a matheuristic where a mixed-integer program derived from
the follower’s problem is solved by CPLEX software.

An interesting leader–follower facility location model for 5G high-speed
networks is presented in [146]. Two mobile operators compete to attract
customers with high-speed internet connections. The leader acts first by
opening some base stations, anticipating that the follower will react by
creating her own base stations and renting some leader’s stations. Each
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customer patronises an operator with the highest speed of connection for
him. The leader and the follower maximise their profits at the first and second
levels, respectively and the customers move from one operator to another
until the Nash equilibrium is reached.

Another line of interesting application is presented by the leader–follower
hub location problems. The discrete hub network design model in a compet-
itive environment is investigated in [147] with a flow threshold. Two firms,
a leader and a follower, compete with each other to maximise their profits.
The level of captured passengers is determined by the logit function and each
route contains one hub only.

In [148] the authors consider the bilevel problem which extends the p-hub
median problem [149], taking into account intentional hub disruptions. In
this formulation, the leader chooses p hubs and additionally the emergency
hub to minimise two objectives, one of which corresponds to the total trans-
portation cost in the normal situation while the other corresponds to the total
transportation cost in the worst-case after r-interdiction. Two formulations,
the multiple allocation hub interdiction problem and hub protection problem
are studied in [150]. The first formulation refers to the bilevel programming
problem and the second one to the three-level programming problem. For
the multiple allocation hub interdiction problem, two reductions to mixed-
integer problems are proposed. The first one is based on the dual problem to
the linear programming lower-level problem. The second reduction is based
on replacing the lower-level problem with an equivalent system of closest
assignment constraints. The ideas developed on the multiple allocation hub
interdiction problem are used to solve the hub protection problem (see also
[151, 152]).
The paper [153] addresses the (r |p)-hub centroid problem. The leader

locates p hubs, later on, the follower locates r hubs. The customers choose
one firm with respect to provided service levels. The goal of each firm is
market share maximisation. An exact solution method is proposed.
Three variants of the bilevel hub interdiction problem are presented in

[154]: the multiple allocation p-hub median, the p-hub maximal covering,
and the p-hub centre problems under intentional disruptions. In these prob-
lems, the leader locates p hubs, whereas the follower tries to interdict r such
hubs that their loss would diminish the network performance the most. The
simulated annealing heuristic is applied as a solution approach.

In [155] the leader–follower hub location problem under fixed markups is
introduced deploying an alternating heuristic as a solution approach. In [156]
the authors investigate the leader–follower single allocation hub location
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problem under fixed markups. Two variants of this Stackelberg competi-
tion are addressed: deterministic and robust. For the deterministic variant,
a mixed-integer linear reformulation of the follower’s model is given. For the
robust variant, it is shown how to reformulate the follower’s program as a
mixed-integer conic quadratic one. As a solution approach for the leader, the
alternating heuristic is used also.
The (r |p)-hub centroid problem under the price war can be found in [157].

It was shown that there is a solution when the objective is profit maximisa-
tion, and the customer demand is split according to the logit model. The
equilibrium price equations are presented, accompanied by some compu-
tational complexity observations. In [158], an extension of this model is
presented. The paper provides a theoretical indication of the effect of the
price sensitivity parameter on profit. It is shown that the optimal routes under
the Bertrand-Nash price equilibrium are among the lowest cost ones. As a
solution approach is used the basic variable neighbourhood search algorithm,
based on a novel local search stopping rule and objective function estimation.

Supply chain. A bilevel optimisation problem to model the planning of a
distribution network is proposed in [159]. In this problem, there are manu-
facturing plants, depots, and customers. The purpose is to decide which
depots should be used and how the product should be distributed from
depots to customers and from plants to depots aiming to minimise the total
fixed costs and delivery costs. A metaheuristic approach based on evolutionary
algorithms is developed.
The paper [160] formulates the joint configuration of a product family and

its supply chain. The upper-level problem optimises the selection of modules,
module instances, and product variants. The lower-level problem responds
to decisions of the upper level in order to determine an optimal supply
chain configuration and inventory policies. To solve this nonlinear optimi-
sation model, a bilevel nested genetic algorithm with constraint reasoning is
developed and implemented.
The distribution centre problem is represented in [161]. The upper and

lower levels are to find the minimum transportation cost of shipping prod-
ucts from plants to distribution centres and from distribution centres to
customers, respectively.

Bilevel models associated with timberlands systems are proposed in [162,
163]. The paper [162] investigates the economic impact of a new biorefinery
on an established timberlands system. The work [163] studies the supply
allocation problem for an established timberlands supply chain with an addi-
tional decision of new biorefinery investments. The paper [164] focuses
on a multi-product vendor–buyer supply chain considering environmental
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factors in the product manufacturing process. The model determines the
optimal selling prices, advertising expenditures, wholesale prices, vendor’s
environmental improvements, and ordering policies of the vendor and the
buyer.

Scheduling problems. The bilevel flow shop scheduling problem is
proposed in [165, 166]. The shop owner (upper level) assigns the jobs to
the machines in order to minimise the flow time while the customer is at the
lower level and decides on a job schedule in order to minimise the makespan.
The authors use the concepts of tolerance membership function at each
level to define a fuzzy decision model for generating optimal (satisfactory)
solutions for the bilevel flow shop scheduling problem.
The bilevel multi-objective job-shop scheduling problem is considered in

[167]. At the upper level, idle time on the system bottleneck is minimised.
At the lower level, a decision is made to plan other machines while main-
taining the maximum use of the bottleneck and gaining improvements in
other performance measures.
The problem of scheduling inbound trucks at the inbound doors of a

cross-dock facility under truck arrival time uncertainty is proposed in [168].
A single-level and a bilevel optimisation problem are formulated. A genetic
algorithm and its modification are discussed for the single- and bilevel
optimisation problems.

Multi-job scheduling problems are considered in [169, 170]. In these
problems, the variation of energy consumption with the performance of
servers is taken into account for cloud computing. Moreover, task-scheduling
strategies depend directly on data placement policies. To solve the bilevel
discrete model efficiently, specific-design encoding and decoding methods are
designed. Based on these, an effective genetic algorithm is proposed, in which
a local search operator is introduced to accelerate the convergent speed and
enhance searching ability.

Other application. A new approach to the development of a strategic
program for a mineral resource region based on public–private partnership
mechanisms is proposed in [92, 93, 101, 171–173]. The government not
only carries out general-purpose infrastructural projects but also provides a
part of the costs related to compensating for ecological losses caused by the
investment projects. As we discussed in Sect. 1.4.2, these bilevel problems are
�P

2 -hard even in case of a three-year planning horizon.
Evacuation models are proposed in [174, 175]. In [174] to enable an effi-

cient evacuation, a network optimisation model which integrates lane-based
reversal design and routing with intersection crossing conflict elimination for
evacuation is constructed. The proposed bilevel model minimises the total
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evacuation time to leave the evacuation zone. A tabu search algorithm is
applied to find an optimal lane reversal plan in the upper level. The lower
level utilises a simulated annealing algorithm. The paper [175] develops a
model to optimise the issuance of evacuation orders with explicit consid-
eration of the highly uncertain evolution of the storm and the complexity
of the behavioural reaction to evolving storm conditions. A solution proce-
dure based on progressive hedging is developed. A realistic case study for the
eastern portion of the state of North Carolina is presented.

1.6 Conclusion

In this chapter, we have presented discrete bilevel optimisation models,
discussed their computational complexity and applications. We have pointed
out some lines for future research and wish to discuss below one of them
without details. In real-world applications, we often try to choose a solution
that is strong (optimal or near optimal) not only for the current input data
but also for a wide range of similar instances. Common methods for analysing
such situations lead us to solve more computationally difficult problems than
the original ones [176]. A new idea in this area had been suggested based
on a threshold approach [177, 178]. Let us consider a single-level income
maximisation problem with uncertainty in the input data. Now instead of
maximising the income, we wish to maximise the norm of possible variations
in the input data subject to the income is at least as the given threshold. This
elegant approach allows us to significantly improve the quality of the solu-
tion obtained in terms of stability with small degradation of the income. In
[178], this approach is applied to the facility location problems and analysed
as bi-objective optimisation.

Another line of research is related to the uncertainty arising from the ratio-
nality of the follower behaviour. As we have mentioned above, economic
agents cannot use excessively large resources to find the optimal solution. A
new approach which deals with the solution method uncertainty at the lower
level is developed in [123]. Earlier we assume that the follower must respond
by the optimal solution to the leader’s solution. However, the follower has
to respond by a feasible solution using some approximate algorithms in case
of resource constraints, time or computational resources. Three approaches
are presented for this case in [123]. The leader does not know the algorithm
that is used by the follower but knows a set of possible follower’s solution
methods. A similar approach in a simplified form was used in [179, 180].
The optimistic and pessimistic models and the strong-weak approach from
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[181–184] of the standard bilevel optimisation also can be viewed as special
cases of approach from [123]. We guess that it is a promising area for future
research.
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Discrete Location Problems with Uncertainty

Nader Azizi , Sergio García, and Chandra Ade Irawan

2.1 Introduction

Location Science has been a very active area of research for more than
half a century with an ever-increasing interest among practitioners and the
academic community. It is a wealthy field that substantially interacts with
both traditional and modern subject fields such as mathematics, economics,
computer science, and geography. Partly due to its interaction with other
disciplines, the research on location problems has rapidly developed in recent
years and many new real-world application areas such as logistics, telecom-
munications, routing, and transportation have emerged and are widely recog-
nized. This research area encompasses a variety of problems such as covering
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problems, p-centre location problems, location and routing problems, and
hub location problems. Probably, the uncapacitated facility location problem
is widely known as its core problem [57].

Location problems are commonly organized in three categories according
to the location space: discrete problems, continuous problems, and network
problems. Particularly, discrete facility location problems [82] consist in
finding the best set of facilities over a finite set of potential sites so that
a certain service is provided: goods delivered from a warehouse, emergency
vehicles that provide first aid or take sick people to hospitals, shops that are
near the potential customers, etc.

Regardless of the type of space, examples of information usually required
are volume of demand, supply cost, commodity price, or travel time. Tradi-
tionally, deterministic approaches are used to model these problems assuming
a priori knowledge of the value of the associated parameters. In a practical
context, however, one or more of these parameters are likely to be uncertain
with known, partially known, or completely unknown underlying probability
distributions. If probabilistic information is available, the uncertain parame-
ters are represented by random variables and stochastic programming is used
to model the problem. In other cases, robust optimization approaches are
likely to be employed to deal with the problem under uncertainty. Moti-
vated by the importance of accounting for uncertainty, in this chapter we will
survey three of the most important families of problems in discrete facility
location: the single-source capacitated facility location problem, covering
problems, and hub location problems. The main contributions and solution
methods in the area are reviewed for these problems, including formulations
for some of the models and solution methods. For more general reviews
on facility location problems with uncertainty, the interested reader can
check [29, 95].

2.2 The Single-Source Capacitated Facility
Location Problemwith Uncertainty

The single-source capacitated location problem (SSCFLP), the capacitated
variant of the original uncapacitated facility location problem introduced
in [16], seeks to find the number of facilities to open, their locations, and
the customer allocation to these open facilities in order to minimize the total
cost without violating the capacity of any of the open facilities. In addition,
each customer demand is served from one single facility. This problem has
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been widely studied in the literature due to its many applications, such as oil
wells allocation [34] and humanitarian logistics [55, 56].

Let I be a set of customers indexed by i where the demand of customer i
is denoted by di . Let J be a set of potential locations to locate the facilities
which is indexed by j. The cost of opening a facility at location j ∈ J is f j ,
whereas b j is the capacity if we build a facility on this location. An allocation
cost ci j is incurred if customer i ∈ I is assigned to facility j ∈ J . Binary deci-
sion variable y j takes value 1 if and only if location j hosts a facility. Binary
variable xi j takes value 1 if and only if customer i is assigned to facility j.
The SSCFLP can be modelled as follows:

Min.
∑

j∈J

f j y j +
∑

i∈I

∑

j∈J

ci j xi j (2.1)

s.t.
∑

j∈J

xi j = 1, i ∈ I, (2.2)

xi j ≤ y j , i ∈ I, j ∈ J, (2.3)

∑

i∈I
di xi j ≤ b j y j , j ∈ J, (2.4)

y j ∈ {0, 1}, j ∈ J,

xi j ∈ {0, 1}, i ∈ I, j ∈ J.

The objective function (2.1) seeks to minimize the total cost (facility location
plus customer allocation). Constraint (2.2) ensures that a customer is assigned
to exactly one facility. Constraint (2.3) states that a customer can be served
only by an open facility. Constraint (2.4) imposes that the demand supplied
from any facility does not exceed its capacity.

As many location problems deal with long-term strategic decisions, uncon-
trolled changes may occur on the underlying conditions, and the SSCFLP
is no exception. According to [92], the uncertainty in the facility location
problem can be divided into three types: receiver-side uncertainty, provider-
side uncertainty, and in-between uncertainty. In the receiver-side uncertainty,
the most common uncertain parameter used is the randomness on demands.
The provider-side uncertainty may consist of uncertain supply capacity, lead
time, and facility status (operational or failed). The in-between uncertainty
includes uncertain transportation costs or times and arc status.

In the literature, most researchers study the SSCFLP under the receiver-
side uncertainty where customer demands are stochastic and follow certain
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probability distributions. Laporte et al. [58] investigate the problem with
stochastic customer demands which is formulated as a two-stage mixed
integer model where the first and second stages deal with binary and contin-
uous variables, respectively. The model is then solved using a branch-and-cut
algorithm. Albareda-Sambola et al. [1] investigate the stochastic problem
with Bernoulli demands which is also formulated as a two-stage stochastic
program. The first stage decides facility locations and customer assignments
before knowing the customers who will actually require to be served. In the
second-stage service decisions are taken according to the actual requests. The
expected value of the recourse function is added into the objective function,
which can occur by reassigning customers to another facility. In their model,
the recourse function includes the service and outsourcing costs.

Still on the receiver-side uncertainty category, Lin [62] considers uncer-
tain demand while requiring a specific service level. The problem is modelled
using chance constraints. By assuming that the demands follow Poisson
and normal distributions, the models can be transformed into determin-
istic models. A hybrid heuristic based on Lagrangean relaxation with a
multi-exchange heuristic within a branch-and-bound framework is devel-
oped. Albareda-Sambola et al. [2] and Bieniek [24] study methods to tackle
the problem proposed in [1]. Bieniek [24] considers the customer demands
to be arbitrary discrete, continuous, or mixed distributions. The determin-
istic equivalent formulations for the stochastic formulations are obtained.
Theoretical results for general distributions (exponential and Poisson distri-
butions) are also presented. In [1] the authors propose a heuristic method that
comprises a greedy randomized adaptive search technique followed by a path
relinking algorithm to solve the problem with general Bernoulli demands.
The performance of the proposed method is assessed by comparing its
solutions with those obtained by a sample average approximation procedure.

Robust optimization approaches have also been used to solve the SSCFLP
with uncertain demands. We can find in [18] a method called “almost robust
discrete optimization” (ARDO) that is based on chance constraints. A decom-
position methodology is used consisting of a deterministic master problem
and a single subproblem that checks the master problem solution under
different realizations. This method is used to solve the SSCFLP with uncer-
tain demand. Other works closely related to the SSCFLP with uncertain
demands are [55, 56], where the stochastic SSCFLP is extended to solve
a shelter site location problem and to investigate a multi-criteria location
problem respectively.
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Under provider-side uncertainty, Aydin and Murat [10] address the unre-
liability of facilities in the capacitated reliable facility location problem. The
authors propose a two-stage stochastic programming model that utilizes
a scenario-based strategy to convert the stochastic problem into several
deterministic problems with different probabilities. Location decisions are
determined on the first stage whereas the allocation problem following the
facility failures is solved on the second stage. The problem is solved with a
hybrid algorithm that uses particle swarm optimization and a sample average
approximation technique.
To the best of our knowledge, there is no work that studies the SSCFLP

with in-between uncertainty. Therefore, we propose here a generic stochastic
SSCFLP model under this category. In particular, it is assumed that alloca-
tion costs ci j are not known in advance and they are considered as uncertain
parameters. However, these costs can be captured by a probability distribu-
tion. Here, the decision to open facilities has a long-lasting effect. Therefore,
this is a strategic decision which is typically determined before having precise
information about the customer allocation in the future. On the other hand,
the decision about the customer allocation is often considered as an opera-
tional decision that can be made when perfect information is available, after
uncertainty is revealed.
To include the random nature of the allocation cost in the problem, we

consider a two-stage stochastic model. We assume that strategic decision
variable y must be determined before the actual realization of the customer
allocation at the first stage. The second stage decides the customer allocation
which is related to the operational decision variable x. Recourse decisions are
considered at this stage because they are determined in such a way that the
best response to the occurring scenario is given to the setting defined by the
first-stage decisions.
The allocation costs ci j are assumed to be random, and thus the random

vector underlying the problem is ξ = [ci j ]i∈I, j∈J , where I and J have the
same meaning as earlier. Each realization of this random vector is a scenario
and it is assumed that it is possible to compute or estimate accurately the
probability associated with each scenario. Here all possible scenarios of future
conditions are explored. The goal is to minimize the expected cost of the
system.

If the random vector ξ is discrete and of finite size, we can index the
scenarios in the set S = {1, . . . , |S|}. Let ps be the probability associated
with scenario s ∈ S. The uncertain parameter can also be indexed as ci js
which represents the allocation cost of customer i ∈ I to facility j ∈ J under
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scenario s ∈ S. Accordingly, the allocation decision variable is xi js . A param-
eter c

∧

is introduced to penalize each unit of unmet demand. The introduction
of this parameter aims to achieve the feasibility of the obtained solutions over
the scenario realizations [70]. Therefore, variables uis are added to deter-
mine the amount of unmet demand for customer i ∈ I for scenario s ∈ S.
This stochastic SSCFLP with scenario-based approach can be formulated as
follows:

Min.
∑

j∈J

f j y j +
∑

s∈S
ps

⎛

⎝
∑

i∈I

∑

j∈J

ci js xi js +
∑

i∈I
c
∧

uis

⎞

⎠ (2.5)

s.t.
∑

j∈J

xi js = 1, i ∈ I, s ∈ S,

xi js ≤ y j , i ∈ I, j ∈ J, s ∈ S,
∑

i∈I
(di − uis)xi js ≤ b j y j , j ∈ J, s ∈ S, (2.6)

uis ≤ di , i ∈ I, s ∈ S,

y j ∈ {0, 1}, j ∈ J,

xi js ∈ {0, 1}, i ∈ I, j ∈ J, s ∈ S,

uis ∈ Z
+, i ∈ I, s ∈ S. (2.7)

In the objective function (2.5), the total penalty cost has been added to
the cost of the deterministic model. The interpretation of constraint (2.6)
is the same as constraint (2.4). In addition, this constraint also deter-
mines the amount of unmet demand for each customer for scenario s ∈
S. Constraint (2.7) ensures that the unmet demand does not exceed the
customer demand.
This two-stage stochastic programming model is hard to solve as it is chal-

lenging to assess the expected value of the objective function for the stochastic
model: an integer programming model for each scenario that corresponds to
an uncertain parameter realization needs to be solved. A tool that can be used
for solving this problem is the sample average approximation method [88],
where a set of sample scenarios are generated using the Monte Carlo sampling
method. Nevertheless, solving this model is beyond the scope of this chapter.
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2.3 Covering Location Problems
with Uncertainty

In a discrete covering location problem there is a finite set of potential sites
that can host facilities that provide some kind of service and there is a set
of customers that need this service. The particularity of a covering problem
is that a customer can receive this service only if they are within a certain
distance from a facility. When this happens, it is said that the customer is
covered. Otherwise, when that distance is exceeded, the customer is uncov-
ered. A typical example is deciding where to locate ambulances such that any
call can be reached in at most a certain number of minutes established before-
hand to satisfy some regulation. Covering location problems are among the
most widely studied in facility location due to their many applications: loca-
tion of emergency services such as ambulances and fire trucks, nature reserve
selection, crew scheduling, bus stops, etc.

Unless said otherwise, here we are discussing models where the demand is
generated only at the nodes of the network and the facilities can be installed
only at the nodes. Although the basic models assume that the data are deter-
ministic, this is not true in most of the applications, where there is some
kind of uncertainty (for example, on the demand or on the distances). In
this section we will focus on reviewing different covering models from the
literature that include uncertainty in different ways. Reviews on determin-
istic covering models can be found in [42, 96]. We can find also reviews such
as [61, 81] that deal exclusively with emergency vehicles, one of the main
applications of covering problems.
There are two main types of (deterministic) covering problems. In the

set covering problem introduced in [98] all the customers must be covered
at minimum cost. As covering all the customers is usually not possible
unless very high costs are incurred, in the maximal covering problem intro-
duced by [30] the goal is to maximize the demand covered subject to some
constraints (such as a limited budget or number of facilities that can be
set up). Therefore, we will structure our review by classifying the models
discussed into extensions of these two models where uncertainty is included.

2.3.1 Set Covering Models with Uncertainty

The most basic models seek to achieve robustness simply by covering the
nodes more than once without any explicit consideration to uncertainty.
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Back-ups are installed for some of the opened facilities, that is, some nodes
are covered by more than one facility. Examples of such models can be found
in [32, 50], where the idea of their hierarchical objective set covering problem
and backup coverage model , with some minor differences, is to minimize the
number of located facilities and to maximize the number of nodes covered
more than once.

In a probabilistic extension of the set covering model it is assumed that
each facility has a certain probability p of being busy, the same for all of
them, and the event that one facility is busy is independent from any other
facility being busy. It is required that each node can be covered with a certain
minimum probability α, that is, this is the probability of at least one facility
not being busy. With this information, a chance constraint is proposed that
can be easily written as a constraint that imposes the minimum number of
facilities able to cover this node that must be open to meet this threshold:

∑

j∈Ni

x j ≥
⌈
log(1 − α)

log p

⌉
,

where xi takes value 1 if a facility is located at node i, Ni is the set of nodes
that can cover node i, and �a� is the smallest integer greater than or equal
to a. This is a deterministic constraint that is included in the model. See [33]
for details on this model, initially introduced by Chapman and White at the
1974 ORSA/TIMS conference. It must be noted that the constraint is very
sensitive numerically, as a change on the right-hand side from 0.99 to 1.01
will double the number of facilities necessary to cover a node. An analysis on
this sensitivity can be found in [84]. A similar constraint, but obtained using
the estimation of the period of time that the servers are busy, is proposed
in [83].

In [7], one of the earliest papers on covering models with uncertainty, we
find a similar approach to the set covering model with chance constraints
explained above, but here the authors assume that the demand is a random
variable uniformly distributed over a certain region. As a consequence, travel
times are also random. Formulations with chance constraints and with
expected values are proposed.

An extension of the constraint written above can be found in [48] in the
context of nature reserve selection. The authors propose a model that maxi-
mizes the number of species that can be protected with at least a certain
threshold decided beforehand. As the species are counted as protected or not
protected, their model can be easily rewritten as a set covering model that
minimizes the number of species that are not protected. In addition, they
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allow for different and independent probabilities for different sites, where the
busy probabilities of the classical facility location models now mean the prob-
ability of a species being present at a site. Although the constraint that they
propose is nonlinear, it can be linearized easily by taking logarithms and they
end up solving a mixed integer linear model.

In [20] we find a probabilistic set covering model where the right-hand
side of the covering constraints is substituted by a random vector, and it is
required that the constraints are satisfied with a certain probability. Inde-
pendence of the individual right-hand side values for the constraints is
not required. The authors study probabilistically efficient points of binary
random vectors and suggest a specialized branch-and-bound method to solve
the problem. The problem is later analysed in depth in [89], where several
properties and model simplifications are studied.

In a different approach from the main body of models that include the
uncertainty on the demand, we find in [67] a set covering model with
stochastic critical distances. Here the critical distance that determines whether
a customer is covered or not is stochastic. As a consequence, customers
patronize a facility with a certain probability. In order to find an optimal loca-
tion of the facilities at minimum cost an algorithm based on two searching
paths is proposed.

Lutter et al. [63] use robust optimization to deal with the uncertainty, as
the authors argue that the necessary statistical parameters required are not
known with enough precision. They develop a mixed integer linear program-
ming model that includes what they call “�-robust α-covering constraints”,
which is a concept based on the �-scenario sets introduced in [23]. See these
two references for further details.

2.3.2 Maximum Covering Models with Uncertainty

With the same idea and justification than in the backup models presented for
the set covering model, Storbeck [97] introduces a maximum covering model
that maximizes covering and multiple covering in the objective function.

Moving on to models that consider explicitly the uncertainty, in the
maximum expected covering location problem (MECLP) introduced in [31]
each server has a probability p of not being available, either because it has
failed or because it is busy serving other customers. It is assumed that this
probability is the same for all the locations and that two facilities failing at the
same time are independent events. Distances between customers and facilities
are deterministic. The objective is to maximize the expected covered demand.
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The problem can be written as a mixed integer linear programming model as
follows:

Max.
n∑

k=1

m∑

j=1

w j hk y jk

s.t.
m∑

j=1

y jk ≤
n∑

i=1

aki xi , k ∈ {1, . . . , n},
n∑

i=1

xi ≤ m,

xi ∈ {0, 1, . . . ,m}, i ∈ {1, . . . , n},
y jk ∈ {0, 1}, j ∈ {1, . . . ,m}, ∀k ∈ {1, . . . , n},

where y jk = 1 if node k is covered by at least j facilities (and y jk = 0
otherwise), xi is the number of facilities located at node i, hk is the demand
at node k, and w j = (1 − p)p j−1. The value w j hk is the increase in
expected coverage at node k when the number of facilities that cover this
node is increased from j − 1 to j. It must be noted that this model allows
for more than one facility to be opened at the same node, what is known
as co-location. After having formulated the model, the paper discusses some
properties of the solutions and a heuristic solution method is proposed. The
performance of genetics algorithms to solve the MECLP is analysed in [11]
and several additional metaheuristics are developed in [77]: an evolutionary
algorithm, tabu search, simulated annealing, and a hybridized hill-climbing
algorithm.
The MECLP is revisited in [19] to relax three of the assumptions of the

original models: that the servers are independent, that the servers have the
same busy probabilities, and that the server probabilities are the same for
all the locations. The authors show that there is a disagreement between
the MECLP and their model (which is based on a hypercube optimization
procedure, see [59]) regarding the coverage predicted, but that there is an
important agreement on the locations for the facilities.

An extension of the MECLP, Polasky et al. [75] assume probabilities that
are different for each site and independent to maximize the number of
expected covering species in an application to nature reserve selection. The
model that they propose is nonlinear (a sum of products) and the authors
use a greedy heuristic algorithm. The same model is studied in [25] with the
slight difference that now the budget constraint is specifically a constraint that
imposes the exact number of nature reserves to be located (that is, a p-median
constraint). In order to solve the problem, it is proposed a mixed integer
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linear model that provides an arbitrarily close approximation to the orig-
inal objective function. The first ever linear formulation for the MECLP is
proposed in [71], where the concept of probability chains is used to calculate
compound probability terms that allow the authors to develop an efficient
linearization technique for some facility location problems with unreliability.
Some lower bounds are calculated and several valid inequalities are proposed
to strengthen their model, which is solved with a branch-and-cut algorithm.
The maximum availability location problem, introduced in [85], is a prob-

abilistic extension of the maximum covering location problem that seeks to
locate p facilities so that the population that can be covered by at least one
of the servers is maximized with a certain level of reliability decided before-
hand. The paper proposes two models, one in which all the servers are equally
busy, and another one in which busy fractions are adjusted by zone. Later a
unified approach to the maximum availability location problem and to the
maximum expected covering location problem is discussed in [43], where the
authors discuss similarities and differences between the two models.

In the context of emergency vehicles some approaches that maximize
covered demand are analysed in [33], including backup and maximum
expected covering models. In [66] we find an extension of the maximum
expected covering model that considers two types of servers, with a hyper-
cube queuing model being used to measure the dependencies between the
servers. Van den Berg and Aardal [100] consider a model where not only the
expected coverage is maximized but also the number of open locations and
relocated vehicles is minimized. Their model is time-dependent and the day
horizon is split into several time periods. So, the busy probabilities of the
emergency vehicles depend on the time of the day. Instead of assuming the
classic but strict 0–1 coverage, some models may allow fractional coverage,
for example when dealing with stochastic response times. If the maximum
expected covering location problem formulation is extended to allow for this,
then the formulation is nonlinear. However, in [100] the authors present a
linear integer programming formulation that they show to be much more
efficient than the nonlinear formulation. In [8] the location and dispatch of
the emergency vehicles is decided through district design, and uncertainty on
both the travel times and the availability of the ambulances is considered.
The authors of [21] study a maximum covering location problem on

a network where there is uncertainty on travel times, which is modelled
through different scenarios. Three different models (expected covering, robust
covering, and expected p-robust covering) are proposed, being explained how
each of them is appropriate for a different type of facilities.
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A different approach to deal with uncertainty is the maximal cover location
problem with hedging introduced in [80]. The authors propose a multi-
objective extension of the deterministic maximal cover location problem and
introduce a lexicographic ordering of the objectives that are related to the
uncertainty on the demands. The model is applied to the design of a network
of screening facilities to detect exposure to lead contamination.

2.3.3 Other Covering Location Models

Moving further from the classification on set covering and maximum
covering models, in [65] we can find a general model that considers uncer-
tainty and time-dependent aspects. The authors show that several covering
models from the literature are particular cases and solve their general model
with a heuristic based on Lagrangean relaxation.

In [102] we can find a formulation for a multi-period maximal covering
location problem with server uncertainty that is applied to the location of
primary health centres where there is a high uncertainty on the availability of
doctors (which are the servers in the context of this facility location problem).
The authors explain that assigning probabilities to the different scenarios is
a challenging experience and they circumvent this problem by using robust
optimization to solve a minimax regret approach. In order to solve instances
of large size, an algorithm based on Benders decomposition is used.

2.4 Hub Location Problems with Uncertainty

In today’s global economy, logistics and supply chain networks play an impor-
tant role in transporting a massive number of shipments around the globe by
facilitating the movement of commodities at a lower cost. Hub-and-spoke is
one of the paradigms that is employed by many companies operating in air
and freight transport, parcel delivery, and telecommunication and computer
networks. A hub system, or simply a hub location problem, is concerned with
the optimal location of hubs (special nodes in the network that collect the
demand from the origins and redirect it towards the destinations), the hub
network design and directing the flow through this network in such a way to
minimize the total transportation cost. A hub system has a number of advan-
tages over a network with direct links between all origin-destination pairs
including lower transportation and transmission cost. The saving is usually
achieved by exploiting economy of scales in hub links and having fewer direct
links, which ultimately leads to lower operational costs.
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According to the type of node allocation scheme, hub location problems
are divided into two distinctive groups: single allocation and multiple allo-
cation problems. In the former, all incoming and outgoing traffic to and
from every node is transferred via a single hub, while in the latter each node
is allowed to receive and send flow through more than one hub. Hub-and-
spoke systems can be also categorized as capacitated and uncapacitated. When
constraints exist that limit the amount of flow being transported through the
network, the problem is called capacitated [6]. Depending on the problem,
capacity constraints may refer to the nodes, to the links, or to both. With
regard to hub capacity, either there is a constraint on the total flow trans-
ported through a hub (as in [26]), or only the amount of non-processed flow
entering a hub is restricted (as in [41]). In hub location problems, hubs often
form a complete graph, which means all hubs are directly connected to each
other. In other cases a direct hub link between a hub pair is made only if
it is necessary [4]. These type of problems are known as hub location with
incomplete hub networks. Hub location problems are usually modelled using
path-based formulations [26, 94] or flow-based formulations [40]. The path-
based formulations of [94] are known to provide tight linear programming
relaxation bounds.
Traditional approaches to hub location are widely deterministic assuming

very limited or no uncertainty. However, research has shown that deter-
ministic hub location models often lead to sub-optimal networks. From a
practical point of view, two types of uncertainty could significantly affect the
design of a hub network: (1) variation in demand (dependent or indepen-
dent demand), cost (fixed or variable), and time, and (2) supply availability
(e.g., hubs or arcs failure). The first type of uncertainty is highly related to
the level of inaccuracy in input data while the second type is associated with
the risk of supply disruption. Regardless of the source, researchers have found
that the impact of uncertainty on networks operation is significant ranging
from excessive transportation cost and low service level to customer dissat-
isfaction. Motivated by the importance of uncertainty modelling, in recent
years a growing interest has been developing on hub location problems with
demand and cost variation, supply disruption, and hub fortification. These
studies provide recommendations on how different uncertainty aspects can
be taken into account when designing hub networks. To model hub location
problems with uncertainty, researchers often recommend stochastic program-
ming, robust optimization, and reliability approaches. In the following we
will briefly review some of these studies.
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2.4.1 Demand, Cost, and Time Uncertainty

In practice, variation on demand, cost, price, or time are largely unavoidable,
and are considered an inherent part of logistics, supply chain, and telecom-
munication networks. They are often measured as the amount of deviation
from the expected values of the interested data. Sim et al. [93] is one of the
first studies to consider time variability in hub location models. A stochastic
p-hub centre problem is introduced to minimize the longest transportation
time assuming a specified service level in delivery times. The formulation uses
chance constraints to model the minimum service-level requirement without
addressing hub installation and operating costs.

We find in [103] stochastic formulations for hub location problems with
uncertain demand and variable discount factor. Here demand is governed by
a discrete probability distribution, and direct interaction between non-hub
nodes is allowed. A two-stage network design model is proposed where the
first stage looks for the number and location of hubs for different demand
levels and the second stage attempts to determine the transport paths and
flow allocation in response to demand change.

Another pioneer work on modelling uncertainty in hub location is [28],
that studies stochastic uncapacitated hub location problems with demand
and transportation cost uncertainty. It is shown that problems with stochastic
demand or dependent transportation costs are equivalent to their associated
deterministic expected value problems but this may not be the case if trans-
portation costs are uncertain and independent. The uncapacitated hub location
problem with stochastic demands proposed in this paper is as follows:

Min.
∑

i∈H
fi zi + Eξ

⎡

⎣
∑

i, j∈H

∑

k∈K
Wk(ξ)Fi jk xi jk(ξ)

⎤

⎦

s.t.
∑

i, j∈H
xi jk(ξ) = 1, k ∈ K , ξ ∈ �,

∑

j∈H
xi jk(ξ) +

∑

j∈H
x jik(ξ) ≤ zi , i ∈ H, k ∈ K , ξ ∈ �,

xi jk(ξ) ≥ 0, i, j ∈ H, k ∈ K , ξ ∈ �,

zi ∈ {0, 1}, i ∈ H,

where Eξ is the mathematical expectation with respect to a random event ξ

whose support is �. H is the set of hubs and K is the set of commodities.
Variable zi takes value 1 if and only if a hub is located at node i, and vari-
able xi jk takes value 1 if and only if commodity k is transits through the
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network via hub i first and then via hub j. In addition, fi jk is the unit trans-
portation cost of routing commodity k via hubs i and k, fi is the fixed set-up
cost for locating a hub at node i, and Wk is the amount of commodity k to be
routed. The first term of the objective function represents the total set-up cost
of the hub facilities and the second term is the total expected transportation
cost. The constraints are the same as those proposed for the uncapacitated
hub location problem with multiple assignments in [49] though now defined
for every possible realization of ξ .
The impact of different sources of uncertainty on the solution of a hub

location problem with uncertainty is studied in [6]. Representing uncertainty
as a finite set of scenarios, the authors study first the two cases in which
sources of uncertainty are set-up cost and demand, and then develop an inte-
grated case where the two sources of uncertainty are simultaneously present.
Several formulations are proposed: a minimax regret formulation to deal with
uncertainty in the set-up costs, a two-stage stochastic program with recourse
to model the problem with uncertain demand, and a two-stage minimax
regret program to address the case with uncertain demand and fixed costs.
It is demonstrated that in hub location problems the structure of the solu-
tions with and without uncertainty are likely to be different, and that optimal
solutions are sensitive to the presence of uncertainty.
The authors of [90] propose robust formulations for the uncapacitated

single and multiple allocation hub location problem with demand uncer-
tainty, where limited features of the demand distribution are assumed to be
known. They model the problem as a mixed integer nonlinear program which
is subsequently transformed into a mixed integer conic quadratic program.
Regarding uncertainty, the approach of [27] is adopted: the uncertain param-
eters (demand) are assumed to be in an ellipsoidal uncertainty set and can be
expressed by a known mean and a number of independent variables. Numer-
ical experiments are conducted to highlight the difference between robust and
deterministic solutions.
The case where demand distribution is not fully specified is also studied

in [44, 45]. The authors propose formulations for the capacitated single and
multiple allocation hub location problem assuming that transported flows
between any pair of nodes in the network are independent symmetric random
variables. They consider the uncertainty in the capacity constraints, employ
a budget of uncertainty and use the nominal demand value in the objec-
tive function. A mixed integer programming model for the deterministic
problem and a robust counterpart of the original model are presented, and
three variants of polyhedral uncertainty are considered: the hose, the hybrid,



58 N. Azizi et al.

and the budget in a multiple allocation p-hub median problem. A tabu search
algorithm is used to solve the different instances.

Merakli and Yaman [68] present a robust uncapacitated multiple alloca-
tion hub location problem under polyhedral demand uncertainty where hose
uncertainty and a hybrid model are used to characterize demand uncertainty.
The authors propose linear mixed integer programming formulations with
minimax criteria and use two Benders decomposition-based algorithms to
solve problem instances with up to 75 nodes. After having discussed the
impact of demand uncertainty on the location of hubs, it is argued that
demand uncertainty may not significantly affect the decision on where to
locate hub facilities. Another paper on robust optimization, Zetina et al.
[105] consider uncertainty on transportation costs and its interaction with
demand uncertainty. Three models and solution techniques are presented for
robust counterparts of the well-known uncapacitated hub location problem
with multiple allocation considering uncertainty on demand, transportation
cost, and on both parameters simultaneously. Demands between origin-
destination pairs in the first model and transportation costs for all links in the
second model are assumed to be uncertain values lying in a known interval. In
the third model, the uncertainties on both demand and transportation costs
are assumed to be independent. The authors then use a budget of uncertainty
to control the desired level of conservatism for both demand and transporta-
tion costs as suggested in [22]. Finally it is shown that commodities are routed
through multiple paths when the transportation costs are uncertain. De Sa
et al. [37] propose a robust optimization approach for multiple allocation
incomplete hub networks under demand and set-up cost uncertainty. Similar
to previous studies, the model is based on the approach proposed in [22].
The worst case with respect to a budget of uncertainty is minimized.

In [76] it is studied a stochastic single allocation hub location problem
with deterministic fixed costs and uncertain demand. The problem is formu-
lated as a quadratic program where the location and allocation decisions are
taken on the first stage, and the routing is decided on the second. The authors
show that the proposed stochastic quadratic program is equivalent to a deter-
ministic quadratic program for the special case of continuous and strictly
increasing distribution functions that model the uncertainty.

Rostami et al. [87] highlight the importance of postponing demand alloca-
tion due to its uncertain nature. The single allocation hub location problem
under demand uncertainty is studied and a two-stage stochastic program is
proposed where the optimal location of the hubs is decided on the first stage
and the allocation of the spokes on the second stage, once the uncertainty on
the demand is observed. To solve larger instances of the nonlinear program,
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the authors formulate an efficient cutting plane approach that outperforms
a commercial solver and the L-shaped decomposition technique.

Demand Uncertainty from the Congestion Perspective
The design of hub location networks with demand uncertainty has been

also studied from the hub congestion perspective. Grove and O’Kelly [46] is
one of the earliest studies to investigate the effect of congestion in hub-and-
spoke networks. A simulation is made for a single allocation hub network
with fixed hub locations and it is demonstrated how schedule delays of airline
systems are influenced by the amount of flow at hubs.

Studies on congestion at hub systems address the congestion either by
restricting the amount of flow passing through the hubs or by explicitly
modelling the congestion effects in the objective functions. The latter often
use performance measures such as average waiting time or the probability
distribution of the queue length to measure congestion. A number of studies
have shown that explicitly modelling congestion more accurately captures its
effects as it allows to imitate its exponential nature. Alumur et al. [5] propose
mixed-integer linear programming formulations for the single and multiple
allocation hub location problems with service time limit considering conges-
tion at hubs. Their focus is on capacity decisions and service time limit
to reflect the effects of congestion. Ozgun-Kibiroglu et al. [74] address the
multiple allocation hub location problem in which a penalty cost in the
objective function represents the congestion effects on respective hubs. The
proposed model captures the congestion effects using a convex cost func-
tion similar to the one used in [38]. The authors proposed a particle swarm
optimization algorithm to solve the problem.

Another stream of research attempts to capture congestion effects by
modelling hubs as spatially distributed queues. Examples of such studies
are [15, 39, 47, 64, 78]. A nonlinear model to design hub-and-spoke
networks with capacity and fixed cost is presented in [47]. The authors
consider congestion both on links and at hub facilities. Hubs are modelled
as M/M/1 queues and congestion is computed using mean waiting time at
hubs. Marianov and Serra [64] provide models and solution methods for
a hub location problem with congestion. Hub airports are represented as
M/D/c queues and a formula is derived for the probability of the number
of customers in the system. This formula is used as a capacity constraint in
the model for hub location with congestion. Elhedhli and Hu [38] propose
the use of a power law function to represent the congestion cost in the objec-
tive function. The hubs are modelled as M/M/1 queues and congestion is
computed as the ratio of the total flow to the surplus capacity. A Lagrangean
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heuristic is used to solve the nonlinear mixed integer programming formula-
tion of the problem.

De Camargo et al. [35] address the multiple allocation hub location
problem under hub congestion. The authors model congestion as a convex
cost function and propose a Benders decomposition algorithm to solve
instances of the problem with up to 81 nodes. The single allocation version of
the problem with congestion was later studied in [36], where a procedure that
concurrently generates outer approximation and Benders cuts is proposed to
solve large problem instances.

A hub covering location problem with congestion is studied in [78]. The
problem is modelled as an M/M/1/k queuing system with the objective of
minimising the probability of flow exceeding a hub capacity. The authors
adopt a bi-objective modelling framework to minimize total transportation
cost and the maximum travel time between each pair of origin-destination
nodes. Azizi et al. [15] analyse a capacitated single allocation hub p-hub loca-
tion problem with stochastic demand and congestion. The authors model
hubs as spatially distributed M/G/1 queues and congestion is captured
using the expected queue lengths at hub facilities. The authors use a simple
transformation and a piecewise linear approximation technique to linearize
the resulting nonlinear model proposed for the problem. Two solution
approaches are presented to solve medium and large problem instances: a
cutting plane approach and a heuristic.

Alkaabneh et al. [3] consider a hub-and-spoke network design problem
with inter-hub economies-of-scale and hub congestion. The authors model
the problem as a nonlinear mixed integer program similar to that proposed
in [38] but with flow dependent costs. The authors propose a Lagrangian
approach to obtain tight upper and lower bounds. Karimi-Mamaghan et al.
[52] study a single allocation multi-commodity hub location problem with
congestion. Congestion at the hubs is modelled as a general GI/G/c queuing
system and a stochastic flow is used to account for congestion in hub-to-hub
connection links. A learning-based metaheuristic is proposed.

In summary, the research on hub location with uncertain data has begun
approximately a decade ago and it is still in early stages. As shown here, the
main focus of the papers that have been published so far has been on demand
and cost variations. Few papers have simultaneously considered demand and
cost uncertainty, and there is very limited research on time uncertainty alone
or in combination with other sources of uncertainty. Most of the works
reviewed above attempt to deal with data uncertainty in general without
addressing a particular application. Regarding the objective function, the
most common objective is the minimization of cost. A large majority of the
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research so far assumes no capacity restriction and a fixed discount factor in
inter-hub links. The popular methodology utilized in modelling data uncer-
tainty is the use of budget of uncertainty. Very few research can be found on
link congestion or simultaneous consideration of hub and link congestion.
Apart from [3], all of the studies reviewed above assume a flow independent
discount factor. Finally, an important practical factor, which is the impact of
time dimension of demand in modelling uncertainty in hub location, is yet
to be explored.

2.4.2 Network Reliability and Resilience

The second type of uncertainty in hub location is associated with the risk
of supply disruption. The cause of hub failure or disruption vary from
severe weather condition and natural disasters to labour dispute and sabotage.
While some disruptions like earthquakes may occur less frequently, a large
number of other causes are likely to strike the network at any time. Tradi-
tional approaches to hub-and-spoke network design ignore the possibility of
hub disruption. These approaches are mainly concerned with the location
of the hubs and the allocation of demand to these facilities to minimize the
total network cost. In comparison with other location problems, the number
of studies dealing with reliability and facility disruption in the context of
hub-and-spoke is limited. Some of these studies are briefly discussed next.

Among the earliest studies in this area are those presented in [51, 73],
where the authors propose response strategies such as delaying, cancelling,
and rescheduling to deal with facility failure. These measures, though impor-
tant for coping with disruptions, are reactive in nature and could be expensive
to implement. A more robust approach to hub disruption management is
to consider the possibility of hub failure and backups at the design stage.
Kim and O’Kelly [54] formulate two p-hub location problems in telecom-
munication networks with reliability. The authors investigate both single and
multiple allocation cases but do not consider backup hubs or rerouting of the
affected flow. Kim [53] extends the work on hub-and-spoke reliability found
in [54] and proposes a series of hub location models to mitigate hub failures,
including two variants in which disrupted flows can be rerouted through a
single intermediate backup hub.

An et al. [9], Azizi et al. [14], Rostami et al. [86], and Tran et al. [99] have
also successfully used backup hubs to design a reliable network. An et al. [9]
study the uncapacitated reliable single and multiple allocation hub location
problems with backup facilities and propose a mixed integer nonlinear formu-
lation. The paper considers the routes connecting pairs of origin-destination
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nodes. In a route with two hubs, for example, it is assumed that either the
first or the second hub may fail and the affected flow is reassigned to an oper-
ating facility in the network. Their reliability model is suitable for networks
with symmetric flow. Instances with up to 25 nodes are solved using branch-
and-bound and Lagrangian methods. By comparing the solutions from single
and multiple disruption scenarios, it is empirically shown that the impact of
multiple hub disruptions to the system performance is small.

Several mixed integer linear and nonlinear formulations are introduced
in [14] to design uncapacitated hub-and-spoke networks taking into account
the probability of hub failure and rerouting costs. The authors study a special
case when disrupted flow needs to be reassigned to a single hub. This assump-
tion is relaxed in [12] to allow affected nodes to be re-allocated to any hub
in the network. Unlike [9, 14] model implicitly p (the number of hubs)
hub failure scenarios and the affected nodes are reassigned to the operating
hubs in the network. The proposed model is therefore suitable for both
networks with symmetric and asymmetric flow. The objective is to minimize
the weighted sum of the transportation cost in normal and in disrupted situ-
ations. Instances with up to 81 nodes are solved with a commercial software
and with genetic and particle swarm optimization algorithms. The compu-
tational results show that by considering hub failure at the design stage
significant savings can be achieved without a substantial increase in day-to-
day operating costs. A similar uncapacitated problem is studied in [99], where
a mixed integer nonlinear model is formulated to find the optimal location
of a pre-determined number of hubs taking into account the possibility of
hub failure. The model is linearized with a specialized flow network called
probability lattice, which is based on the methodology introduced in [71].
The linear formulation is used to solve small instances with up to 20 nodes
in extended computational times. Larger instances of the problem are solved
using a tabu search algorithm.

Similar to [14, 86] considers the case where a single backup hub is used
to completely reroute the flow affected by the failing hubs and proposes
a two-stage formulation for the problem. The authors use an interesting
approach that keeps the resulting formulation similar to the classical single
allocation problem and therefore the model can be easily linearized. A branch-
and-cut framework based on Benders decomposition is proposed to solve
large problem instances. Their computational results confirm the impor-
tance of considering hub breakdowns in the strategic planning phase of a
transportation network.
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Zhalechian et al. [104] propose a bi-objective two-stage stochastic program
that takes into consideration both operational and disruption risks. Moham-
madi et al. [69] study a bi-objective reliable p-hub location model that
considers hubs and links uncertainties to minimize both the total cost and
the maximum transportation time. The authors solve randomly generated
large instances using a hybrid algorithm based on genetics algorithms and
variable neighbourhood search. We find in [17] a multi-allocation reliable
p-hub network problem where more than one hub may be disrupted simul-
taneously. A nonlinear formulation is proposed and a heuristic is used to solve
the problem.

A path-based reliable uncapacitated hub location formulation is proposed
in [91] to minimize the sum of the fixed hub installation cost, the expected
transportation cost, and the penalty cost under random disruptions. Similar
to the work of [17], the authors allow simultaneous (correlated) network
disruptions. Numerical studies for an instance with 25 nodes validate the
efficiency of the formulation. Larger instances are solved with heuristics.

Azizi and Salhi [13] use the uncapacitated FLOWLOC formulation intro-
duced by [72] to develop reliable models for the single allocation p-hub
location problem with multiple capacity levels and flow dependent discount
factor. These models aim at simultaneously determining (a) the optimal loca-
tion of the hubs, (b) the allocation of demand to these hubs, (c) the backup
facilities for each demand point, (d) the hub capacity level to handle the
normal flow, (e) the additional capacity to handle excessive rerouted flows due
to possible hub disruption, (f ) the values of discount factor for inter-hub links
at normal, and (g) the discount factor to be applied on inter-hub links should
volume of flow increase because of hub disruption. The authors demonstrate
the need to consider simultaneously hub failure likelihood, inter-hub flow
dependent cost and non-exogenous hub capacity in designing a reliable hub
system. Instances with up to 170 nodes are solved with a commercial solver
and a reduced variable neighbourhood search algorithm.

In summary, as the research on hub location problems with uncertain data,
a growing interest has been developing on the design reliable hub systems.
A popular approach to this problem is to consider backup hubs and rerouting
the affected flow through these facilities. With the exception of [13, 91], all
the studies reviewed above assume a fixed discount factor in the inter-hub
links. The latter partially addresses flow dependent inter-hub discount model
that allows discount factors to be arc dependent while the former explicitly
models the network with a flow dependent discount factor. The performance
of reliable hub networks with backup hub relies heavily on the availability of
adequate capacity in the network. This short review indicates that in a large
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majority of previous studies it is assumed that hub facilities have unlimited
capacities and there is no fixed cost associated with hub installation. Incorpo-
rating capacity and flow dependent discount factors may lead to even more
challenging and highly nonlinear optimization problems which are worth
further investigation.

2.4.3 Hub Interdiction and Fortification

A field closely related to hub-and-spoke reliability is hub interdiction and
fortification. Interdiction problems involve two players: a defender, also called
the “operator”, and an attacker, which is called “interdictor”. The operator
wishes to optimally utilize some facilities or a network to, for example,
transfer flow through least cost paths. The attacker will try to compromise
the network in order to deteriorate the operator’s optimal solution. Interdic-
tion problems have been widely studied in the areas of network flows (or
network interdiction) and facility location-allocation (or facility interdiction)
problems. A few studies have recently proposed hub location interdiction
and protection (fortification) problems. These problems have been devel-
oped based on earlier studies that address facilities and critical infrastructures
protection against possible interdictors.

Lei [60] studies a hub interdiction median problem to identify critical hub
facilities in a hub network. Two bilevel formulations are proposed to locate
hubs in anticipation of a worst-case facility loss and to fortify a subset of
existing hubs in a network. Ghaffarinasab and Atayi [44] also study this
problem with fortification. The authors model the problem as a leader-
follower Stackelberg game and propose a bilevel formulation. To solve the
problem, they use an exact solution algorithm based on implicit enumeration.
Ramamoorthy et al. [79] study the same problem and offers a more effi-
cient solution technique. Two methods are proposed to reduce the bilevel hub
interdiction model to a single level optimization problem: the first approach
uses the dual formulation of the lower level problem and the second replace
the lower level by a set of closest assignment constraints.

2.5 Conclusions

In this chapter we have presented a survey on three important types of discrete
facility location problems with uncertainty. As has been shown, uncertainty
can be considered in many different ways, either implicitly (by adding extra
facilities that take into account potential failures) or explicitly (by including
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failure probabilities or probability distributions of the parameters). One way
or the other, what is widely recognized in the location community is the
need to develop and to solve models that include uncertainty, even at the
cost of having models much more difficult to solve, as they usually become
much more larger in size than standard deterministic models, sometimes even
turning up to be nonlinear models. Therefore, this area of research in facility
location will play an important role in the coming years, specially if solu-
tion techniques are developed that can be applied to other problems beyond
discrete facility location problems.
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3.1 Introduction

The literature on vehicle routing problems is huge, due to the practical
interest in this class of problems, the enormous number of interesting vari-
ants, and the related computational challenges [65]. In fact, while the Trav-
eling Salesman Problem is considered a well-solved problem, vehicle routing
problems are considered among the hardest combinatorial optimization prob-
lems. However, exact methods for problems of this class can solve larger
and larger instances and many effective heuristics are available, especially for
the most studied variants. This progress, combined with the technological
advances, has encouraged researchers to study integrated problems, that is
problems that jointly optimize two or more previously studied sub-problems.
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The solution of integrated problems, that are computationally harder to
solve, offers substantial advantages with respect to the sequential solutions
of the sub-problems. Examples of these benefits are presented in [4] for the
Inventory Routing Problem and in [16] for the Two-Echelon Capacitated
Vehicle Routing Problem. The primary purpose of this chapter is to provide
an overview of the foremost classes of integrated routing problems, along
with a synthesis of the most recent trends in the related literature. Quoting
from [7], Integrated Vehicle Routing Problems (IVRP) can be defined as:
“[...] problems where the VRP arises in combination with other optimiza-
tion problems within the broader context of logistics and transportation.”
Based on the research interest that their study has arisen, as measured by the
number of publications and citations, we have identified four main classes
of IVRP: inventory routing problems, location routing problems, loading
and routing problems, and two-echelon routing problems. In fact, other sub-
problems have been considered jointly with routing problems, for instance,
order batching and production scheduling. Given the limits in length of a
book chapter, these integrated problems are not covered here.

Figure 3.1 provides a tree representation of the classes of IVRP surveyed
in this chapter (the leaves), explicitly stating for each class the optimization
problem arising in combination with the routing problem (the child of the
root node).
The literature covering the above-mentioned classes of IVRP is extremely

vast. It is out of the scope of the present survey to provide a thorough
review of the research conducted on these classes of problems, also because
dedicated surveys are already available. For each class of IVRP we provide

Fig. 3.1 A tree representation of the classes of IVRPs covered in this survey
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a general description of the class, detail a prototypical basic problem, and
review the most recent trends in the literature. References to previous surveys
are provided, where the reader interested in the earlier literature is referred
to. For some classes, namely the Inventory Routing Problem and Location
Routing Problem, the surveys are very recent. In these cases, we do not
provide a literature overview, but only refer the reader to the appropriate
review papers.

Regarding the bibliographic search methodology, manuscripts have been
searched by querying the Scopus database. The search was limited to articles
published in top-tier international Operational Research (OR) journals (see
Table 3.1). Papers that appeared in other journals were added, based on their
research impact, as measured by the number of citations received. Figure 3.2
displays the distribution among the various OR journals, in percentage, of
the papers mentioned in the present survey.

Table 3.1 Journals considered for the initial Scopus research

Journals (in alphabetical order)

4OR
Annals of Operations Research
Asia Pacific Journal of Operational Research
Central European Journal of Operations Research
Computers and Operations Research
Euro Journal on Computational Optimization
Euro Journal on Transportation And Logistics
European Journal of Operational Research
Expert Systems with Applications
Informs Journal on Computing
Interfaces
International Journal of Production Research
International Transactions in Operational Research
Journal of Heuristics
Journal of Scheduling
Journal of the Operational Research Society
Management Science
Networks
Omega United Kingdom
Operations Research
Operations Research Letters
OR Spectrum
TOP
Transportation Research Part B: Methodological
Transportation Science
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Table 3.2 A summary of the main abbreviations used in the paper (in alphabetical
order)

Problem Algorithm

Abbreviation Description Abbreviation Description

2E-CVRP Two-Echelon CVRP ALNS Adaptive LNS
2E-VRP Two-Echelon VRP B&C Branch-and-Cut
2L-CVRP CVRP with

two-dimensional
loading constraints

LNS Large Neighborhood
Search

3L-CVRP CVRP with
three-dimensional
loading constraints

SA Simulated Annealing

CVRP Capacitated VRP TS Tabu Search
IRP Inventory Routing

Problem
VNS Variable Neighborhood

Search
IVRP Integrated VRP
LRP Location Routing

Problem
TSP Traveling Salesman

Problem
VRP Vehicle Routing

Problem

Table 3.2 summarizes the main abbreviations used in the paper to identify
optimization problems and solution algorithms.
The chapter is organized as follows. In Sect. 3.2, the class of Inven-

tory Routing Problems is discussed, whereas Location Routing Problems
are presented in Sect. 3.3. Section 3.4 reviews the class of routing prob-
lems combined with loading constraints. In particular, the issues related to
loading two-dimensional items are discussed in Sect. 3.4.2, whereas the three-
dimensional case is presented in Sect. 3.4.3. The combination of routing
with routing, i.e., the class of Two-Echelon Routing Problems, is discussed
in Sect. 3.5. Finally, conclusions are drawn in Sect. 3.6.

3.2 Inventory Routing Problems

The Inventory Routing Problems (IRP) have been studied for several decades,
starting from the eighties, when the combination of routing optimization
and inventory management was studied in some real settings. In [8], the first
paper where the integrated problem is studied, an example is provided to
show that, even when no inventory cost is considered and the transportation
cost only is minimized, key decisions in distribution problems are when to
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Fig. 3.2 The distribution among the various OR journals, in percentage, of the
papers covered in this survey

serve customers and how much to deliver to them and that these decisions
determine the routing cost.

In general, in IRPs the decisions to be taken are about when to serve
customers, how much to deliver to them, which is the sequence of visits
for each of the used vehicles. Formally, the main elements of the basic
IRP are as follows. Let G = (V, A) be a complete weighted graph. Set
V = {0, 1, 2, . . . , n} is the set of vertices, where 0 represents the depot,
and set V \{0} is the set of customers. In IRPs, often the depot represents
the supplier and customers represent the retailers. Set A is the set of arcs
(i, j ), each being associated with a non-negative traveling cost ci j . A planning
horizon T = 1, . . . , |T | is defined. The depot and the customers have an
initial inventory level, with customers also being characterized by a maximum
inventory capacity. At each period t ∈ T , the quantity r0t is made available
at the supplier and the quantity rit is consumed at retailer i. A unit inven-
tory holding cost is defined for both the supplier and the retailers. A fleet of
K homogeneous vehicles is available at the depot to serve all the customers.
Each vehicle has a maximum capacity Q .
The minimization of the total inventory and routing costs is sought,

subject to the following constraints. From a routing perspective, any feasible
solution must satisfy the following conditions: in each period,

(RC1) each route starts and ends at the depot;
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(RC2) each customer served in that period must be visited by exactly one
vehicle;

(RC3) no more than K vehicles are used;
(RC4) the quantity assigned to a vehicle does not exceed its maximum

capacity Q .

Any feasible inventory management pattern must not violate the following
additional constraints: in each period,

(IM1) inventory definition for the depot (customers): the inventory must
be consistent with the inventory at the previous period, the quantity
made available (received) and the quantity distributed (consumed);

(IM2) stockout definition at the depot (customers): the quantity in inventory
must be not lower than the quantity delivered.

A formulation of the basic IRP is defined in [5] for the case with a
single vehicle. This class of integrated routing problems has been recently
covered in [46], where a survey dedicated to routing problems that have a
timing component is provided. A classification of the problems in the class is
presented [15] and tutorials on the IRPs can be found in [9] and [10].

3.3 Location Routing Problems

Classical facility location problems (see [51]) aim at finding the best possible
locations for facilities, that is, the locations that minimize the sum of the fixed
cost for the chosen facilities and the transportation cost for a direct visit from
facilities to customers. The cost for direct shipments from the facilities to the
customers may be seen as an approximation of the real transportation cost in a
tactical/strategic facility planning phase where detailed information about the
demands of customers is unknown. However, in general, the assumption of
direct shipments may lead to an overestimation of the real transportation cost.
This is the reason for studying the Location Routing Problems (LRP), that
is, problems where the location decision is taken jointly with the decisions
about from which facilities to serve customers and the sequence of visits of
the vehicles used for the service.

Formally, the LRP is defined as follows. Let G = (V, A) be a complete
weighted graph. Set V = D ∪ C is the set of vertices, where D is the set
of potential facilities and C is the set of customers to be served. Set A is
the set of arcs (i, j ), each being associated with a non-negative traveling cost
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ci j . Each facility is characterized by an opening cost and a capacity. Each
customer is characterized by a demand. A set K of vehicles is available, each
with capacity Q .
The minimization of the total facility opening cost and routing cost is

sought, subject to the following constraints. From a routing perspective, any
feasible solution must satisfy the following conditions:

(RC1) each route starts and ends at an open facility;
(RC2) each customer must be served by exactly one vehicle;
(RC3) no more than K vehicles are used;
(RC4) the quantity assigned to a vehicle does not exceed its maximum

capacity Q .

From a facility location perspective, the following constraint must hold:

(FL1) the demand of each customer must be satisfied;
(FL2) customers are supplied only from open facilities;
(FL3) the demand served from an open facility does not exceed its capacity.

We refer the interested reader to the following recent surveys on the LRP.
[54] survey the literature on the LRP presented since the survey of [48].
Drexl and Schneider [25] present a survey of variants and extensions of the
LRP whereas a survey on the standard LRP is presented in [60]. Finally, the
most recent classification of the literature on the LRP is presented in [43].

3.4 Routing in Combination with Packing:
Routing with Loading Constraints

The present section is structured as follows. We first provide a general intro-
duction to the class of VRPs integrated with packing problems, often called
Routing Problems with Loading Constraints or Routing and Packing Prob-
lems. Then, we define the Capacitated Vehicle Routing Problem with Two-
dimensional Loading constraints (hereafter referred to as the 2L-CVRP) and
the Capacitated Vehicle Routing Problem with Three-dimensional Loading
constraints (henceforth called the 3L-CVRP), which are two prototypical
members of this class of problems. Finally, we review the recent trends in
the literature on VRPs combined with packing problems.
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3.4.1 Introduction to the Class of Problems

Until recently, the typical approach in Capacitated VRPs, such as the CVRP,
has been to assume that the demand of each customer is expressed by a
single value, which usually represents the total weight (or volume) of the
items requested. Thereby, the capacity of each vehicle measures the maximum
weight (or volume) it can carry. Thus, assuming that all the other constraints
are satisfied, a solution is feasible if the total weight (or volume) assigned
to each vehicle does not exceed its capacity. Nevertheless, in several appli-
cation contexts, the former assumptions are too restrictive, as it cannot be
neglected that the demand of a customer consists of one or multiple items,
which are characterized not only by weight (or volume) but also by shape.
In these situations, a solution that is feasible to the CVRP may turn out to
be infeasible in practice, as it is not possible to determine a feasible loading
pattern that allocates all the items within the loading area of each vehicle.
Further complications arise when special equipment is required for carrying
out loading and unloading operations, or when the items transported are
fragile or heavy. In the latter case, unloading must be carried out without
reshuffling the loaded items. This is also true whenever the items transported
cannot be moved inside the load compartment (or it is preferable not to do
so) once they have been loaded. In these situations, the loading plan imposes
a strict constraint on the sequence of visits to the customers. As an example,
if the items requested by a customer are positioned in the deepest section of
the load compartment, that customer has to be visited at the end of the route,
as otherwise unloading the items requested is blocked by those demanded by
other customers visited later in the route. On the other hand, the sequence
of visits of a vehicle constrains the loading plan. All the previous observations
highlight that loading and routing are two strictly inter-twinned problems
that, if solved sequentially, may lead to sub-optimal solutions.

Based on the shape of the items requested, two major classes of integrated
routing and packing problems can be identified. In some transportation
applications, the customers request two-dimensional (also called rectangular-
shaped) items that, because of their fragility or weight, cannot be stacked
on top of each other. Examples of such applications are the transportation
of large or heavy items—such as furniture, household appliances, and some
mechanical components—or fragile items—such as pieces of catering equip-
ment like food trolleys (e.g., see [53]). In all these cases, the routing problem
must incorporate additional constraints to guarantee a feasible packing of the
two-dimensional items requested.
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In other transportation applications, the customers request three-
dimensional items that can be superposed (possibly, with some limitations).
Examples of such applications are the transportation of soft drinks and staple
goods (e.g., see [59]). In these cases, additional constraints must be added to
the routing problem to impose a feasible packing of the three-dimensional
items requested by the customers.
The two packing problems mentioned above are multi-dimensional

packing problems, which arise as extensions of the classical (one-dimensional)
bin packing problem. In their basic forms, they are known as the Two-
dimensional Bin Packing Problem (2BPP) and the Three-dimensional Bin
Packing Problem (3BPP), respectively (see [32] and the references cited
therein). In integrated routing and packing problems, additional restrictions
are added to the 2BPP and the 3BPP to capture several loading issues, as
detailed below.

In the following, we describe two prototypical problems integrating
routing and packing. First, we illustrate the 2L-CVRP and, then, the 3L-
CVRP, which can be seen as an extension of the former (e.g., see [32]).

It is worth highlighting that, given the scope of this survey, we focus
on the two former problems. Nevertheless, the area of combined routing
and packing problems is wider, including the VRPs with multiple compart-
ments, the Traveling Salesman Problems (TSP) with pickups and deliveries
and specific unloading restrictions, the double TSPs with multiple stacks.
For more general overviews that include also the latter problems, we refer
the interested reader to the surveys by [32, 33], and, more recently [53].

3.4.2 The Capacitated Vehicle Routing Problem
with Two-Dimensional Loading Constraints

In the 2L-CVRP the customers request rectangular-shaped items (i.e., each
item is characterized by width and length). For each vehicle, the loading
surface available is also expressed in two dimensions (width and length). The
2L-CVRP models transportation applications where the items are heavy or
fragile, such as refrigerators, or pieces of catering equipment, such as food
trolleys, or when customer requests are loaded onto pallets which cannot be
stacked on top of each other (e.g., see [16]).

Formally, the 2L-CVRP can be defined as follows. Let G = (V, E) be
a complete undirected and weighted graph. Set V = {0, 1, 2, . . . , n} is
the set of vertices, where 0 represents the depot, and set V \{0} is the set
of customers. Set E is the set of edges (i, j ), each being associated with a
non-negative traveling cost ci j .
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A fleet of K homogeneous vehicles is available at the depot to serve all
the customers. Each vehicle has a maximum capacity Q , and a rectangular
loading surface that is accessible from the rear for loading/unloading oper-
ations. The loading surface of each vehicle has a given width and length
denoted byW and L, respectively.

Each customer j ∈ V \{0} has a known and deterministic demand
comprising m j items, each one having a specific width and length, denoted
as w

p
j and l pj (with p = 1, . . . ,m j ), respectively. Let q j denote the total

weight of the items demanded by customer j.
The 2L-CVRP calls for the determination of a minimum-cost set of routes

traveled by the fleet of vehicles available to serve all the customers, subject
to the following set of constraints. From a routing perspective, any feasible
solution must satisfy the following conditions:

(RC1) each route starts and ends at the depot;
(RC2) each customer must be served by exactly one vehicle;
(RC3) no more than K vehicles are used;
(RC4) for each vehicle, the total weight of the items assigned does not exceed

its maximum capacity Q .

Any feasible loading pattern must not violate the following two additional
constraints:

(LC1) each item must be loaded with its edges parallel to those of the vehicle
(orthogonality constraints);

(LC2) there must exist a non-overlapping loading pattern of all the items
assigned to a vehicle into its loading surface (bin packing constraints).

Additional constraints that define the feasibility of a loading pattern
depend on the variant studied. It is worth now recalling the classification
proposed in [27] for the 2L-CVRP. This classification is based on the possible
loading configurations, and is as follows:

(i) Sequential Loading (SL) or rear loading or Last-In First-Out (LIFO)
policy, when items must be loaded in reverse order with respect to the
customers visits, as they cannot be reshuffled inside the load compart-
ment;

(ii) Unrestricted Loading (UL), when items are allowed to be rearranged while
visiting a customer;
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and,

(I) Oriented Loading (OL), when items have a fixed orientation and cannot
be rotated;

(II) Non-oriented Loading (NL) or rotated loading, when items are allowed
to be rotated by 90◦.

The possible combinations of the latter four constraints lead to four
basic 2L-CVRP variants: (a) Two-dimensional Sequential and Oriented
Loading (2|SL|OL); (b) Two-dimensional Sequential and Non-oriented
Loading (2|SL|NL); (c) Two-dimensional Unrestricted and Oriented Loading
(2|UL|OL); (d) Two-dimensional Unrestricted and Non-oriented Loading
(2|UL|NL).
The majority of the problems studied in the literature assume the pres-

ence of SL constraints. Such restrictions impose that when customer j is
visited, the requested items must be freely available for unloading through
a sequence of straight movements (one per item) parallel to the length edge
of the loading compartment. In other words, there must not be any item
requested by another customer, that will be visited later in the route, blocking
the unloading, i.e., between the items requested by customer j and the doors
of the vehicle.

Figure 3.3 shows an example of a feasible solution to a 2|SL|OL.

Fig. 3.3 An example of a feasible solution to a 2|SL|OL variant
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Iori et al. [34] show that the 2L-CVRP reduces to the classical CVRP by
assigning to each customer a single item having both width and length equal
to 1, and setting the dimension of the loading surface of each vehicle equal
to the total number of customers.

Côté et al. [16] quantify the potential benefits produced by tackling
directly the 2L-CVRP with a unified solution approach, with respect to
solving separately the individual routing and packing problems, by means of
three non-integrated approaches. As a proof of concept, the authors consider
a 2|SL|OL variant and show, by using worst-case analysis, that the cost of
a solution obtained with one of the considered non-integrated approaches
may be as large as twice the cost of the solution produced by an integrated
exact approach. Furthermore, the authors provide empirical results to show
the cost increase when a non-integrated approach is adopted with respect
to an integrated approach.

3.4.2.1 Recent Trends in the Literature on the 2L-CVRP

Since its introduction by [34], the 2L-CVRP has received an ever-increasing
academic attention. As mentioned above, surveys on routing problems that
incorporate loading constraints, which obviously cover also the 2L-CVRP,
are available in [32, 33], and [53]. Hence, in the following, we limit the
overview to the recent trends on the 2L-CVRP, and refer the reader to the
above-mentioned surveys for the earlier literature.

Basic 2L-CVRP variants are studied in [16, 31, 67], and [68], where
the authors propose heuristic or exact solution methods for their solution.
The exact solution approaches are proposed for the solution of a 2|SL|OL
variant, whereas the heuristic algorithms are applied to the solution of the
latter and some other basic variants. More particularly, [31] develop for the
2|SL|OL variant a Branch-and-Cut (B&C) algorithm, which incorporates
several packing routines based on branch-and-bound, constraint program-
ming, and metaheuristic approaches. For the same variant, [16] implement a
B&C, derived from the approach proposed [17] for its stochastic counterpart.
As mentioned above, to gauge the benefits of addressing the problem by using
a unified solution approach, the authors compare the solutions obtained by
such approach with those produced by three non-integrated approaches that
consider separately the routing and the loading sub-problems. [67] design a
heuristic for the solution of the 2|SL|OL and 2|UL|OL variants. The general
idea is to employ a Variable Neighborhood Search (VNS) to address the
routing sub-problem, and a skyline heuristic (i.e., a sort of sequence-based
Tabu Search - TS) to check the loading feasibility of the routes produced by
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the VNS. All four basic variants (i.e., 2|SL|OL, 2|SL|NL, 2|UL|OL, 2|UL|NL)
are solved by the Simulated Annealing (SA) algorithm proposed in [68]. This
algorithm is based on four neighborhood structures, which are employed
probabilistically, and on an open space local search heuristic to check the
loading feasibility.

Extensions of the basic variants are studied in the following articles, where
the solution approach proposed is, in the majority of the cases, heuristic.
[23] and [69] investigate extensions where both collection and distribu-
tion of items may occur in the same route. More specifically, [23] analyze
2|SL|OL and 2|SL|NL problems with backhaul customers, where a prece-
dence constraint imposes that on each route the backhaul customers, if any,
are visited after all linehaul customers (see [65], Chap. 9). For the solution
of this problem, the authors develop a hybrid algorithm that combines a
Large Neighborhood Search (LNS) heuristic with biased-randomized versions
of classical routing and packing heuristics. Based on applications arising in
reverse logistics, [69] extend each of the four basic 2L-CVRP variants to
problems where customers require simultaneous pickup and delivery services.
The heuristic framework developed consists of a local search method for opti-
mizing the routing sub-problem and a packing heuristic to produce feasible
loading plans.
The time dimension is considered in the extensions investigated by [2]

and [62]. In the former article, the authors study a time-dependent 2|UL|OL,
where the travel time between a given pair of nodes is a function of the depar-
ture time from the origin node. The problem is formulated as a bi-objective
optimization model, where the two objective functions are the minimization
of the total travel time, on one hand, and the balance of the weight distribu-
tion among the vehicles achieved by using a minimax approach, on the other
hand. A method called elitist non-dominated sorting local search is developed
to solve this problem. Inspired by an application encountered in the food
services industry, [62] study a multi-product 2L-CVRP with time windows
constraints. In addition, the authors consider a modified SL constraint (called
Adapted LIFO) where straight movements parallel to both the length edge
and the width edge of the loading compartment are allowed. A generalized
VNS algorithm is designed for the solution of this problem.

Dominguez et al. [24] extend the two UL basic variants (i.e., 2|UL|OL and
2|UL|NL) to consider a heterogeneous fleet of vehicles, where each vehicle
type has a different weight capacity, width, length, as well as fixed and vari-
able costs. The objective function considered aims at minimizing the total
cost, which includes the driving distances and the fixed and variable costs
associated with the vehicles routed. To solve this problem, the authors develop
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a multi-start algorithm based on biased-randomized versions of routing and
packing heuristics previously proposed in the literature. Based on an applica-
tion arising in the grocery distribution, [50] investigate a multi-compartment
2L-CVRP where the size of the compartments is flexible and has to be deter-
mined as part of the optimization. The objective function proposed aims at
minimizing the sum of routing, loading, and unloading costs. For its solution,
the authors implement both an exact (B&C) and a heuristic (LNS) algorithm.
To the best of our knowledge, [17] are the only authors that study a stochastic
2L-CVRP. In particular, they address a 2|SL|OL variant where item sizes and
weights are not known with certainty when vehicle routes are planned, but
are stochastic and, hence, associated with discrete probability distributions.
The authors model this problem as a two-stage stochastic program and solve
it by means of an exact integer L-shaped method.

3.4.3 The Capacitated Vehicle Routing Problem
with Three-Dimensional Loading Constraints

The 3L-CVRP is a natural extension to three dimensions of the 2L-
CVRP presented above. In the 3L-CVRP customers request rectangular
boxes, that is, besides width and length, the shape of each item is also char-
acterized by height. Similarly, the loading surface available in a vehicle is
three-dimensional and defined by width, length, and height. This problem is
often encountered in the distribution of soft drinks, staple goods, and certain
types of furniture and household appliances (e.g., see [53]) where some items
can be superposed on top of each other. Introducing the height dimension
implies that some additional loading issues might have to be taken into
consideration. Of particular relevance are the issues concerning the fragility
of the items, which limits the items that are stackable, and those concerning
the stability of the items, when items are superposed on top of others.

Compared to the formal definition provided above for the 2L-CVRP, in
the 3L-CVRP the loading surface of each vehicle is further characterized by
its height, denoted as H . Similarly, each item demanded by a given customer
j ∈ V \{0} has a specific height, denoted as h p

j (with p = 1, . . . ,m j ).

Furthermore, each item is also associated with a fragility flag f pj that takes
value 1 if item p demanded by customer j is fragile, and 0 otherwise.
The 3L-CVRP calls for the determination of a minimum-cost set of routes

to be traveled by the given fleet of vehicles to serve all the customers, subject
to the above-mentioned routing constraints (RC1)–(RC3), and the loading
constraints (LC1)–(LC2) plus the following additional loading constraints:
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(LC3) no non-fragile item is stacked on top of a fragile one, whereas a fragile
item can be superposed on fragile as well as non-fragile items (fragility
constraints)

(LC4) when an item is stacked on top of others, its base must be supported
by a minimum supporting area to guarantee the vertical stability of
the cargo (stability constraints).

Regarding the latter constraints, it is worth highlighting that the
supporting area of a given item is determined by the area touched by the
base of that item. The packing is feasible only if such an area is not smaller
than a given percentage of the base of the item itself.
The classification proposed by [27] for the 2L-CVRP (see Sect. 3.4.2) can

be extended to the 3L-CVRP with the following specifications:

(I’) SL constraints: when a customer j is visited, there must not be any
item requested by another customer, that will be visited later in the
route, placed over any item requested by j or between these items and
the doors of the vehicle;

(II’) NL constraints: items are allowed to be rotated by 90◦ on the hori-
zontal plane, but have a fixed vertical orientation (i.e., they cannot be
rotated upside-down).

The basic 3L-CVRP variants can then be identified by using a labeling
notation analogous to the one introduced for the 2L-CVRP: 3|SL|OL,
3|SL|NL, 3|UL|OL, and 3|UL|NL.

Figure 3.4 shows an example of a feasible solution for a 3|SL|OL where
items I12, I22, and I32 are assumed to be non-fragile. A feasible loading plan
for vehicle 1 is shown in Fig. 3.5.

3.4.3.1 Recent Trends in the Literature on the 3L-CVRP

The introduction of the 3L-CVRP by [28] has inspired a large stream of
research. As mentioned above for the 2L-CVRP, in the following we concen-
trate on the latest advances found in the literature on the 3L-CVRP, and refer
the interested reader to the above-mentioned surveys for the earlier literature.

Basic 3L-CVRP variants are studied in [40, 64], and [31]. The first two
papers propose heuristics for the basic 3|SL|NL variant. In more details,
[64] design a TS, which iteratively invokes two greedy packing heuristics for
the loading sub-problem, whereas [40] propose a column generation-based
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Fig. 3.4 An example of a feasible solution to a 3L-CVRP

Fig. 3.5 A feasible loading plan for vehicle 1 from Fig. 3.4
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heuristic. Hokama et al. [31] extend the exact approach mentioned above for
the 2L-CVRP to a basic 3L-CVRP variant.

Extensions of the basic 3L-CVRP variants are studied by the following
authors, where the solution approach developed is always heuristic. Signifi-
cant attention has been devoted to extensions of the 3|SL|NL basic variant
where both collection and distribution of items may occur in the same route.
In more details, [12] study a 3|SL|NL variant with backhauls and propose
two hybrid heuristics for its solution. Both solution approaches employ a
tree search heuristic to solve the loading sub-problem, and they differ in
terms of the procedure applied for the routing sub-problem (an Adaptive
LNS-ALNS - versus a VNS). Koch et al. [37] study a 3|SL|NL variant
with mixed backhauls, where the precedence constraint present in classical
VRPs with backhauls is relaxed (see [65], Chap. 9) so that linehaul and
backhaul customers can be visited in any arbitrary sequence. As in such
extension items associated with linehaul and backhaul customers might be
simultaneously carried on the same vehicle, the loading sub-problem becomes
particularly challenging. For its solution, the authors implement a hybrid
heuristic consisting of a reactive TSfor the routing sub-problem and different
packing heuristics for the loading sub-problem. Koch et al. [36] address a
3|SL|NL variant with simultaneous pickup and delivery, where each customer
demands the delivery of a set of items and the pickup of another set of
items (see [65], Chap. 6). Additionally, time windows are associated with
each customer, as well as the depot. This problem is solved by means of
a hybrid algorithm that consists of an ALNS for solving the routing sub-
problem, and several construction and local search heuristics for the loading
sub-problem. Time windows are also considered in the extensions addressed
by [57], along with some elements tackled in the previous three papers. More
particularly, [57] study four extensions, namely a 3L-CVRP with backhauls,
with mixed backhauls, with simultaneous pickup and delivery, and with divis-
ible deliveries and pickups (i.e., where delivery and pickup at a customer
location may be performed in a single visit or in two separate visits, see [65],
Chap. 1). The authors develop a solution approach based on invoking, first, a
TSto solve the packing sub-problem, and then solving the resulting VRPwith
time windows instance by means of an algorithm that combines a multi-start
evolutionary strategy with a TS. Männel and Bortfeldt [41] introduce pickup
and deliveries into a 3|SL|NL variant. The authors show that in this case
the standard SL constraint is not sufficient to avoid any reloading, i.e. any
temporary or permanent repositioning and rotating of boxes after loading
and before unloading, but some additional restrictions are needed. Hence,
they present five variants that differ in terms of the reloading efforts involved.
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Three of these five variants are solved in [41] by using a heuristic combining
an LNS for the routing sub-problem, and a packing heuristic taken from
the literature for the loading sub-problem. The remaining two variants are
tackled in [42] by using a heuristic that works along the same general lines of
the solution procedure developed in [41].

Zhang et al. [70] address a 3|SL|NL variant where the objective function
aims at minimizing the total fuel consumption, which is assumed to be a
function of both the total weight of the vehicle and the distance traveled. This
problem is solved by means of an evolutionary local search, which employs
an open space heuristic to verify the feasibility of the loading plans. Bort-
feldt and Yi [11] introduce the possibility of split deliveries into a 3|SL|NL
variant, i.e. a customer can be visited in two or more tours (see [65], Chap. 9).
The authors consider two splitting policies: (i) a delivery is split only if the
demand of a customer cannot be transported by a single vehicle because
it exceeds its volume or weight capacity; (ii) a delivery can be split any
number of times. For the solution of both cases, the authors develop a hybrid
heuristic consisting of a genetic algorithm and several construction heuristics
for the packing sub-problem, and a local search algorithm for the routing
sub-problem.

3.5 Routing in Combination with Routing:
Two-Echelon Routing Problems

This section is organized as follows. We first provide a general description of
the class of two-echelon VRPs. Then, we define the Two-Echelon Capacitated
Vehicle Routing Problem (henceforth referred to as the 2E-CVRP), which
is a prototypical member of this class of problems. Finally, we provide an
overview of the recent trends in the literature on two-echelon VRPs.

3.5.1 Introduction to the Class of Problems

Modern distribution networks are often structured in multiple echelons,
where an echelon (sometimes called level of the network) represents a pair
of stages (e.g., producer-wholesaler, or retailer-customer) between which the
transportation of freight occurs. The number of echelons depends on several
factors, including the structure of the supply chain and the characteristics of
the freight transported.

In the last two decades, a holistic approach to supply chain management
has stimulated scholars working in different research areas to study problems
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characterized by the presence of more than one echelon; that is problems
where freight, from its origin, is hauled to some intermediate facilities (e.g.,
distribution centers or cross-docks) before being delivered to its final desti-
nation. Nevertheless, implementing such an approach raises several issues,
the most relevant being how to coordinate the flows of freight moving in
one echelon with the flow moving in the following one and, more particu-
larly, how to handle the dependency of the second level from the first one.
Although in several cases coordinating the flows of freight moving in two
adjacent echelons is too complex, in other cases this has proven to be highly
beneficial.

We now recall the labeling notation introduced by [38], and later inte-
grated by [19], to classify multi-echelon location routing problems. The
notation is as follows: λ/M1/ . . . /Mλ−1, where λ denotes the number of
stages, and Mi the type of distribution mode between stages i and i + 1.
The distribution mode can be Mi = R if between i and i + 1 only return
trips (i.e., trips to and from a given vertex) are allowed. On the other hand,
if trips leaving from i can be routes visiting a sequence of vertices, then
Mi = T . Finally, if location decisions are considered at stage i, the corre-
sponding distribution mode identifier is marked with an overline (i.e., R or
T ).

In the present survey, we focus on Two-Echelon VRPs (from now on,
2E-VRPs), that is, given the above-mentioned labeling notation, on 3/T /T
problems. In general terms, a 2E-VRP can be described as follows. The distri-
bution network comprises three disjoint sets of vertices, corresponding to the
locations of the origins of the freight (hereafter called depots), the locations
of the intermediate facilities (from now on called satellites), and the loca-
tions of the destinations of the freight (henceforth called customers). Hence,
the distribution network consists of two echelons. Direct deliveries from a
depot to a customer are usually not allowed, that is, freight must generally
transit through a satellite before being delivered to a customer. Freight is
transported by two different fleets of vehicles, one fleet per echelon. Vehicles
moving through the first echelon are called primary vehicles, whereas those
moving across the second echelon are named secondary vehicles. Routes are
possible at both echelons. Note that in the literature several authors call 2E-
VRPa problem where routes are possible at only one echelon, and only return
trips are allowed at the other echelon. These papers are out of the scope of
this survey and therefore are not covered. Despite we concentrate on distri-
bution networks consisting of two echelons, it is worth noticing that our
bibliographic search did not return any recent result concerning networks
comprising more than two echelons and where routes are possible at each
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level. Furthermore, the decisions involved in the 2E-VRP sketched above are
mainly at a tactical planning level: the routing of freight through each echelon
and the allocation of customers to the satellites. Note that strategic planning
decisions, e.g., location decisions, are not considered, as we assume that the
set of depots and satellites is given. The bibliographic search returned very few
papers where location decisions are considered at any stage of the network.
The reader interested in the latter area is referred to [56] and [45], and the
references cited therein. Finally, truck and trailer routing problems can also
be classified as two-echelon routing problems. The latter class is not covered
in this survey. The interested reader is referred to the survey by [20], and the
more recent articles by [58] and [1].

Real-life applications that can be modeled as two- or multi-echelon
distribution systems can be encountered in city logistics, multi-modal trans-
portation, postal and parcel delivery, and grocery distribution (e.g., see [20]).
Among those, the most frequently cited application is city logistics. In fact,
the paper by [18], who study a two-echelon distribution network in a city
logistics context, is usually regarded as the one that inspired the stream of
research on 2E-VRPs, despite the latter expression appeared only later in the
literature. The following arguments explain the ever-growing interest in 2E-
VRPs applied to urban areas. In this context, freight transportation is one
of the major causes of congestion, pollution, noise, and chaos. An effec-
tive implementation of a two-echelon distribution system may substantially
reduce those externalities. In such systems, the freight demanded by a set
of customers, located within the city boundaries, is carried by large trucks
(called urban vehicles) from the freight origin to the satellites. The latter are
located on the outskirt of the city. At the satellites, the freight is unloaded
from the large trucks, sorted, consolidated, and finally loaded onto small and
eco-friendly vehicles (named city freighters) that are allowed to travel within
the city and can deliver the freight to the customers.

In the following, we describe one prototypical problem where routes are
possible at two levels of the distribution network, the 2E-CVRP.

3.5.2 The Two-Echelon Capacitated Vehicle Routing
Problem

In the 2E-CVRP one uncapacitated depot and a set of capacitated satellites
are available at given locations. Each customer demands a given amount of
freight. Two limited fleets of capacitated vehicles are available to carry out
the deliveries, one fleet per echelon. The primary vehicles are based at the
depot, and are allowed to transport freight from the latter to the satellites.
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Each satellite can be served by more than one vehicle, i.e., split deliveries
on the first echelon are allowed. The secondary vehicles are shared by the
satellites. These vehicles are allowed to transport freight from the satellites
to the customers. In other words, in the standard 2E-CVRP direct deliveries
from the depot to the customers are not allowed. Each satellite is associated
with a capacity expressed as the maximum number of secondary vehicles that
can start their route from it. Furthermore, each satellite is associated with a
handling cost for loading/unloading operations. Finally, each customer must
be served by exactly one vehicle.

Formally, the 2E-CVRP can be defined as follows. Let G = (V, E) be an
undirected and weighted graph. Set V = {0} ∪ S ∪ C is the set of vertices,
where 0 represents the (uncapacitated) depot, S = {1, . . . , |S|} is the set
of satellites, and C = {|S| + 1, . . . , |S| + |C |} is the set of customers. Set
E = E1 ∪ E2 is the set of edges (i, j ), which are partitioned as follows. Set
E1 = {(i, j) : i < j; i, j ∈ {0} ∪ S} includes those edges connecting the
depot with each satellite, as well as those connecting each pair of satellites.
Set E2 = {(i, j) : i < j; i, j ∈ S ∪ C; (i, j) /∈ S × S} comprises the edges
connecting each satellite with each customer, as well as those connecting each
pair of customers. Each edge (i, j) ∈ E1 (resp. E2) is associated with a
non-negative traveling cost c1i j (c

2
i j ).

A fleet of K 1 homogeneous primary vehicles is available at the depot. Each
primary vehicle has a maximum capacity Q1, starts its route from depot 0,
serves one or more satellites in S , and then returns to the depot (i.e., each
primary vehicle traverses only edges in set E1). A fleet of K 2 homogeneous
secondary vehicles is shared by the satellites. Each secondary vehicle has a
maximum capacity Q2 (usually, Q2 < Q1), starts its route from a given
satellite s ∈ S, visits one or more customers in C , and then returns to s
(i.e., each secondary vehicle traverses only edges in set E2). From each satel-
lite s ∈ S at most K 2

s secondary vehicles can be routed. Furthermore, a
handling cost hs is paid for each unit of freight shipped through satellite
s ∈ S. Note that, if cost-effective, some satellites may be left unused. Finally,
each customer j ∈ C demands a known and deterministic amount q j of
freight. The 2E-CVRP calls for the determination of a minimum-cost set of
routes at both echelons such that the demand of all customers is satisfied and
that the capacity restrictions of the vehicles and satellites are not violated.
Notice that in the 2E-CVRP the cost of a solution is given by two compo-
nents: on one hand, the cost of routing primary and secondary vehicles and,
on the other hand, the handling cost at the satellites. Regarding the routes at
the first echelon, any feasible solution must satisfy the following conditions:
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(F-RC1) each route starts and ends at the depot, and visits one or more
satellites;

(F-RC2) each satellite is visited by one or more primary vehicles;
(F-RC3) no more than K 1 primary vehicles are used;
(F-RC4) for each primary vehicle, the total amount of freight assigned does

not exceed its maximum capacity Q1.

On the other hand, regarding the routes at the second echelon any feasible
solution must satisfy:

(S-RC1) each route starts and ends at a given satellite, and visits one or
more customers;

(S-RC2) each customer must be served by exactly one secondary vehicle;
(S-RC3) no more than K 2 secondary vehicles are used;
(S-RC4) for each satellite s ∈ S, no more than K 2

s secondary vehicles are
used;

(S-RC5) for each secondary vehicle, the total amount of freight assigned
does not exceed its maximum capacity Q2.

Figure 3.6 depicts an example of a feasible solution to a standard 2E-
CVRP.

Guastaroba et al. [30] propose to classify freight transportation plan-
ning problems with intermediate facilities according to the type of network
(pure or hybrid), the number of intermediate facilities (single facility or
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multi-facility), the origin-destination structure (one-to-one, one-to-many or
many-to-many), and the number of commodities (single commodity or
multi-commodity). According to such classification, the above 2E-CVRP is
a multi-facility problem defined on a pure network, with a one-to-many
origin-destination structure, and a single commodity.

3.5.3 Recent Trends in the Literature on 2E-VRPs

The origin of the research on 2E-VRPs is usually associated with the paper
by [18], although the first formal definition of the class of 2E-VRPs and of
the 2E-CVRP, as described above, can be found in [52]. Surveys on routing
problems that cover 2E-VRPs, as well as related problems, are provided in
[20] and [30]. Hence, in the following, we concentrate on the recent trends
in the literature on 2E-VRPs, and refer the reader to the above-mentioned
surveys for the earlier literature.

Most of the recent research efforts are concentrated on the study of vari-
ants of the standard 2E-CVRP defined above. The latter basic problem is
tackled in [13] by means of a hybrid heuristic that combines local and large
neighborhood search with destroy-and-repair principles, and in [44] with a
Branch-Cut-and-Price exact algorithm.

We have already highlighted the importance in 2E-VRPs of capturing
the dependence of the second level from the first one. The standard 2E-
VRP captures a space dependency, that is freight that a secondary vehicle
delivers to its customers must be provided to the associated satellite by a
primary vehicle. Introducing in such a simple scheme the time dimension
makes the problem more realistic but requires capturing the dependency in
time between the two levels. Grangier et al. [29] study a 2E-CVRP with
time windows constraints associated with customers. As satellites are assumed
to have no storage capacity, the arrival of primary and secondary vehicles
is explicitly considered by introducing a set of synchronization constraints.
Secondary vehicles are allowed to perform multiple trips, which may start
at different satellites. The authors present an ALNS to solve this problem.
Nolz et al. [49] address a 2E-CVRP with one single satellite, that has a
limited capacity, and time windows constraints for the customers. Further-
more, primary vehicles can serve directly a customer, and both primary and
secondary vehicles can perform multiple trips. Also in this problem, the
synchronization in time between vehicles belonging to the two echelons plays
a crucial role. The authors design a three-phase heuristic that combines a
genetic algorithm, local search, and integer programming for the solution of
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this problem. Scheduling synchronized meetings at satellites between vehi-
cles of the two echelons is fundamental also in the 2E-CVRP investigated
in [3]. In this problem, customers are grouped into three subsets: a set of
customers visited by primary vehicles, a set visited by secondary vehicles, and
a set of so-called “grey zone” customers that must be assigned to primary or
secondary vehicles. The authors cast this problem as a multi-objective opti-
mization program, by incorporating an economic, an environmental, and a
social objective. For its solution, an LNS is integrated into a multi-objective
method to find solutions along the Pareto front. Finally, time windows
constraints associated with customers are also considered in [21] and [22].
In the former paper, the authors study a 2E-CVRP having a many-to-many
origin-destination structure (i.e., there are multiple depots), and where the
usage of each vehicle incurs the payment of a fixed cost. The objective func-
tion considered aims at minimizing the sum of the total transportation costs
and the total fixed cost paid for using vehicles. The authors propose Branch-
and-Price algorithms for solving this problem. Dellaert et al. [22] study
a 2E-CVRP with time windows, and customer-specific origin-destination,
non-substitutable demands. As in [21], the origin-destination structure is
many-to-many, and a fixed cost is paid for using a vehicle. The problem is
solved by extending the Branch-and-Price approach introduced in [21].

Besides [21] and [22], multi-depot variants are considered also in [61] and
[71]. In addition, in the 2E-CVRP addressed by [61] customers can be served
by primary vehicles. Based on the method proposed by [6], the authors derive
a lower bound, which is then used to obtain an upper bound to the problem
at hand. Motivated by applications arising in performing last mile deliveries,
[71] tackle a 2E-CVRP where customers can be selected among different
delivery options (e.g., direct delivery to home, or pickup at a given location,
such as parcel lockers). For the solution of this problem, the authors propose
a hybrid multi-population genetic algorithm.
The usage of electric vehicles or, more generally, the consideration of

environmental issues is studied in the following papers. Breunig et al. [14]
consider a 2E-CVRP where secondary vehicles are electric, so that detours
for battery recharging may be necessary because of the limited driving range.
The cost of a solution, to be minimized, includes a fixed cost for each vehicle
used, and driving costs proportional to the distance traveled. For its solu-
tion, the authors extend the approaches developed in [13] and [6] for the
standard 2E-CVRP, resulting in a LNS heuristic and an exact algorithm,
respectively. In the problem addressed by [35] electric vehicles are present
at both levels, which should visit a swapping station to swap their batteries
before their battery power runs out. The vehicles are homogeneous within



3 Integrated Vehicle Routing Problems … 97

each echelon, in terms of capacity, battery driving ranges, power consumption
rate, and battery swapping cost. The objective function aims at minimizing
the sum of travel, battery swapping, and handling costs at satellites. For
its solution, the authors propose a hybrid algorithm that combines column
generation principles with an ALNS algorithm. Environmental considera-
tions connected to the vehicle fuel consumptions and the related emissions
characterize the 2E-CVRP tackled by [63]. Furthermore, to account for
traffic congestion, in this problem travel times are time-dependent. Soysal
et al. [63] cast this problem as a mixed integer linear program, which is solved
by means of CPLEX on a small real-world instance inspired by the activi-
ties carried out by a supermarket chain operating in the Netherlands. Based
on the problem introduced in [63, 66] develop a matheuristic combining
VNS and integer programming, where integer programming is employed as a
post-optimization technique or to produce minimum-cost routes for primary
vehicles.

Liu et al. [39] address a 2E-CVRP where the set of customers is divided
upfront in a set of disjoint groups, and a set of additional constraints (called
grouping constraints) are added to the problem to ensure that customers
from the same group are served by vehicles based at the same satellite.
A B&C is developed for the solution of this problem. Similar to [71],
in the 2E-CVRP studied by [26] customers can choose among different
delivery options (called covering locations) where they can pick up goods
themselves. In this variant, there is only one depot available and covering
locations can be visited solely by primary vehicles. This problem is solved by
means of an ALNS algorithm. Mühlbauer and Fontaine [47] tackle a 2E-
CVRP where vans are used as primary vehicles, whereas cargo-bicycles are
used as secondary vehicles to perform the final deliveries. As for cargo-bicycles
travel distances and times can be significantly asymmetric, the problem is
defined on a directed graph. Furthermore, to simplify the cargo transfer at
satellites, swap containers are used. These containers are loaded beforehand
at the depot according to the second-level routes so that, at a satellite, only
the containers are moved from vans to cargo-bicycles. The authors present
a parallelized LNS for the solution of this problem. Qiu et al. [55] investi-
gate a 2E-CVRP where production decisions are further integrated into the
optimization problem. Because of the production sub-problem, the nature of
this variant is multi-period and aims at determining for each day whether
and how much to produce; the quantity to deliver from the depot to the
satellites, as well as from every satellite to each customer; and the routes
of the primary and secondary vehicles at the minimum total cost over the
whole planning horizon. For the solution of this problem, the authors present
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a B&Calgorithm coupled with a matheuristic, where the latter is used to
provide feasible initial solutions.

3.6 Conclusions

In this chapter, the most relevant classes of integrated problems with a routing
component have been surveyed. Pointers to recent related surveys have been
provided and the recent trends in the literature have been discussed.
The research on integrated routing problems is attracting, and we expect it

will continue to attract, considerable research efforts, motivated by the clear
benefits that integration can bring over more traditional approaches tackling
each sub-problem individually. New modeling and algorithmic advance-
ments, together with contributions from other fields such as statistics and
computer science, will play an important role in shaping the impact of this
topic.
The study of integrated problems contributes to bridge the gap between

academic research and real-life applications. Many research directions remain
open, from not yet studied integrated routing problems to exact and heuristic
methods for the problems that have been already introduced in the literature.
Moreover, the majority of papers does not consider dynamic and stochastic
aspects that play a relevant role in real-life problems. Considering such char-
acteristics and assessing the benefit of such a consideration is one of the most
promising and enticing research directions.
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4.1 Introduction

The knapsack problem asks for the selection of items from a set N with n
elements, every item j ∈ N with a non-negative integer weight w j associ-
ated with it. A subset of items S ⊆ N is called feasible when

∑
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applies, where c is the capacity of a knapsack for carrying the items. Addition-
ally, a profit is incurred by choosing a feasible subset of items and is measured
through a properly defined function of N . The aim is to select a feasible
S ⊆ N which maximizes profit. The problem appears in distinct versions,
each of them characterized by a different type of objective function. Variants
to these versions, in turn, typically impose further restrictions on item selec-
tion. The linear and the quadratic objective function versions of the problem
are those that attract the most interest, with the latter version lagging well
behind the former.
The linear 0-1 Knapsack Problem (KP) maximizes a linear objective func-

tion. It associates a non-negative integer profit p j with the selection of every
j ∈ N and relies on binary variables, x ∈ {0, 1}n , for its standard formu-
lation. Accordingly, x j = 1 holds if j is selected and x j = 0 applies
otherwise. The Quadratic Knapsack Problem (QKP) is similarly formulated
but its objective function involves cross profits qi j ∈ Z, i, j ∈ N , i ≤ j ,
to account for eventual fringe benefits attained by simultaneously selecting
items i and j (for simplicity, we assume that qii = pi holds for every i ∈ N ).
Additional versions of the problem will not be treated here since they only
attract very marginal interest. The standard formulation of KP is given by:

max
n∑

j=1

p j x j (4.1)

subject to:
n∑

j=1

w j x j ≤ c (4.2)

x j ∈ {0, 1} j ∈ N = {1, . . . , n} (4.3)

Furthermore, to avoid trivial solutions, conditions

max{w j : j ∈ N } < c <

n∑

j=1

w j (4.4)

are generally assumed. A formulation for QKP is obtained by noting that
xi = xi xi holds for every i ∈ N and replacing objective function (4.1) by

max
n−1∑

i=1

n∑

j=i

qi j xi x j . (4.5)
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Given that the overwhelming majority of Knapsack Problem references are
associated with KP, we will assume here that QKP and all its variants simply
correspond to KP variants.

Historically, the first mention of KP dates back to 1896 [145], with
references to the subject appearing on early studies in [41] (in folklore,
the problem was probably studied under different names hundreds of years
before). In the 1950s, the first dynamic programming (DP) approach for
solving KP was introduced by Bellman in [13], and in the 1960s the branch-
and-bound (B&B) paradigm brought additional solution alternatives to the
problem. From that point on, KP has been intensively investigated, starting
especially with the works in [73, 129] or [150]. Due to the number of knap-
sack variants and the associated contributions some books were dedicated to
knapsack problems, such as [111, 143].

KP has a wide range of practical applications, such as: cargo loading,
cutting stock, capital budgeting or project selection (see, e.g., [129, 150]).
The problem can be solved by DP, which means it is not strongly NP-
Hard [70], only being limited by the integral magnitude of capacity c (the
complexity of such a DP algorithm is O(n · c)). A first survey on solution
approaches for KP appears in [166].

A few variants of KP directly follow from the standard formulation of
the problem. Among these we consider first the fractional or the continuous
knapsack problem, FKP, where (0, 1) fractions of the items are also allowed
to be selected. A formulation for FKP is obtained by simply replacing (4.3)
in the standard formulation of KP by

x j ∈ [0, 1] ∀ j ∈ N . (4.6)

This allows greedy techniques to work, as suggested by Dantzig in [40].
Indeed it is well-known that FKP can be solved in O(n log n) time, by
greedily selecting the items in descending order of the ratios p j

w j
, j ∈ N .

It is also possible to allow an integral selection of multiple items, leading
to the unbounded knapsack problem. From the standard KP formulation we
just need to replace (4.3) by

x j ∈ Z≥0 ∀ j ∈ N , (4.7)

in order to formulate the problem.
Finally, the mixed (linear) knapsack problem consists in a collection

composed by nD discrete and nF fractional items (see, e.g., when nF = 1
[136]). This problem has several practical applications (see, e.g., [200]) and
can be modeled in a generalized format, by allowing distinct lower and upper
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bounds for each item, namely l j and u j :

max
nD+nF∑

j=1

p j x j (4.8)

s.t. :
nD+nF∑

j=1

w j x j ≤ c (4.9)

l j ≤ x j ≤ u j ∀ j ∈ {1, . . . , nD + nF } (4.10)

x j integer ∀ j ∈ {1, . . . , nD} (4.11)

x j ∈ R ∀ j ∈ {nD + 1, . . . , nD + nF } (4.12)

In practice, instances of the KP variants we have just described involving
hundreds of thousands of items are routinely solved by most of mixed-integer
programming solvers. Among others, these solvers benefit from preprocessing
techniques and the use of facet defining inequalities for the knapsack poly-
tope, i.e., the convex hull of the feasible (integral) solutions to KP (see, e.g.,
[128] for details).

For the remaining of this chapter we consider several additional KP vari-
ants, classical or new. All of them can be formulated by changing the objective
function or adding constraints to the standard KP formulation. In prac-
tice, these variants are generally much harder to solve than KP and while
selecting them we focused on those associated with new interesting appli-
cations. First, in Sect. 4.2, we consider variants where a single knapsack
constraint must be satisfied. Next, in Sect. 4.3, we discuss additional vari-
ants involving two or more knapsack constraints. We conclude the chapter in
Sect. 4.4 by considering some future research directions on the topic.

4.2 Variants with a Single Knapsack Constraint

Several extensions of KP where only one knapsack constraint must be
enforced can be identified in the literature. In this section we consider some
of these variants where additional constraints conduct to some challenging
problems.
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4.2.1 The Multiple-Choice Knapsack Problem

The Multiple-Choice Knapsack Problem (MCKP) is a well-known variant
of the KP in which the set of items is partitioned into classes (or groups).
In this case the binary choice of taking an item or not in the knapsack is
replaced by the selection of exactly one item out of each class of items. Let
us denote by ng the number of disjoint groups N1, . . . , Nng of items and by
nk the number of items in group Nk . Then, N = ⋃ng

k=1 Nk and the total
number of items is n = ∑ng

k=1 nk . As for KP, every item j ∈ Nk is associated
with a profit pk j and a weight wk j and MCKP aims at choosing exactly one
item from each class such that the profit sum is maximized and the knapsack
capacity c is respected. By defining variable xk j = 1 if and only item j in
class Nk is chosen, MCKP can be mathematically formulated as follows:

max
ng∑

k=1

∑

j∈Nk

pk j xk j (4.13)

s.t.:
ng∑

k=1

∑

j∈Nk

wk j xk j ≤ c (4.14)

∑

j∈Nk

xk j = 1 k = 1, . . . , ng (4.15)

xk j ∈ {0, 1}, k = 1, . . . , ng, j ∈ Nk (4.16)

Like KP it is always assumed that all coefficients pk j , wk j and c are non-
negative integers. It is interesting to observe that some additional variants of
KP may be derived directly from MCKP. For instance when pk j = wk j for
all k = 1, . . . , ng and for all j ∈ Nk MCKP is called the multiple-choice
subset-sum problem. In addition, the Multidimensional Multiple-Choice
Knapsack Problem (MMCKP) can also be obtained by allowing into MCKP
one or more properly defined additional knapsacks. Finally, the discounted
0-1 knapsack problem (see Sect. 4.2.2) can be viewed as a particular case of
MCKP.

Several very efficient approaches were proposed to solve MCKP as those
described in [51, 155, 173]. In particular, Pisinger developed in [155] an
efficient dynamic programming-based algorithm using a list representation
and a core problem. Classes are consecutively added to the core and reduc-
tion rules are also used to fix some of the variables. Kellerer et al. provided
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in their book [, Chap. 11] experiments to compare the performance of the
approaches described in the last three articles cited above. The results demon-
strated the efficiency of all the three approaches for all types of instances,
except for strongly correlated ones for which only Pisinger’s approach was able
to provide results in the fixed time limit of one hour to solve 100 instances.
However, these works showed that MCKP can be solved in very reasonable
time for large instances.111
The situation is quite different for the multidimensional case. Some of

the current best approaches dealing with MMCKP are based on hybrid
approaches combining mathematical programming and heuristic strategies
like in [32, 33] where authors considered the use of column generation
techniques, whereas authors in [38] extended an iterative relaxation-based
procedure proposed in [83]. The proposed method was more general and
introduced what authors called the semi-continuous relaxation, where vari-
ables are constrained to take values close to zero or one. Mansi et al. proposed
some variants of an hybrid strategy consisting of new cuts and a reformula-
tion procedure used at each iteration to improve the iterative relaxation-based
heuristic framework in [132]. Chen et Hao developed in [31] a “reduce and
solve” heuristic combining problem reduction techniques (based on group-
fixing and variable-fixing rules) with an optimal solution of the resulting
integer linear problem. Another interesting work is presented in [183] where
authors introduced a reformulation of MMCKP as a set partitioning problem
allowing to reduce the decision variable dimension regarding the classical
model to one dimension, even if the total number of variables and constraints
remain the same. Experiments were conducted to compare this new model
with the classical one when using CPLEX and GUROBI solvers. The results
showed that the new model improved on average the objective function values
and the required computational time to converge to the best solutions. In
addition the use of this new formulation was competitive when compared
to some state-of-the-art approaches for solving MMCKP. We also noted the
work in [69] where authors proposed an iterative pseudo-gap enumeration
approach which is a two-step procedure. In the first step, a family of pseudo-
cuts is derived from the reduced cost constraints with regarding what authors
called a “pseudo-gap". In the second step the original problem enriched by
these pseudo cuts is solved with CPLEX. The pseudo-gap is used as a hypoth-
esized gap between the upper bound and the lower bound of the original
problem and authors proposed a strategy to enumerate it. When the pseudo-
gap become valid the proposed iterative approach converges to an optimal
solution. This approach obtained very good results compared with other
state-of-the art methods for solving MMCKP. Mansini and Zanotti proposed
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very recently in [135] a new and very effective core-based exact approach. It
solves subproblems of increasing size by means of a recursive variable-fixing
process and stops when an optimality condition is satisfied. The proposed
method obtained 10 new optimal solutions on open benchmark instances in
the literature and improved several other best-known solutions.

MCKP and MMCKP have a wide range of classical applications including
resources allocation [71, 173], capital budgeting [157], telecommunication
networks [93], the management of resources in multimedia systems [113],
the VLSI design [146] or the reliability of complex systems [177]. They
also appear as a subproblem in several other diverse applications: in nurse
scheduling [78], in generalized assignment problems [10] or in the context
of warehouse optimization [11]. Fisher showed that MCKP appears when
using Lagrangian relaxation of several integer programming problems [62],
whereas Kellerer [110] proposed an approximation algorithm for a scheduling
problem based on a relaxation formulated as MCKP.

Several additional applications dealing with MCKP or MMCKP can be
found in the literature as in [179] where authors introduced what they called
the “selective MCKP” in the context of QoS-aware service evaluation and
selection. The formulation corresponds to the MCKP in which the choice
constraints are relaxed as

∑
j∈Nk

xk j ≤ 1. Zhong and Young used the MCKP
to obtain optimal solutions of transportation programming problems when
alternative versions of projects are under consideration in [202]. Authors
provided six steps to build a MCKP and solved it with the method from
[51]. Bae et al. considered in [9] the MCKP as a subproblem when solving
a problem of finding a reconnaissance route of an unmanned combat vehicle
in a terrain modeled as a grid. They proposed a two-phases method in which
all feasible partial routes are generated in a first step. They showed that the
problem of selecting partial routes from the set of candidates corresponds
to a MCKP. Caserta and Voß solved the reliability Redundancy Allocation
Problem (RAP) via the MCKP in [25]. They introduced the fact that the RAP
corresponds to look for an optimal distribution of resources among subsys-
tems. Then, they showed that RAP can be optimally solved in two steps: in
the first one a multidimensional knapsack problem (see Sect. 4.3.1) associ-
ated to each subsystem is solved, whereas in the second a MCKP is solved
to select the specific amount of resources to be assigned to each subsystem.
Ykman-Couvreur et al. showed in [199] how the MPSoC runtime manage-
ment can be modeled as MMCKP, whereas Fischer et al. considered MCKP
in a classification problem in [61]. Zhao et al. considered in [201] the opti-
mization of the quality of experience of multiple clients for video streaming
over wireless network. They showed that the problem of finding an optimal
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allocation of bitrate level for multiple wireless clients can be modeled via a
MCKP. Tisch et al. dealt with the configuration of learning factories as a
MMCKP combined with a two-dimensional bin-packing problem in [178].
Al-Dulaimy et al. showed in [3] that the placement of virtual machines
selected for migration in the context of energy efficient cloud data centers
management can be modeled as a MCKP, whereas authors in [148] consid-
ered an inventory problem under uncertain demand in which a seller stocks
an item in anticipation of a single selling season. The corresponding problem
is non-convex and they showed that it can be solved via the solution of a
polynomial number of particular MCKPs called “two-sided ” MCKP in which
both lower and upper bounds exist on the knapsack capacity. They proposed
a DP-based algorithm and a heuristic and showed their methods obtained
better results than a global optimizer for non-convex mixed-integer nonlinear
problems. Diallo et al. introduced in [48] a model for a selective maintenance
problem for serial systems and proposed a two-phase approach in which the
problem is transformed into a MMCKP. Finally, Rogeau et al. introduced
very recently what they called a “coupling constraint ” into MMCKP to model
a retrofit planning problem at territory scale, with a building-level resolution
[161].

4.2.2 The Discounted Knapsack Problem

An interesting variant of the KP is the discounted 0-1 knapsack
problem (DKP), where items are selected from 3-sized item groups [89, 163].
Although much harder than KP, fully polynomial approximation schemes and
DP-based solution approaches have been developed for it.

Given ng item groups having three items each, and one knapsack with
capacity c, where the items in the i-th (i = 0, 1, · · · , ng − 1) group are
denoted as 3i, 3i + 1 and 3i + 2, with value coefficients p3i , p3i+1 and
p3i+2 = p3i + p3i+1, and weights w3i , w3i+1 and w3i+2 (discounted
weight), w3i + w3i+1 > w3i+2, w3i+2 > w3i , and w3i+2 > w3i+1, the
goal is to maximize the profits by selecting at most one item in a group. We
assume profits and weights to be positive integers, so as the capacity c. DKP
can be formulated by (4.17)–(4.20):

max
ng−1∑

i=0

(p3i x3i + p3i+1x3i+1 + p3i+2x3i+2) (4.17)
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s.t. :
ng−1∑

i=0

(w3i x3i + w3i+1x3i+1 + w3i+2x3i+2) ≤ c (4.18)

x3i + x3i+1 + x3i+2 ≤ 1 ∀i ∈ {0, . . . , ng − 1} (4.19)

x3i , x3i+1, x3i+2 ∈ {0, 1} ∀i ∈ {0, l . . . , ng − 1} (4.20)

DKP has been introduced in the Master’s Thesis by Guldan [80] and it can
be viewed as a particular case of MCKP where the number of items in each
group is set to three. Specific relations between items in a group are defined
in DKP, which is not the case in MCKP.

DP-based algorithms were proposed to deal with DKP in [80, 89,
163]. Experiments reported in these works show that DP can be used to
solve instances with up to ng = 1, 000 groups in reasonable time under
the condition of having sufficient memory resources. A fully polynomial-
time approximation scheme, a 2-approximation algorithm and a particle
swarm optimization heuristic were also proposed in [89]. Several other
population-based metaheuristics have then been proposed to deal with DKP:
genetic algorithm [87], differential evolution algorithms [203], multi-strategy
monarch butterfly optimization heuristic [58], moth search [56]. Recently,
He et al. proposed a new kind of method to design an evolutionary algorithm
by using algebraic theory in [86]. The approach used two evolution opera-
tors using the addition, multiplication and inverse operation of the direct
product of rings. Wu et al. proposed in [195] a discrete hybrid teaching-
learning-based optimization algorithm. Very recently, Wilbaut et al. proposed
to combine Variable Neighborhood Search (VNS) with DP and showed that
all the instances from the literature can be solved in less than 2 seconds thanks
to reduction procedures [192].

4.2.3 The Knapsack Problem with Setup

Another feature which is common to several distinct KP variants is the pres-
ence of setup costs [27]. The setup knapsack problem (SKP) originates from
(and is named after) a particular machine scheduling problem which involves
setup costs [49]. SKP asks for the selection of items from families F , where
each item family needs to be set up before usage. Such a condition is modeled
through additional variables z f , which indicate whether or not family f
corresponding to item j ∈ N f has been set up [27]. A formulation for SKP
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is given by:

max
∑

f ∈F
(u f z f +

∑

j∈N f

p j x j ) (4.21)

s.t.
∑

f ∈F
(s f z f +

∑

j∈N f

w j x j ) ≤ c (4.22)

z f − x j ≥ 0 ∀ f ∈ F , j ∈ N f (4.23)

z f −
∑

j∈N f

x j ≤ 0 ∀ f ∈ F (4.24)

z f , x j ∈ {0, 1} ∀ f ∈ F , j ∈ N f (4.25)

Note that, in this case, we have u f , p j ∈ R, s f , w j ∈ Z
+ and N =⋃

f ∈F N f , with N f1 ∩ N f2 = ∅, ∀ f1, f2 ∈ F , f1 	= f2. Since KP can
be reduced to SKP, it is also NP-Hard [70].

A similar SKP variant is called the Multiple-class Integer Knapsack
problem with Setups (MIKS), where items are organized in distinct classes
with setups and multiplicity constraints [147]. From this perspective, the
weight of item at a given class is a multiple of the class weight, while also
allowing multiple items to be selected within lower and upper class limits.
A more constrained version of MIKS eliminates multiplicity constraints and
allows whole integer interval, being called Integer Knapsack Problem with
Setups (IKS), that allows the development of more efficient algorithms. In
this sense, class weights are restricted to negative factors. A further relaxation
of IKS yields the Continuous Knapsack Problem with Setups (CKS), and
further adaptations can generate the classic binary knapsack problem. CKS
appears as subproblem for capacitated multi-item lot sizing problems, and
IKS as subproblem for cutting stock problems. An interesting point is that
the relaxation of the binary knapsack with multiple choices is equivalent to
CKS [147]. When dealing with numerical experimentation, most success is
achieved by hybrid approaches that involve B&B and DP.

Regarding the SKP Khemakhem and Chebil proposed in [114] a tree-
search-based combination heuristic which is based on the Filter-and-Fan
method. The approach is an iterative local search in which moves are gener-
ated according to a tree-search strategy. The main particularity of the method
lies in a new technique that makes a bijection between a solution of SKP and
an integer index. The algorithm obtains better average results as CPLEX. The
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same authors proposed in [28] two DP-based algorithms for SKP. The first
one considers a stage associated with every item in the problem and computes
the optimal values of two auxiliary problems. In the second one authors intro-
duces a space reduction technique to exploit the bijection mentioned above.
The DP algorithm considers only the setup variables and a complete solution
is obtained by solving a particular KP. This approach is able to solve large
correlated instances with up to 10,000 items in reasonable CPU time.

4.2.4 The Knapsack Problem with Neighbor Constraints

For the 1-Neighbor Knapsack Problem (1-NKP), an item can be selected
only if at least one of its neighbours is also selected while items with no
neighbors can always be selected. Contrary to that, for the all-neighbours
knapsack problem (All-NKP), an item can be selected only if all its neighbors
are also selected. Approximation algorithms and hardness results for 1-NKP
and All-NKP are provided in [16, 17]. These two NKPs can be generalized
as described by the following 0-1 linear program NKPk :

max
∑

i∈N
pi xi (4.26)

s.t.:
∑

i∈N
wi xi ≤ c (4.27)

min(k, ni )xi ≤
∑

j∈Ni

x j ∀i ∈ N , Ni 	= ∅ (4.28)

xi ∈ {0, 1} ∀i ∈ N (4.29)

where Ni is the set of neighbors of vertex i in the graph G and k is an
integer less or equal to the maximum degree of vertices in G , i.e. k ≤ � =
max{|Ni | : i ∈ N }. Note that NKP1 is equivalent to 1-NKP and NKP� is
equivalent to All-NKP, while NKP0 corresponds to KP.
The Subset-Union Knapsack Problem (SUKP) is a special case of All-NKP

in which the input graph is directed and bipartite and such that the vertex
set is partitioned into vertices associated with items and vertices associated
with elements and every arc points from an item vertex to an element vertex.
The precedence-constrained knapsack problem [15] and the partially ordered
knapsack problem [118] are also special cases of All-NKP on directed graph.
The general, undirected 1-neighbor knapsack problem generalizes several



116 C. Wilbaut et al.

maximum coverage problems including the budgeted variant considered in
[116].

4.2.5 The Knapsack Constrained Maximum Spanning
Tree Problem

The Knapsack Constrained Maximum Spanning Tree problem (KCMST) is
a combination of the knapsack problem and the maximum spanning tree
problem, introduced in [197]. The weight-constrained Minimum Spanning
Tree (MST) problem is to find a spanning tree of total edge weights at most
a given capacity and minimum total edge costs. A spanning tree of a graph
G is a subgraph connecting all vertices of G . For a spanning tree T of G ,
we define its profit p(T ) and weight w(T ), respectively, as the sum of the
profits and weights of its constituent edges. A spanning tree T is feasible for
KCMST if it satisfies w(T ) ≤ c. The problem is to fill the knapsack with
a feasible spanning tree such that the tree profit is maximized, which can be
formulated as follows:

max p(T ) (4.30)

s.t.: w(T ) ≤ c (4.31)

T is a spanning tree of G (4.32)

Based on the connectivity requirements of a tree, four distinct IP formu-
lations for MST are discussed in [55], namely subtour elimination, cut
set, single-commodity flow and Martin’s formulation. A subtour elimination
formulation is based on the fact that a treeT has no cycles and contains n−1
edges [53] and is described as follows:

max
∑

e∈E
pexe (4.33)

s.t.:
∑

e∈E
wexe ≤ c (4.34)

∑

e∈E
xe = n − 1 (4.35)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ N (4.36)
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xe ∈ {0, 1} e ∈ E (4.37)

Martin’s formulation (see [35, 144]) uses binary variables ykji if j is the father
of i in the tree structure obtained by rooting T at k, 0 otherwise:

max
∑

e∈E
pexe (4.38)

s.t.:
∑

e∈E
wexe ≤ c (4.39)

∑

e∈E
xe = n − 1 (4.40)

xi j = yki j + ykji ∀(i, j) ∈ E, k ∈ N (4.41)

∑

j∈N
yki j = 1 ∀i 	= k ∈ N (4.42)

ykk j = ykii = 0 ∀(i, j) ∈ E, k ∈ N (4.43)

xe ∈ {0, 1} e ∈ E (4.44)

The KCMST problem can be extended directly to generalized variants of KP
where the MST is replaced by Generalized Maximum Spanning Tree. Pop
presented in [158] a survey on different integer programming formulations
of the generalized MST problem.

4.2.6 The Set Union Knapsack Problem

In the Set-Union knapsack Problem (SUKP), introduced in [77], we are given
a set N of n elements and a set M of m items. Each item i ∈ M is charac-
terized by its profit pi > 0 and by its set of associated elements Ni ⊆ N .
For any subset I ⊆ M , the profit of I is given by

∑

i∈I
pi , while the weight

of I is
∑

j∈∪i∈I Ni

w j , where w j is the weight of element j. The objective of

the SUKP is to select a maximum profit subset of M, while respecting the
capacity c > 0 of the knapsack. A generic set based formulation of SUKP
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can be expressed as follows:

max p(I ) (4.45)

s.t.: w(∪i∈I Ni ) ≤ c (4.46)

I ⊆ N (4.47)

The graph G = (M ∪ N , E), where an edge (i, j) ∈ E only for i ∈ M
and j ∈ Ni , is a bipartite graph (also known as a bigraph) and sets M and
N form a partition of the vertex set. It may be observed that SUKP includes
KP as a special case when Ni ∩ N

′
i = ∅ ∀i, i ′ ∈ M and |Ni | = 1 ∀i ∈

M . Since KP is NP-hard, SUKP is NP-hard as well. SUKP has various
domain-specific applications including information security systems, finan-
cial decision-making [7, 111], flexible manufacturing machine [77, 116],
database partitioning [76], smart city [180] and data stream compression
[198]. A mixed-integer programming model can be derived from the previous
set-based formulation. It is based on two sets of binary variables. The first one
is associated with items whereas the second one is associated with elements.
More precisely, we define binary variables xi and y j for each item i ∈ M and
for each element j ∈ N , respectively, as:

xi =
{
1 if item i is selected

0 otherwise

y j =
{
1 if element j is selected

0 otherwise.

Using these variables SUKP can be formulated as:

max
∑

i∈M
pi xi (4.48)

s.t.:
∑

j∈N
w j y j ≤ c (4.49)

xi ≤ y j ∀i ∈ M, ∀ j ∈ N (4.50)

xi , y j ∈ {0, 1} ∀i ∈ M, ∀ j ∈ N (4.51)
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The objective (4.48) maximizes the total profit associated with the selected
items whereas constraint (4.49) is the knapsack constraint. Constraints (4.50)
imply that the selection of item i forces the selection of all elements in Ni .

Several algorithms have been proposed to solve SUKP. Goldschmidt et al.
developed in [77] an exact DP algorithm for SUKP and derived sufficient
conditions for having a polynomial run time. Arulsevan showed in [7] that a
greedy algorithm for the budgeted maximum coverage problem approximates
SUKP within a constant factor. Following the same research direction, Taylor
proposed in [175] an approximation algorithm relying on an algorithm
for the densest k-subhypergraph problem. Other recent papers dealing with
SUKP can be found in the literature. He et al. developed a binary artificial
bee colony algorithm and used greedy repairing and optimization to handle
infeasibility of a solution in [88], whereas authors in [57] proposed several
versions of discrete moth search, while a hybrid approach that combines a
genetic algorithm and particle swarm optimization was developed in [151].
Wei and Hao proposed in [184] an iterated two-phase local search (I2PLS)
approach for solving SUKP, whereas the same authors proposed in [186] a
multistart solution-based tabu search and in [185] a kernel-based tabu search.
The last two algorithms conduct to the current best-known solutions for
several benchmark instances used in the literature.

4.2.7 The Precedence Constrained Knapsack Problem

The Precedence Constraint Knapsack Problem (PCKP), also called partially
ordered knapsack problem, is a generalization of KP which includes a partial
order on items described by an acyclic directed graph G = (N , A) with
weights and profits associated to its vertices. An arc (i, j) ∈ A means that
“item i precedes item j”, and implies that if item j is selected then item i must
be also selected.

Formally, PCKP can be described by the following 0-1 integer linear
program:

max
∑

i∈N
pi xi (4.52)

s.t.:
∑

i∈N
wi xi ≤ c (4.53)

xi ≥ x j (i, j) ∈ A (4.54)
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xi ∈ {0, 1} i ∈ N (4.55)

PCKP appears in many applications as network design, investment,
management problems, scheduling, production planning, see, e.g.,
[50, 103, 171, 174].

Johnson and Niemi were the first to propose DP algorithms when G is
out-tree, called left-right approach in [106]. Then, Samphaiboon and Yamada
presented heuristics and DP algorithms for general acyclic graph G in [167].

Beyond the wide range of applications available for PCKP, precedence
constraints are of theoretical and computational interest because by them-
selves they define a polyhedron with integer vertices. More precisely, the
convex hull of feasible integer points is the same as the region obtained by
relaxing the integrality restrictions. As a consequence, this property allows
to solve the Lagrangian relaxation of PCKP associated with the knapsack
constraint in polynomial time. Several researchers investigated the polyhedral
structure of PCKP by exploiting this property and the rich and large existing
results on the knapsack polytope, see e.g., [19, 152].

4.2.8 The Disjunctively Constrained Knapsack Problem

The knapsack problem with conflicts, also known as the Disjunctively
Constrained Knapsack Problem (DCKP), was introduced in [196]. Given
a conflict graph G = (N , E) describing incompatibilities between items,
DCKP consists in determining a maximum profit set of compatible items to
be packed into the knapsack. A compact integer linear programming formu-
lation for DCKP makes use of a set of binary variables xi associated with
every item i ∈ N and taking value 1 if item i is packed in the knapsack, 0
otherwise, and can be stated as:

max
∑

i∈N
pi xi (4.56)

s.t.:
∑

i∈N
wi xi ≤ c (4.57)

xi + x j ≤ 1 (i, j) ∈ E (4.58)

xi ∈ {0, 1} i ∈ N (4.59)
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Additional DCKP formulations are found in [92] where an aggregated
formulation is proposed, and in [14] where the authors suggest an equiv-
alent MIP based on the determination of a family of cliques in the conflict
graph G . Pferschy and Schauer showed in [153] that DCKP is stronglyNP-
hard and presented pseudo-polynomial algorithms for graphs of bounded tree
width and chordal graphs. DCKP is also known as KP with conflicts and is a
combination of the MaximumWeighted Independent Set Problem (MWISP)
and the KP. When no conflicts are considered, i.e., E = ∅, the problem
reduces to KP whereas when the knapsack constraint is omitted the problem
becomes the MWISP.

Several exact and heuristic approaches are considered in the literature.
We note in particular the B&B algorithms proposed in [14, 36, 165, 168,
196]. From a heuristic perspective Yamada et al. proposed a local search algo-
rithm [196], whereas more sophisticated approaches based on Tabu Search
(TS) were developed in [91] and [168]. The local branching framework was
also considered in [2]. Other metaheuristics were considered as scatter search
in [94] or the guided neighborhood search in [95], probabilistic tabu search
in [164]. Finally we note the memetic algorithms proposed in [164] and very
recently in [187].

4.2.9 The Product Knapsack Problem

The Product Knapsack Problem (PKP) is one of the most recent KP vari-
ants. It was introduced in [52] and is defined as we describe next. It aims
at determining a subset of items S ⊆ N that maximizes

∏
j∈S p j and such

that
∑

j∈S
w j ≤ c holds. With the usual binary variable x j equal to 1 iff item

j is selected, a mixed-integer nonlinear formulation of PKP is described as
follows:

max
∏

j∈N
max{1, p j x j } =

∏

j∈N
(1 + (p j − 1)x j ) (4.60)

s.t.:
∑

j∈N
w j x j ≤ c (4.61)

x ∈ {0, 1}n (4.62)

Denoting by N− = { j ∈ N : p j < 0} the sets of items with negative profits
and based on the observation that an optimal solution to PKP must include
an even number of items j ∈ N−, D’Ambrosio et al. proposed the following
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mixed-integer linear formulation for the problem:

max
∑

j∈N
log(

∣
∣p j

∣
∣x j ) (4.63)

s.t.:
∑

j∈N
w j x j ≤ c (4.64)

∑

j∈N−
w j x j = 2y (4.65)

(x, y) ∈ {0, 1}n × Z+ (4.66)

As for solution approaches to PKP, D’Ambrosio et al. proposed a DP algo-
rithm and a mixed-integer linear programming one. Pferschy et al. showed in
[154] that PKP is weakly NP-Hard and proposed a fully polynomial-time
approximation scheme for the problem.

4.3 Variants with Multiple Knapsack
Constraints

Some KP variants involve more than one knapsack constraints, a require-
ment that is straightforward to implement directly over the KP formulation.
Additionally, they may eventually combine that feature with, among others,
different types of objective functions. In this section we consider a few
KP variants that fall in such a group, starting with the simplest (from the
formulation point of view) of them, the multidimensional knapsack problem.

4.3.1 The Multidimensional Knapsack Problem

The 0-1 Multidimensional Knapsack Problem (MKP) is the most natural
generalization of the KP in which several capacity constraints have to be
satisfied. MKP is defined for a set M = {1, . . . ,m} of m > 1 capacity
constraints. Denoting by wi j the weight of item j ∈ N in constraint i ∈ M
and by ci the capacity of knapsack i ∈ M , MKP can be formulated as follows:

max
n∑

j=1

p j x j (4.67)
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s.t. :
n∑

j=1

wi j x j ≤ ci i ∈ M (4.68)

x j ∈ {0, 1} j ∈ N (4.69)

As for KP it is assumed that all coefficients p j , wi j and ci are non-negative
integers values. Some weights can be equal to 0, i.e. wi j = 0, as long as∑m

i=1 wi j ≥ 1 holds for all items j ∈ N . In addition, it is generally assumed
that wi j ≤ ci , ∀ j ∈ N ,∀i ∈ M to guarantee that every item can be selected.
Finally, in the same way as (4.4) for KP it is assumed that

∑n
j=1 wi j ≥

ci ,∀i ∈ M . It can be observed that MKP is also known under other names
such as m-dimensional KP or multi-constraint KP.

As mentioned in previous sections, many applications of KP and its vari-
ants can be listed in the selection and packing area. In most of the cases,
real-world applications require more than one constraint. Thus MKP can
be considered to deal with these practical problems. In addition, MKP is
a particular case of the general 0-1 integer programming problem. The first
references dedicated to the MKP include [129, 137, 188]. Cutting stock [73]
and loading problems [13] are other classical applications. The MKP was
also used in [182] to model the daily management of a satellite like SPOT.
In the computer science context, MKP enables to model the resource alloca-
tion in distributed data processing [71] and the planning of data-processing
programs [176]. Other recent applications can be listed. For instance Mansini
and Speranza showed in [133] how the problem of optimally selecting the
assets for leasing can be modeled as a MKP. Holte pointed out an equiva-
lence between a multi-unit combinatorial auction and a MKP in [97]. Kelly
considered in [112] a variety of auction winner determination problems and
their corresponding family of KPs. He also highlighted the fact that existing
algorithms dedicated for these problems can be applied effectively to solve the
corresponding auction winner determination problems. Finally, Chen et al.
considered a stochastic variant of MKP as an allocation resource problem in
which the demand may change over time in [30].
Theoretical works demonstrated that MKP is NP-hard and that it has

no fully polynomial-time approximation scheme unless P = NP (see,
e.g., [72]). In fact, despite its simple formulation, the problem remains very
difficult to solve at optimality, especially when the number of constraints
increases. This is undoubtedly what explains the success of MKP, which is
often used to calibrate and evaluate new approaches, in particular metaheuris-
tics and hybrid methods. However, one can observe that the number of papers
dedicated to exact methods is comparatively small. It is not possible to present
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a summary of all interesting publications dealing with the MKP in a few
pages. We restrict our presentation to some of the recent approaches leading
to the current best-known solutions over the instances of the literature. Inter-
ested readers can find surveys dedicated specifically to MKP, see, e.g., [64,
119, 159, 190]. We do not consider either in this section the particular case
when m = 2 for which many references can also be found in the literature.

Efficient recent approaches dealing with the MKP concern mainly meta-
heuristics and hybrid methods combining mathematical programming with
specific components dedicated to the problem. One of the current best
approach to solve hard MKP instances is described in [18]. Authors proposed
a multi-level search strategy based on the reduced costs of the non-basic vari-
ables of the LP-relaxation solution. In their approach the top-level branches
of the search tree were enumerated following resolution search [34], the
middle-level branches were enumerated using a B&B and the lower-level
branches were enumerated with a depth first search enumeration strategy.
Mansini and Speranza proposed in [134] another approach using similar
concepts: the exact solving of a sequence of sub-problems, each with a
different cardinality constraint, and the use of a reduced-cost constraint based
on the objective function of the continuous relaxation. Each sub-problem
is built in a first phase through a recursive variable-fixing process up to a
predefined size, and is optimally solved in a second phase. Promising results,
especially in terms of running time were reported. Defining small-sized sub-
problems and considering different branching strategies to solve 0-1 integer
programming and mixed-integer programming models have also been consid-
ered in other works, as in [85, 189, 191] where authors proposed several
iterative schemes where pseudo-cuts are added to strengthen the problem
and direct the search. Angelelli et al. applied the kernel search to identify a
restricted set of promising items [5]. Starting from an optimal solution of
the LP-relaxation, new items are then identified and added in the kernel
according to solutions of small to moderate size sub-problems. Della Croce
and Grosso proposed in [46] another heuristic closely related to these works
and using an LP-based core problem. This heuristic is embedded in a partial
enumeration where the branching scheme is based on reduced costs of the
corresponding LP-relaxation solution value to fix variables. Very recently, an
interesting approach was proposed in [169, 170] in which the aim is to
reduce the number of constraints. The method reduces the number of dimen-
sions to be constrained by using new basis vectors to represent the optimal
item set with less coordinates. Promising results are reported on the largest
instances available in the literature, i.e., when m = 30 in the OR-Library
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instances1 and the instances generated by Glover and Kochenberger in [74].
In particular, the proposed approach provides the optimal or best-known
objective values for most instances. It also improves the currently best-known
value of one of the Glover and Kochenberger MKP instances and proves the
optimality of one other best-known solution.

Concerning metaheuristics we note in particular the scatter search-based
algorithm in [84] and the TS-based approach in [115] where authors
proposed an hybrid tree-search algorithm that combined TS with a dynamic
and adaptive neighborhood search procedure. A two-phase tabu-evolutionary
algorithm was also proposed recently in [124]. Authors introduced two
solution-based TS methods into the evolutionary framework. They also used
a diversity-based population updating rule to keep an efficient population.
Computational experiments demonstrated the robustness of the approach
since it converged to many best-known solutions and it provided few new
best lower bounds. Metaheuristics field is constantly evolving and new
approaches are proposed regularly. A very large share of these new methods
are tested on MKP. Fingler et al. considered in [60] a parallel implementation
of Ant Colony Optimization (ACO) using CUDA and under the GPGPU.
They compared the results of this approach with a hybrid DP method, a
kernel search and a nested partition and showed that parallel ACO can be
an interesting alternative to deal with MKP. Very recently, Lai et al. intro-
duced in [123] a new quantum Particle Swarm Optimization (PSO) that
integrates a distance-based diversity preserving strategy and a variable neigh-
borhood descent-based local search method. The results are encouraging and
authors showed that the method performs well for instances with a limited
number of constraints. It provides better solutions in average than another
quantum PSO approach proposed in [81] in very reasonable running time
for larger instances. Several other nature-inspired or bio-inspired methods
can be identified such as the binary grey wolf optimizer proposed in [130]
with some specific components to deal with MKP: an initial elite population
generator, a pseudo-utility based repair operator. The results showed that the
approach obtained average better results than a few other nature-inspired and
bio-inspired methods. Abdel-Basset et al. introduced a modified multi-verse
optimization algorithm to solve binary problems [1]. They evaluated this new
approach on KP, MKP and MMKP. The results show an interesting behavior
of this metaheuristic to tackle different variants of KPs.
To conclude this section it should be observed that in many works dedi-

cated to population-based approaches some of the large instances in the

1 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

http://people.brunel.ac.uk/%7emastjjb/jeb/info.html
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literature are not considered and that authors do not necessarily compare their
results with the state-of-the-art, making it difficult objective comparison.

4.3.2 The Multidimensional Knapsack Problem
with Demand Constraints

The 0-1 Multidimensional Knapsack Problem with Demand
Constraints (MKPD) is generalization of the MKP in which a set of
q greater than constraints, q ≥ 1, complements its multiple knapsack
constraints. Accordingly, MKPD extends the MKP formulation as follows:

max
n∑

j=1

p j x j (4.70)

s.t. :
n∑

j=1

wi j x j ≤ ci i ∈ {1, . . . ,m} (4.71)

n∑

j=1

wi j x j ≥ ci i ∈ {m + 1, . . . ,m + q} (4.72)

x j ∈ {0, 1} j ∈ N = {1, . . . , n} (4.73)

In this formulation we distinguish the first m classical knapsack constraints
from the subsequent q which are the demand constraints. Comparing with
MKP and other extensions of KP the MKPD can be viewed as a recent variant
if we consider the references to this problem in the literature. Indeed, to the
best of our knowledge the MKPD has been formally introduced at the begin-
ning of the twentieth century by Cappanera and Trubian, firstly in [21] and
then in the associated paper [22]. Like MKP the MKPD is embedded in
the models of many practical applications, in particular in obnoxious and
semiobnoxious facility location problems (see, e.g., [20, 162]) and portfolio-
selection problems [12]. More recently a possible application in the context of
the ideal product mix for a mobile retailer where a resource constraint repre-
sents the space of the retailer whereas a demand constraint models the fact the
product mix has to meet or exceed a given revenue threshold was considered
in [193]. We also noted the work presented in [96] where author considers
the constrained problem of multi-robot tasks allocation and compares dedi-
cated algorithms with approaches presented in [6, 102] for solving the more
general MKPD. The main conclusion is that a direct application of MKPD
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dedicated methods does not allow to obtain efficient solutions even for
medium-sized instances.

It is interesting to observe that finding a feasible solution of the MKPD
is an NP-complete problem [22] due to the presence of conflicting binary
constraints. Like for the MKP and other variants a large set of 810 instances
is available in the literature to compare the proposed approaches. Most of
the proposed approaches dealing with MKPD are based on heuristics and
metaheuristics. This can probably be explained by its practical difficulty and
the fact that exact methods cannot solve instances with more than 100 items
in reasonable running and memory limits. Concerning theoretical works we
noted the promising work in [45] in which the author introduced the use
of equality rather than inequalities in cutting planes (called equality cuts) in
binary programming in general to reduce the linear relaxation space, and the
concept of anticover inequality. He applied it on the MKPD and showed that
using these equality cuts with CPLEX improved the computational effort
by about 7% when considering instances with up to 250 items and m =
10 and q = 10. Wishon and Villalobos introduced in [194] new efficiency
measure calculations and some properties and showed that these measures are
applicable to all KP variants with a single linear objective function and linear
constraints of any quantity. They validated these measures with three solution
algorithms (a fixed-core algorithm, a kernel search algorithm and a Genetic
Algorithm (GA)) on instances randomly generated with up to 1,000 items
and m + q ≤ 25 + 25.

Among the heuristic and metaheuristic approaches, Cappanera and
Trubian proposed in [22] a sophisticated local search algorithm into two
phases, which combines a standard attribute-based TS with an oscillation
method based on the one proposed for the MKP in [74], but is restricted to
the feasible space. The approach was not able to provide a feasible solution to
every instance but provided better solutions in general than CPLEX. Arntzen
et al. proposed in [6] an adaptive memory search procedure which uses a
dynamic TS mechanism and a weighting scheme to manage infeasible solu-
tions. The computational results demonstrated the efficiency of the approach
which was able to provide a feasible solution for every instance, except one.
Then, Hvattum and Lokketangen conducted in [102] several implementa-
tions of Scatter Search (SS) for the MKPD based on some proposals about
SS in general [75]. They performed extensive experiments and obtained
good results compared with CPLEX and Cappanera and Trubian’s algo-
rithm. Gortázar et al. introduced in [79] a black box SS method for general
classes of binary optimization problems. According to its general descrip-
tion three of the five methods used in SS are problem-dependent. Authors
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considered some diversification generators and combination methods and
evaluated the approach on four optimization problems among which is the
MKPD. The results showed that the approach was dominated by the one
in [6] but converged quickly to good solutions compared with commercial
solvers. Hvattum et al. proposed in [101] an alternating control tree-search
framework related to the relaxation-based heuristics proposed in [189] for
the MKP. The approach is based on three components: the first one solves
an LP-relaxation of the current problem; the second one partitions the set
of variables and build sub-problems that can be solved efficiently; the third
one updates the problem by adding inequalities and ensuring the conver-
gence of the approach. The overall method can be also used as a heuristic.
The algorithm is evaluated on the MKPD and the MKP. The results revealed
that the method was very effective for the MKPD compared to the TS algo-
rithm proposed in [6] and the SS algorithm proposed in [102]. It was also
competitive for the MKP when compared with some of the best solution
approaches. Recently, Lai et al. introduced in [125] a two-stage TS-based
algorithm for solving MKPD. The TS uses one-flip and swap neighborhoods
and a hash-based mechanism to determine the tabu status of neighbor solu-
tions. In the approach the fist stage aimed to identify a promising hyperplane
within the whole search space. The second stage is dedicated to the search
for an improved solution by examining both feasible and infeasible solu-
tions on the identified hyperplane. The computational results reported on
a subset of the available instances show that this approach performs well and
provides efficient solutions in reasonable running times. Very recently, Al-
Shihabi proposed a core-based optimization framework and evaluate it over
the MDMKP [4]. The main idea is to define a new core problem iteratively
using a kind of local search where the aim is to find the best neighbouring
core problem. The initial core problem is built from the reduced costs of
variables and a probing technique is used to control the number of changes
in two consecutive core problems. Author evaluates this framework when
using CPLEX and the approach proposed in [125] to solve the core prob-
lems. Promising results are presented and the method leads to several new
best-known solutions.

4.3.3 The Multiple Knapsack Problem

The Multiple Knapsack Problem (M-KP) is a generalization of KP in which
a set M of m ≥ 2 knapsacks are available for carrying the items. This
problem, one should note, is different from the multidimensional knapsack
problem (see Sect. 4.3.1) and the multidimensional multiple-choice knapsack
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problem (see Sect. 4.2.1) since in the M-KP every item has to be assigned to
one knapsack (at most). In the formulation of the M-KP a binary variable
xi j is associated with knapsack i and item j and is set to 1 if item j ∈ N is
assigned to knapsack i (0 otherwise). The problem aims at maximizing total
profit while respecting the capacity of every individual knapsack and can be
formulated as follows:

max
m∑

i=1

n∑

j=1

p j xi j (4.74)

s.t. :
n∑

j=1

wi j xi j ≤ ci i ∈ M (4.75)

m∑

i=1

xi j ≤ 1 j ∈ N (4.76)

xi j ∈ {0, 1} i ∈ M, j ∈ N (4.77)

Constraints (4.76) guarantee that every item is placed in at most one knap-
sack. A special case of the M-KP is obtained if all the knapsacks have an
identical capacity c. This variant is generally referred to as the multiple
knapsack problem with identical capacities. Additionally, one also finds
subset-sum variants for both models, with p j = w j , ∀ j ∈ N , thus applying.
The M-KP is also related to the classical bin-packing problem (BPP). Three
main differences can be listed: (i) items have both a weight and a profit in
the M-KP, whereas items only have a weight in BPP; (ii) bins (knapsacks) in
the M-KP have varying sizes, while bin capacities are uniform in BPP; (iii)
the aim of the M-KP is to maximize the total profits of the items packed in
a set of bins (knapsacks), and some items are not assigned, whereas all items
must be packed in the BPP. Finally one can observe that the M-KP is a special
case of the generalized assignment problem in which a profit pi j is defined
if item j is assigned to knapsack i. The M-KP and its variants are strongly
NP-Hard problems and it was proved that even when m = 2 the subset-
sum variants do not admit a fully polynomial-time approximation scheme
unless P = NP (see, e.g., [111]). Polynomial-time approximation schemes
were developed in [29] for the MKP and in [24] for the subset-sum variant.

Eilon and Christofides [54] were among the first to consider the M-KP
as a cargo loading problem. Ferreira et al. used in [59] a generalization
of the M-KP to solve real-world problems in the design of processors for
mainframe computers, in the layout of electronic circuits, and in sugar cane
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alcohol production in Brazil. Another application can be found in [107]
where authors considered the M-KP for task allocation among autonomous
agents, continuous double-call auctions. The M-KP was also used to model
multiprocessor scheduling and the assignment of files to storage devices
in order to maximize the number of files stored in the fastest storage
devices in [122]. More recently Laalaoui and M’Hallah [121] addressed a
single machine scheduling problem with machine unavailability as a M-KP,
whereas Simon et al. modeled problems of maintaining operational capability
without external support through M-KPs in [172]. Additional constraints
occur among which are demand constraints and some others related to the
application.

Some B&B methods were proposed to solve the M-KP as in [140] where
Martello and Toth solved at each node a relaxed version of the M-KP where
the assignment constraint is omitted. The branching item is chosen among
those which had been assigned to m̄ > 1 knapsacks and the branching
operation generates m̄ nodes by assigning the item to one of the m̄ − 1
knapsacks or excluding it from all of these. Next year, Martello and Toth
[141] proposed one of the most well-known B&B for the M-KP known as
MTM. In this algorithm a lower bound is derived at each node of the tree by
solving m individual KPs in the following way: the first KP is solved opti-
mally. Then, the chosen items are removed and the next KP can be solved
and so on until all the m knapsacks are filled. Upper bounds are computed
from a surrogate relaxation. The branching scheme is based on the obtained
solution by generating two nodes: the first one assigning the next item of
a greedy solution to the chosen knapsack, while the other excluding this
item from the knapsack. Pisinger [156] proposed a more efficient proce-
dure starting from MTM. In this approach called Mulknap lower bounds
are derived by solving a series of subset-sum problems which are also used
for tightening the capacity constraints of the knapsacks. He introduced effi-
cient reduction rules to determine which items cannot be packed into any
of the knapsacks and he derived upper bounds through surrogate relaxation.
He compared the results of MTM and Mulknap and showed that the latter
approach was able to solve very efficiently and optimally large-size instances
of the M-KP with up to n = 100, 000 items and m = 10 knapsacks.
However, Fukunaga showed in [66] that Mulknap performs less effectively
when the ratio of items to knapsacks (n/m) falls between 2 and 5 or when
the data are strongly correlated. Fukunaga and Korf [67] introduced a B&B
algorithm called bin-completion and based on a bin-oriented branching struc-
ture and a powerful dominance criterion. Authors showed that this new
method is particularly competitive for solving MKP instances when the ratio
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of items to knapsacks is small (i.e., n/m < 4). This work was extended in
[66] by integrating additional techniques from constraint programming like
path-symmetry and path-dominance criteria for pruning nodes in the M-
KP B&B search space. Experimental results confirmed the competitiveness
of the approach for instances with a small ration n/m and the integration of
Mulknap algorithm significantly improved the results for higher ratios. Very
recently, Dell’Amico et al. presented in [47] two pseudo-polynomial formula-
tions for the M-KP based on arc-flow and reflect models. Authors proposed a
new effective hybrid method combining B&B, Master/Slave decomposition,
Benders’s cuts and constraint programming. This approach outperforms other
exact methods and is able to solve optimally 1,988 instances over the 2,100
instances considered in the paper in reasonable running time.

Papers related to heuristics for the M-KP can also be found in the liter-
ature, especially the well-known MTHM polynomial-time heuristic based on
greedy algorithm and local search procedure proposed in [142], which was
tested on instances with up to n = 10, 000 and m = 40 in [143].
More recently, Lalami et al. proposed a heuristic based on the core concept
[126]. The approach recursively solves the core of different KPs through DP.
The method is tested on randomly generated instances with up to 100,000
items and m = 100 and compared with MTHM. The results showed that
the approach provided good solutions in very short time. Laalaoui [120]
proposed two simple extensions of the MTHM. It consists in applying a local
search starting from the solution of MTHM and considering two swap moves:
the replacement of one item currently assigned to a knapsack by one or
two others currently not assigned; or the replacement of two items currently
assigned by one item currently not assigned. The results demonstrates that
this method improves by around 15% the solution value provided by MTHM
with a reasonably increased execution time. Final solutions were at less than
1% in average of the solutions obtained by GAs proposed in [68]. Laalaoui
and M’Hallah considered in [121] a single machine scheduling problem with
machine unavailability periods corresponding to maintenance periods and
modeled it as a M-KP. They proposed a VNS that helps to yield better results
than MTHM and other heuristics on scheduling instances with up to 4,800
items and 2,400 knapsacks.
To conclude this section we would like to underline another variant of the

M-KP in the literature introduced in [109] and named the multiple knap-
sack assignment problem. In this variant items are partitioned into subsets
and additional constraints impose that a knapsack can only contain items
of the same class. This interesting problem which has managerial applica-
tions in transportation logistics was considered very recently in [139] where
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authors proposed some upper bounds derived from Lagrangian and surrogate
relaxation and a heuristic procedure.

4.3.4 The Compartmentalized Knapsack Problem

The Compartmentalized Knapsack Problem (CKP) is a variant of KP where
items are classified under some criteria or affinities and divided into several
classes, like for instance in the MCKP. However, in the CKP items of different
classes cannot be mixed in the knapsack. To select items some compartments
have to be built. The compartments are not predetermined and have to be
added inside the knapsack such that each compartment contains items of
the same class. Moreover, building a compartment incurs a fixed cost and a
fixed loss of the capacity in the original knapsack, and the compartments are
lower and upper bounded. The objective is to find the compartments while
maximizing the total value of the items loaded in the overall knapsack minus
the cost of the compartments. Like in KP each item has a weight and an
utility value.

CKP takes its origin from cutting application where it models a particular
two-stage cutting process where items are grouped into classes and only items
of the same class can be cut from an intermediate roll. It arises for instance in
the case of cutting steel coils in two phases in the metallurgical industry [160].
Items are associated to ribbon coils (corresponding to the classes of items)
that are grouped by their thickness. The ribbons are obtained by cutting the
steel coils available in stock, which correspond to the knapsack to be filled.
Another example in the literature is steel roll cutting where items are grouped
according to their thickness [127]. In that case the first cut on the original roll
generates different intermediate rolls (corresponding to the compartments in
the knapsack), which have the same thicknesses as the original roll. In these
applications items are modeled by integer variables. Hoto was among the first
to introduce and to define the CKP in his Ph.D. thesis [98]. He distinguished
the restricted (or constrained ) version where the number of copies for an item
is bounded and the unrestricted (or unconstrained ) case where this bound does
not exist. He provided an integer nonlinear optimization model for the unre-
stricted CKP and he proposed a B&B algorithm to solve it. Then, Marques
and Arenales proposed in [138] three new heuristics and a model for the
restricted case. Hoto et al. considered the cutting stock problem where each
cutting pattern is restricted to be compartmentalized [99]. They presented a
concise formulation of CKP and proposed heuristic and exact methods for
the unrestricted case. They also presented an integer nonlinear programming
formulation of the restricted CKP and proposed a two-phase heuristic which
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obtained better results than the heuristic proposed in [138]. Later, Hoto et al.
[100] introduced techniques based on column generation for the restricted
CKP, whereas Leão et al. proposed a linear treatment for the restricted CKP
and a hybrid heuristic to solve it in [127]. The natural formulation of CKP
is nonlinear and some works in the literature were devoted to propose a
linear formulation like in [104] where author extended previous works in [39,
100] by proposing new linearity studies of CKP together with a new exact
algorithm, called the exhaustive decomposition algorithm, to solve it. More
recently, Inarejos et al. [105] proposed an integer linear optimization model
for the restricted CKP and proved its linearity. This model was strengthened
in [160]. It can be observed from the literature that several variants of the
restricted CKP exist. The main difference among these variants is the objec-
tive function which is considered. Very recently, Baazaoui et al. proposed in
[8] a new variant of CKP with a formulation involving only binary variables.
This formulation is related to the one presented in [105] and is introduced
below to illustrate CKP. Let c be the capacity of the knapsack and N the
set of items which is partitioned into a set M of ng classes: N = ∪k∈MNk
with Nk ∩ Nk′ = ∅, k 	= k′ ∈ M . Each item j in class k is characterized
by a utility and a weight denoted by pkj and wk

j , j ∈ Nk, k ∈ M , respec-
tively. In addition, for each class k ∈ M there is a maximum and a minimum
capacity to be consumed by a compartment, namely ckmax and ckmin , respec-
tively, whereas building a compartment involves a fixed loss cost fk . In the
formulation a set Pk of all the possible compartments associated with group
k is used to define the set of variables (one can observe that the size of Pk
can be simply bounded by the number of items in Nk). Binary variable xkj is

introduced to know if item j in set Nk is selected, whereas binary variable yki j
is used to know if item j ∈ Nk is assigned to compartment i ∈ Pk . Finally,
binary variable zki is equaled to 1 if compartment i ∈ Pk is built. Then, a
binary variant of CKP can be stated as follows:

max
∑

k∈M

⎛

⎝
∑

j∈Nk

pkj x
k
j −

∑

i∈Pk

fkz
k
i

⎞

⎠ (4.78)

s.t. :
∑

k∈M

∑

j∈Nk

wk
j x

k
j ≤ c (4.79)

ckmin ≤
∑

j∈Nk

wk
j y

k
i j ≤ ckmax ∀k ∈ M, j ∈ Pk (4.80)
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∑

j∈Pk

yki j = xki k ∈ M, i ∈ Nk (4.81)

xkj , y
k
i j , z

k
i ∈ {0, 1} k ∈ M, j ∈ Nk, i ∈ Pk (4.82)

Interested readers are invited to consult [105, 160] for other linear formula-
tions with integer variables.

4.3.5 The Multiple Knapsack Problem with Color
Constraints

The Multiple Knapsack Problem with Color constraints (MKPC) is another
generalization of KP in which: (i ) a new attribute, called color, is associated
with every item ; (ii ) assignment restrictions are introduced regarding the
compatibility of items in a given knapsack. MKPC can also be formulated in
different ways. The problem was first introduced with this name in [42] moti-
vated by a real application in the steel industry called the surplus inventory
matching problem. Here the orders correspond to items and the slabs corre-
spond to knapsacks. The goal of the problem is to maximize the total weight
of the surplus used to fulfill orders in the order book. Other objectives can
be considered as the minimization of the leftover weight of each used slab.
To introduce more formally the problem we have to provide some details
about the correspondence between MKPC and the related application [42].
For each item (order) j ∈ N characterized by a weight w j , a set Mj of appli-
cable knapsacks (slabs) from the surplus inventory can be identified. These
assignment restrictions are based on quality and physical dimension consid-
erations. In addition only knapsacks that are of the same quality or better can
be applied for any given item. Then, for each slab (knapsack) i ∈ M with
a weight bi a set Ni of applicable orders (items) is defined. The thickness
and width requirements for each item need to be compatible with those of
the applicable knapsacks. Another important notion in MKPC is the color
associated with each item. Color constraints restrict the sets of items that can
be matched to the same knapsack in the surplus inventory. In fact not all
items assignable to a given knapsack can be packed together on that knap-
sack, due to processing considerations in the finishing line of a steel mill. A
route associated with each item that specifies the set of process operations
that need to be applied is given. A unique color is associated with each route
and the number of colors on a knapsack is restricted (in practice to two).
The color can be introduced with parameter k j to denote the color of order
j ∈ N and with Ki to denote the set of colors incident on slab i ∈ M .
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Forrest et al. proved in [63] that the problem of applying orders against an
existing surplus inventory is the surplus inventory matching problem and can
be formulated as a multiple knapsack problem with color and assignment
constraints considering only one objective. This is achieved by introducing
the following binary variables: xi j , ∀i ∈ M, j ∈ N which is set to 1 if item j
is assigned to knapsack i; yki , ∀i ∈ M, k ∈ Ki which has value 1 if items of
color k obtain material from knapsack i; and zi , ∀i ∈ M which is set to 1 if
any item is incident to knapsack i. Then, MKPC can be modeled as follows
[63]:

max
∑

j∈N

∑

i∈Mj

w j xi j −
∑

i∈M
(bi −

∑

j∈Ni

w j xi j )zi (4.83)

s.t. :
∑

j∈Ni

w j xi j ≤ bi zi i ∈ M (4.84)

∑

i∈Mj

xi j ≤ 1 j ∈ N (4.85)

∑

c∈Ki

yci ≤ 2 i ∈ M (4.86)

xi j ≤ yc j ,i i ∈ M, j ∈ N (4.87)

xi j ∈ {0, 1} i ∈ M, j ∈ N (4.88)

yci ∈ {0, 1} c ∈ Ki , i ∈ M (4.89)

zi ∈ {0, 1} i ∈ M (4.90)

As mentioned by [63] nonlinear objective function (4.83) can be rewritten as

∑

j∈N

∑

i∈Mj

2w j xi j −
∑

j∈N
bi zi (4.91)

since zi = 0 implies xi j = 0, ∀i ∈ N j , whereas zi = 1 implies xi j zi = xi j
for all feasible solutions.

Some variants and formulations of MKPC can be found in the literature.
Dawande and Kalagnanam [42] proposed two integer linear programming
formulations, one by separating the set of variables for modeling the color
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constraints and another where these color constraints are implicitly modeled
without introducing new variables. They presented a polyhedral study of the
problem and showed that the color constraints significantly change the clas-
sical multiple knapsack integer polytope. In addition they demonstrated that
under certain sufficient conditions color constraints define the facets of the
integer polytope. Kalagnanam et al. considered a bi-objective version in [108]
where the second objective minimizes the unused weight of the slabs that are
matched with orders. Authors proposed a mathematical formulation of the
problem as well as a network flow-based heuristic. Experiments performed on
real instances proved the efficiency of the heuristic approach to provide near-
optimal solutions within a reasonable amount of time. Forrest et al. proposed
in [63] a branch-and-price algorithm to deal with the previous formulation
that helps in solving a real-life instance of MKPC, called mkc. However, the
method could not solve a larger real-life instance, called mkc7 (mkc and
mkc7 are two well-known instances in the MIPLIB2).

MKPC is also related to the variable-sized bin packing problem with color
constraints which consists in assigning to each used bin a capacity from a set
of available capacities. Each item is also characterized by a weight and a color
among a set of colors. The objective is to minimize the residual capacity in
the used bins such that: (i) each item is assigned to exactly one type of the
bins, (ii) the total weights of items assigned to each bin do not exceed its
capacity and (iii) no more than two colors appear in each used bin. This
variant was introduced in [42] where authors presented an asymptotic poly-
nomial approximation scheme that serves to classify the complexity of the
problem. Later, Dawande et al. [44] proposed several approximation algo-
rithms. They first considered the case where the maximum number of colors
is set to two and then the general case. Then, Dawande et al. [43] developed
an efficient heuristic algorithm which is used in a real context and the steel
plant savings achieved $2.5 million per year. In a recent work, Kochetov and
Kondakov [117] applied a VNS-based matheuristic to a special case where
each item has zero weight and arbitrary number of colors with the objective
of minimizing the number of bin used. VNS is used for the pricing problem
as well as for approaching near-optimal solutions for randomly generated
instances. Crévits et al. [37] considered another special case where each color
is assigned to only one item. They considered several different linear formu-
lations for that special case of the problem, including some standard ones.
Out of the computational experiments reported by the authors, the one that

2 http://miplib.zib.de.

http://miplib.zib.de
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appears to be the most promising is called the matching formulation. Exper-
iments provided promising results for this formulation when it is compared
to other classical ones. This work was extended in [82] where authors showed
that for that special case instances with up to 20 bin sizes can be solved in
less than 2 seconds.

Finally the constraint programming community also considered MKPC as
a bin-packing problem with color constraints. The corresponding problem
is problem number 38 in the CSPLIB3 and consists of 380 benchmark
instances. Frisch et al. proposed in [65] a constraint-based model for the
problem and added symmetry-breaking techniques as well as efficient implied
constraints that help reducing significantly the search space. Heinz et al.
solved all the 380 instances of CSPLIB using a column generation-based algo-
rithm in [90]. The approach also solved the mkc instance but was not able to
solve the mkc7 one. The problem was also efficiently solved in [181] where
authors used constraint programming with an improved symmetry breaking
scheme.

4.4 Conclusion and Suggestions

In this chapter we review a few variants of KP which are associated with
recently introduced interesting applications. Our choice of variants is obvi-
ously personal and is restricted by writing space limitations. Accordingly,
numerous existing KP variants are not addressed here. For each KP variant
we consider, at least one formulation is provided, together with a list of
existing applications for it. Then, we focused on the most recent and the most
effective approaches for solving the problem. Quite clearly, we could have
considered many other KP variants including quadratic knapsack problems
or multi-objective knapsack problems for instance. Likewise, stochastic and
robust versions of KPs have also been considered in the literature. For instance
Caserta and Voß introduced in [26] a robust version of the MMCKP and
studied the relation between the deterministic and the robust problems. They
showed that a given nonlinear model arising from the use of robust optimiza-
tion can be transformed into an equivalent linear model and thus that the
complexity of the deterministic version can be preserved. Online or bilevel
knapsack problems are other examples of interesting variants (see., e.g., [23,
149]).

3 http://www.csplib.org/Problems/prob038/.

http://www.csplib.org/Problems/prob038/
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In our opinion the number of publications dealing with KP variants is not
about to decrease, for the following reasons: (i) many of KP variants remain
extremely challenging problems, even when considering very simple versions
of them; (ii) as shown in this chapter and in the literature several recent works
identify KP variants as sub-problems within even more difficult problems.
Thus, the need of very effective approaches to solve KPs is still relevant; (iii)
we can imagine that other new variants will emerge in the next few years,
in particular by combining the characteristics of existing KPs. For instance
Mansini et al. introduced recently the multiple multidimensional knapsack
with family-split penalties which combines the M-KP and the MKP in [131].
In this problem the profit is not associated with each single item but with the
family as a whole and to earn this profit it is necessary to select all the items
of the family. A splitting penalty incurs when items from the same family are
assigned to different knapsacks. The problem arises in distributed computing
resource management items that are grouped into families. As noted by the
authors efficiently handling large instances can be an interesting challenge.
Thus, we encourage interested readers to consider both theoretical and more
practicable works to help resolve the more emerging and difficult knapsack
problems.
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5
Rank Aggregation: Models and Algorithms

Javier Alcaraz , Mercedes Landete , and Juan F. Monge

5.1 Introduction

Nowadays, we live in an interconnected society where we constantly need to
order elements to form a ranking in very different contexts: a ranking of the
best universities, a ranking of the political parties that will participate in the
next elections, a ranking of the companies with the highest turnovers last year
or the ranking of university teachers who achieved the best student scores, to
give just a few examples. In all the rankings, elements are ordered based on
a given criterion or a set of them. Sometimes, we need to draw up a ranking
that reflects, in the best possible way, the preferences of different users, pref-
erences which are also expressed in particular rankings, which is known as
rank aggregation. For example, to elaborate a ranking of the best compa-
nies in which to invest on the stock market, we have the rankings prepared
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by different experts. Rankings are part of the ubiquitous information society
aggregation and they are very common issues in current reports.
There are complete and partial rankings depending on the output infor-

mation. In a complete ranking any pair of elements can be compared while
in a partial ranking some pairs cannot. For example, in a partial ranking we
can group and order the different companies by commercial sector and the
companies belonging to the same group are considered tied or not compa-
rable. In these types of problems, a group of elements is referred in the
literature as a bucket or a cluster. The difference between a bucket and a
cluster is the origin of the group. If these groups are previously formed and
are known as an input of the problem, the group is referred to as a cluster.
Otherwise, if the grouping of the elements is induced by the data and is an
output of the problem, it is considered a bucket. Most times, the order of the
elements is given by an order of the groups they belong to.

Sometimes, if the input data are cycle judgments, such as cyclic sequences,
the output is called cycle ranking. Otherwise, the term “non-cycle rankings"
can also be used.
The aggregation of the rankings has a crucial role in the decision-making

process. Mathematically, the problem of the ranking aggregation is a combi-
natorial problem which looks for the best permutation of a set of elements
assuming a certain criterion.
The common input for all the ranking aggregation problems is a pref-

erence matrix. A preference matrix is a squared matrix that measures value
judgments. These value judgments are generally individual although some-
times they may differ between categories. Rank aggregation problems seek
to unite the different judgments. Sometimes the preference matrix is not
explicitly provided by the system and it must be carefully computed before-
hand. Rankings are often represented as a permutation of the elements to be
ordered. In this sense, the terms ranking , rank ordering and permutation are
considered to be equivalent in the rank aggregation literature.

Most of the ranking problems can be classified into two different groups:

Ranking of elements: The input data is a preference matrix for a set of
elements. Alternatively it can be a non-squared matrix of data from which
the preference matrix can be computed. The goal is to provide the best
ranking of the elements in the sense that it is the rank ordering that best
fits with the matrix. If the matrix rows are seen as different rank orderings,
the ranking of elements is a rank aggregation of the matrix row information.

Ranking of sets from a ranking of elements: The input can be a single ranking
of elements or several ranking of elements or sometimes the preference
matrix for the elements. Then, it might happen that the elements belong to
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different known clusters and the rank of the clusters is aimed. It might also
happen that the elements can be grouped into different indistinguishable
buckets and the goal is again the rank of these unknown buckets.

Other ranking problems could tackle the ranking of elements from several
rankings of some of their subsets.
This chapter is organized as follows. In Sect. 5.2, four different ways of

obtaining ranking of elements are revised, in particular the Linear Ordering
Problem, the Rank Aggregation Problem in Cyclic sequences, the Target Visi-
tation Problem and the Center Ranking Problem are studied. In Sect. 5.3,
different problems of the second class defined above are presented, problems
in which the aim is to get an order of sets in which different rankings of
the elements are taken as inputs. In the Optimal Bucket Order Problem, the
elements are grouped in different buckets as an output of the problem. In
the Linear Ordering Problem with Clusters, elements have been previously
grouped in clusters and the output of the problem is a ranking of these clus-
ters. The Linear Ordering Problem of Sets looks for a ranking of subsets of a
set from the ranking of the elements in that set. Finally, the Center Ranking
Problem of Sets is a variant of the Linear Ordering Problem of Sets. In the last
section, a small example is presented so that the different problems presented
in this chapter can be easily compared.

5.2 Ranking of Elements

Let us suppose that V = {1, . . . , n} is the set of elements to rank. Given
paired comparisons over elements in V , these comparisons can be saved in a
square n×n matrix D, namely the preference matrix. The row i of D has the
information for comparing i with the rest of elements inV . The value di j is a
measure of the goodness of the statement “element i goes before element j".
Given the preference matrix D, the goal of the rankings in this section is to
obtain a complete ranking of all elements in V that best represent the data. If
the preference matrix D represents non-cyclic judgments, the most popular
way of obtaining a ranking is the well-known Linear Ordering Problem.
Contrarily, if matrix D represents cyclic judgments, the ranking is the solu-
tion of the Rank Aggregation Problem in Cyclic sequences. Another approach
when the judgments are cyclic is the Target Visitation Problem that combines
the ranking aggregation and travelling salesman problem goals. If apart from
the preference matrix D, the list of judgments which led to it is available,
the center ranking problem can be considered.
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Rankings are permutations of elements. Given σ1 and σ2 two permuta-
tions of the elements in V , the distance between both permutations can be
measured as the number or pairwise disagreements between them, known as
the Kendall-tau distance.

Definition 5.1 The Kendall-tau distance between two permutations σ1 and
σ2 is given by:

K (σ1, σ2) = |{(i, j) : i < j, ((σ1(i) < σ1( j) ∧ σ2(i) > σ2( j))

∨(σ1(i) > σ1( j) ∧ σ2(i) < σ2( j))}|

where, σ1(i) and σ2(i) are the positions of the element i in σ1 and σ2,
respectively.

The larger the Kendall-tau distance is, the more different the permutations
are. For instance, if we had three elements, the distance to the permutation
(1,2,3) from (1,3,2), (2,3,1) and (3,2,1) will be 1, 2 and 3, respectively.
Frequently, the ranking problems make use of the Kendall-tau distance for
the definition of the optimal ranking.

5.2.1 Linear Ordering Problem

The Linear Ordering Problem (LOP) states that the optimal ranking is the
one which maximizes the distance of the path induced by the rank ordering.
The input is the square matrix D and each element di j of this matrix can be
seen as the distance from i to j. A rank of the elements in V entails a path
of a certain distance and by D definition, the larger is the distance di j , the
stronger is the consensus that “i must precede j". Thus, the goal is to find
the path with the maximum distance. Since V has n elements, there are n!
ranks/paths with potential different distances.
The LOP was firstly proposed in [1] where a pioneer heuristic method was

introduced. It was proved to be NP-hard in [2]. It has multiple and diverse
applications in archaeology, economy, graph theory, automatic translation,
mathematical psychology, scheduling with preferences or machine program-
ming among others. The book [3] is an essential comprehensive textbook on
the LOP since it surveys both exact methods and approximation algorithms.
LOP continues to deserve authors’ attention. We can see in [4] and [5] how
two new efficient algorithms are developed.
The LOP can be solved as a triangulation problem. Given the matrix D =

(di j ), the goal is to determine the simultaneous permutation of the rows
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and columns for which the addition of all the elements above the diagonal is
maximal. This triangulation problem is common for entrance/exit matrices
in economic theory.

In order to illustrate the LOP and some other problems described later, we
consider the following example.

Example 5.1 Five voters rank the elements in V = {a, b, c, d, e, f }. The
rank for the first voter is (a, b, c, d , e, f ), for the second (a, c, b, d , f , e ), for
the third (a, c, d , b, f , e ), for the fourth (d , f , c, a, b, e ) and for the fifth
(c, f , e, d , b, a) (it corresponds with an instance in [6]). These preferences are
represented in Table 5.1. The preference matrix D follows from these judg-
ments, di j is the fraction of rankings in which i goes before j, for instance
dab = 4/5 because 4 of the 5 voters say that a goes before b. Table 5.2 shows
the input matrix D. The LOP solution is (a, c, d , b, f , e ) and the optimal
value is 11.2. If there were a consensus ranking to which everyone agrees, the
optimal value would be 15: the sum of super-diagonal positions. Somehow,
74.6% = (11.2/15) × 100 is the percentage at which the LOP solution
maintains the voters’ judgments.

There are different models for the LOP: binary linear, quadratically
constrained quadratic program or integer quadratic program. In his paper,
the one binary linear described in [3] is presented. For all i, j ∈ V, let zi j be

Table 5.1 Candidate rankings: list of five total orders

Voter 1: a b c d e f
Voter 2: a c b d f e
Voter 3: a c d b f e
Voter 4: d f c a b e
Voter 5: c f e d b a

Table 5.2 D matrix for Example 5.1

a b c d e f

a 0.8 0.6 0.6 0.8 0.6
b 0.2 0.2 0.4 0.8 0.6
c 0.4 0.8 0.8 1.0 0.8
d 0.4 0.6 0.2 0.8 0.8
e 0.2 0.2 0.0 0.2 0.2
f 0.4 0.4 0.2 0.2 0.8
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the following binary variable

zi j =
{
1 if i is ranked before j
0 otherwise

The LOP can be modelled as the following linear problem:

max
∑
i∈V

∑
j∈V : j �=i

di j zi j (5.1)

s.t. zi j + z ji = 1 ∀i, j ∈ V : i < j (5.2)

zi j + z jk + zki ≤ 2 ∀i, j, k ∈ V : i �= j, j �= k, i �= k (5.3)

zi j ∈ {0, 1} ∀i, j ∈ V : i �= j (5.4)

Effectively, the objective function (5.1) is the total distance of the path. The
first family of constraints (5.2) states that either element i goes before element
j or element j goes before element i. The second condition (5.3) rules out
the existence of forbidden precedences; if i goes before j and j goes before
k, then k cannot go before i. If V = {1, 2, 3, 4}, the ranks (4,3,2,1) and
(2,4,3,1) will be associated to the solutions

zi j =

⎛
⎜⎜⎝

− 0 0 0
1 − 0 0
1 1 − 0
1 1 1 −

⎞
⎟⎟⎠ and zi j =

⎛
⎜⎜⎝

− 0 0 0
1 − 1 1
1 0 − 0
1 0 1 −

⎞
⎟⎟⎠.

respectively.
Despite the computational complexity of the LOP, it has been proved that

any random permutation and its inverse provides a solution to the problem
that is at least 50% of the optimal solution. In the particular case when the
preference matrix has been randomly generated by a uniform distribution, all
the permutations/solutions look similar; these results are presented in [7].

A particular problem arises when the preferences are 0 or 1. This problem
is known in the literature as the minimum feedback arc set problem, i.e., the
minimum number of arcs that must be removed to obtain an acyclic graph. In
[8], a bound for the integrality gap of the minimum feedback arc set problem
is given, this being 3/4. This result implies that the integrality gap of LOP
converges to 4/3 if the preference matrix is in a certain normal form.
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When the optimal permutation is the closest to a given set of permutations
and the distances among permutations are measured with the Kendall-tau
distance, the problem is called the Rank Aggregation Problem (RAP), also
known as the Kemeny problem . If T is a set of rankings of elements, the
RAP can be expressed as

(RAP) argmin
ρ

∑
t∈T

K (ρ, t).

The RAP is a classic problem in combinatorial optimization: some papers in
the literature concentrate on giving good algorithms for solving it [9–14],
some concentrate on giving properties of the solution [15, 16] while others
compare different strategies for ranking [17, 18]. LOP and RAP are closely
related and it can be shown that the RAP reduces to the LOP under a suitable
transformation [19].

Example 5.2 (cont. Example 5.1) The LOP solution (a, c, d , b, f , e ) can
be alternatively obtained as the RAP solution, i.e., as the closest permutation
to all the five permutations given in Table 5.1. The Kendall-tau distances of
the LOP solution from each preference in Table 5.1 are 3, 1, 0, 6 and 9,
therefore the optimal solution of the RAP is 19. Note that the optimal value
of the LOP can be obtained as v(LOP) = n(n − 1)/2 − V (RAP)/|T | =
6 · 5/2 − 19/5 = 11.2.

5.2.2 Rank Aggregation Problem in Cyclic Sequences

The Rank Aggregation Problem in Cyclic sequences (RAPC) consists in
finding the sequence that best represents a set of cyclic sequences. Cyclic rank-
ings are required when the last element in ranking is once more that which
precedes the first. The elements in the input matrix D keep representing the
distance between elements, while a ranking of the elements in V represents a
tour instead of a path. There are a lot of permutations of elements (rankings)
representing the same tour. Again, the larger is the distance di j , the stronger
is the consensus that “i must precede j" and the goal is to find the tour with
the maximum distance.
The RAPC was first proposed in [19] where a binary linear model and

some solution properties were introduced. It is an NP-hard problem and it
has multiple applications. In the same way that scheduling with preferences is
an application of the LOP, cyclic scheduling with preferences is an application
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of RAPC. The cyclic scheduling problem is the problem that appears when
the set of tasks is to be repeated infinitely many times. A second application of
this problem is the position of the slices in a pie chart when there is a matrix
of preferences, even if any permutation represents the same fractions, only
some of them respect the aggregation of preferences. The third application is
to aggregate preferences in routing problems.

Cyclic orderings split the set of linear orderings into a set of equiva-
lence classes. Each equivalence class is represented by a representative cyclic
ranking. Let R be the set of representative cyclic rankings. The RAPC is the
problem of finding the cyclic sequence closest to all cyclic sequences in R.

(RAPC) argmin
ρ

∑
r∈R

K (ρ, r).

Making use of the same binary variables zi j in the LOP model, the RAPC
can be modelled as follows:

max
∑

i∈V−{1}

∑
j∈V−{1}: j �=i

(di j + d1i + d j1)zi j (5.5)

s.t. zi j + z ji = 1 ∀i, j ∈ V : i < j (5.6)

zi j + z jk + zki ≤ 2 ∀i, j, k ∈ V : i �= j, j �= k, i �= k (5.7)

z1i = 1 ∀i ∈ V − {1} (5.8)

zi j ∈ {0, 1} ∀i, j ∈ V : i �= j (5.9)

The set of constraints is the same as the set of constraints in LOP but for
the equalities z1i = 1 for all i ∈ V, (5.8). So, in this model, and with
loss of generality all the feasible cycle rankings start with 1. Any solution
of the system (5.6), (5.7), (5.9) is a permutation of the elements in V : all
the nodes are relatively sorted and transitivity holds. (5.8) forces node 1 to
be the first node of any cyclic sequence. The feasible region of RAPC is a
subset of the feasible region of LOP. It is given by the subset of rankings
starting with 1. The objective function (5.5) is isomorphic to the distance
of the tour while it is not the distance. The interested reader can read the
mathematical calculations that transform the distance of the tour indicated
by variables zi j into the expression (5.5). Alternatively, the distance can be
computed afterward from the optimal solution.
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LOP and RAPC are equivalents in the sense that each instance of the LOP
can be transformed to an instance of the RAPC adding an additional null row
and null column to the matrix of distances, and each instance of the RAPC is
by definition an instance of the LOP when the arc weight has been properly
transformed.

5.2.3 Target Visitation Problem

The Target Visitation Problem (TVP) is a combination of the Travelling
Salesman Problem and the LOP. As in the RAPC, the elements in the input
matrix D represent the distance between elements and the permutations of
elements (rankings) represent tours. Apart from matrix D, the TVP has
another input (n+1)× (n+1) matrix that is the cost of travelling from i to
j for all i, j ∈ V plus the cost to a depot, namely the arc weight matrix C .
D and C are both positive matrices. The TVP consists of finding a tour, i.e.,
a path that visits each vertex of V exactly once, starting and finishing at the
same node, which best fits with matrixD. Nodes are called targets because the
TVP was introduced for humanitarian purposes and the nodes were the target
group. The profit of a tour depends on two weights, it is the sum of pair-
wise preferences between the targets corresponding to their visiting sequence
minus the sum of costs travelled. It is the difference of the objective function
of LOP and the objective function of the Travelling Salesman Problem. So,
the TVP consists of finding a tour which maximizes the difference of the sum
of the met preferences and the total travel cost.
The TVP was first proposed in [20] and [21] both theoretically wise. The

paper [22] is the first exact approach. Recent works focusing on the TVP are
[23, 24] and [25]. The last one proves some polyhedral properties and gives
a branch and cut algorithm that manages to solve the problem efficiently.
The TVP has applications in environment assessment, combat search,

rescue and disaster relief [20] and applications to the delivery of emergency
supplies [27]. There is a twofold objective in all the applications: firstly, to
minimize the total travelled cost and secondly, to respect a sequence. On the
other hand, all the application fields for the TVP can be seen as application
fields for RAPC.

Let z̄i j be the opposite to zi j , i.e., the binary variable which takes the
value of one if i is ranked after j. Defining a new family of binary variables
for recording the length of the tour,

xi j =
{
1 if the arc (i, j) is used
0 otherwise

∀i, j ∈ V,



162 J. Alcaraz et al.

a mixed-integer linear formulation of the Target Visitation Problem is the
following:

max
∑
i∈V

∑
j∈V : j �=i

[(di j − d ji )z̄i j + di j ] −
∑
i∈V

∑
j∈V : j �=i

ci j xi j (5.10)

s.t.
∑
i∈V

∑
j∈V : j �=i

ci j xi j = n − 1 (5.11)

∑
j∈V : j �=i

xi j ≤ 1 ∀i ∈ V (5.12)

∑
i∈V :i �= j

xi j ≤ 1 ∀ j ∈ V (5.13)

xi j − z̄i j ≤ 0 ∀i, j ∈ V : i �= j (5.14)

0 ≤ z̄i j + z̄ jk − z̄ik ≤ 1 ∀i, j, k ∈ V : i �= j, j �= k, i �= k (5.15)

z̄i j ∈ {0, 1} ∀i, j ∈ V : i �= j (5.16)

xi j ∈ {0, 1} ∀i, j ∈ V : i �= j (5.17)

The objective function (5.10) is equivalent to

∑
i∈V

∑
j∈V : j �=i

di j zi j −
∑
i∈V

∑
j∈V : j �=i

ci j xi j

when z̄i j is substituted by 1 − z ji . Details can be consulted in [25].
Constraints (5.11), (5.12) and (5.13) model the tour. The subtour elimi-
nation constraints have been removed since that have been proven to be
unnecessary in [25]. Inequalities (5.14) make sure that the two families of
variables match up: if i is visited directly before j, the variable zi j must be
equal to 1. Constraints (5.15) are equivalent to constraints (5.3) and equali-
ties (5.2) have been ruled out because of redundancy. The correctness of the
model is shown in [25].

Recently, the Target Visitation Arc Routing problem has been introduced
in [26]. This problem combines the undirected rural postman problem
and the LOP, where pairwise preferences between the required edges are
considered.
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5.2.4 The Center Ranking Problem

The Center Ranking Problem (CRP) was introduced in [28]. The author
shows that the CRP is NP-complete and illustrates the application of this
new problem in the field of bioinformatics. The input for the CRP is not
the preference matrix but the non-squared matrix of data from which the
preference matrix is computed. The CRP consists on identifying the ranking
of elements such that the maximum Kendall-tau distance to the rankings
expressed by the rows of the non-squared matrix is the smallest.

Let T be the rows of this non-squared matrix, i.e., a set of rankings of
elements, then the CRP can be expressed as

argmin
ρ

{max
π∈T K (ρ, π)} (5.18)

The following example illustrates the solution the CRP is looking for.

Example 5.3 (cont. Example 5.1). There are six voters and the candi-
date rankings are proposed in Table 5.1. The solution of the LOP is
(a, c, d , b, f , e ) and the optimal value is 11.2. This ranking of candidates
satisfies 74.6% of the preferences expressed by the voters and can be inter-
preted as a consensus among voters. However, the value of 74.6% is very
unevenly distributed among the voters: the ranking (a, c, d , b, f , e ) satis-
fies 80%, 93.3%, 100%, 60% and 40% of the preferences expressed for each
voter. Conversely, ranking (c, a, d , f , e, b) satisfies 68% of the preferences
expressed by the voters and 60%, 73.3%, 80%, 66.6% and 60% of the pref-
erences expressed for each voter. Thus, the second ranking is a more robust
solution. The CRP aims to find the most robust ranking.

Let T be the set of preferences expressed for a set of voters/agents. Let dπ
i j

be a constant equal to one if element i is preferred to j for the agent/voter
who has expressed the preference π ∈ T , and zero otherwise. The CRP can
be modeled as the following linear problem:

max k

s.t. k ≤
∑
i∈V

∑
j∈V : j �=i

dπ
i j zi j ∀π ∈ T

zi j + z ji = 1 ∀i, j ∈ V : i < j

zi j + z jt + zti ≤ 2 ∀i, j, t ∈ V : i �= j, j �= t, i �= t

zi j ∈ {0, 1} ∀i, j ∈ V : i �= j.
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Note that the minimization of the maximum in expression (5.18) is equiv-
alent to the maximization of d in the above model. Analogously, the LOP
was minimizing the Kendall-tau distance and maximizing the super-diagonal
values of the preference matrix.

5.3 Ranking of Sets from a Ranking of Elements

The problems described in Sect. 5.2 obtain total orders, i.e., they do not
leave any elements unordered. If only a partial ranking of the elements is
desired, the solution would be a bucket or cluster order. In a bucket order,
elements are grouped in different buckets, so that all the elements of the same
bucket are assumed to be tied or incomparable and the order between two
elements of different buckets is given by the relative ordering of the buckets
they belong to. In a bucket order, the grouping of the elements is an output
of the problem, i.e., they are induced by the data. On the other hand, in
a cluster order, the clusters of elements are inherent to the data, that is, it
is known a priori to the cluster each element belongs to. Now, the order
of the elements is given by a permutation of the clusters, where an element
representing each cluster need to be chosen and the belonging of an element
to a cluster is not part of the solution but of the data.

In [29], the author introduces the concept of bucket in order to approx-
imate the Rank Aggregation Problem with ties. Several works studied the
Optimal Bucket Order Problem (OBOP) later [6, 12, 29, 30] and it has
been used to discover serialization of information in very different contexts
such as Ecology [31], Archeology [32] or Paleontology [33, 34] to cite just
a few. When the elements are grouped in clusters and the aim is to choose
a representative of each element and order these elements, giving a permuta-
tion of them we have the Linear Ordering Problem with Clusters (LOPC),
introduced in [35], where the authors propose a linear formulation and
a metaheuristic to solve it. This problem is also given in many different
contexts, for example when scheduling tasks which are grouped in different
types, so that only one task of each group needs to be scheduled.

In the following, the symbol "|" would represent a tie in the ranking. For
instance, (a, b|c, d , e|f |g ) would represent the ranking in which a goes first,
the second position is shared by b and c, b and c are tied, the third position
is for d and the last in the ranking are e, f or g , the three being equivalent
in terms of the ranking.
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5.3.1 The Optimal Bucket Order Problem

In the Optimal Bucket Order Problem (OBOP), which was first introduced
in [29] the solution is formed by a ranking of the elements in V , but in
that ranking ties are permitted. The elements which are tied form a bucket.
Therefore, the solution of the problem represents an ordered list of the
buckets.

Example 5.4 Let us suppose that there are four voters and the candidate
rankings proposed in Table 5.3. It is obvious that all the voters think that
candidates 1 and 2 are better than candidates 3 and 4. However, there is no
preference between 1 and 2, or between 3 and 4. In this case, ties between 1
and 2 and between 3 and 4 arise from the collective opinion and the most
reasonable solution would be (1|2, 3|4). Two buckets are formed, which are
inherent from the data. In other cases, the ties come from the individual
opinion of the agents or voters. If none of the four previous voters would
have expressed any preference between candidates 1 and 2, i.e., candidates 1
and 2 tie in all the individual preferences, why should this tie be broken in a
solution ranking? In this case, candidates 1 and 2 form a bucket, which arises
from the ties in the individual preferences.

Following [36] a bucket order is an ordered partition of V into k disjoint
subsets (buckets): V = B1 ∪ B2 · · · Bk , where 1 ≤ k ≤ n and Br ∩ Bs = ∅
for all r, s ∈ {1, . . . , k} r �= s. β(i) represents the bucket to which element
i ∈ V belongs to. A bucket order has an associated square matrix B = (bi j ),
such that bi j = 1 if β(i) is ordered before β( j), bi j = 0 if β( j) is ordered
before β(i) and bi j = 0.5 if i and j tie and therefore belong to the same

Table 5.3 Candidate rankings: list of four total orders

Voter 1: a b c d
Voter 2: b a c d
Voter 3: a b d c
Voter 4: a b d c

Table 5.4 D′ matrix for Example 5.4

a b c d

a 0.5 0.75 1 1
b 0.25 0.5 1 1
c 0 0 0.5 0.5
d 0 0 0.5 0.5
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bucket. Then, given a paired comparison matrix D′ = (d ′
i j ), which is defined

as D = (di j ) as defined above, but setting the elements in the diagonal equal
to 0.5, d ′

i i = 0.5 for all i ∈ {1, . . . , n}, as it is shown in Table 5.4, the bucket
order problem consists in finding a bucket order for which the associated
square matrix B = (bi j ) optimizes the function:

min
∑
i∈V

∑
j∈V

|bi j − d ′
i j | (5.19)

It is compulsory that the paired comparison matrix D′ has all the values in
[0, 1], i.e., d ′

i j ∈ [0, 1]. If di j /∈ [0, 1] for some i, j, matrix D has to be
normalized before computing matrix D′.

Given that the problem is NP-complete [30], several approaches have been
proposed in order to solve it or, at least, approximate quality solutions. In
[6], the authors propose a method to discover bucket orders but only in the
case when a set of full rankings is available. This limitation is avoided by
the Bucket Pivot Algorithm (BPA) [30, 37] which is, nowadays, the most
used method for solving the bucket order problem because it obtains quite
good results [30, 37, 38]. However, in [36] the authors point out some draw-
backs of BPA, mainly related to the random way in which this algorithm
chooses the unique pivot, which decides the positions of the rest of the items
in the bucket order. To overcome these weaknesses, the authors propose a
new approach based on two points: to use more than one item as a pivot and
not to choose these pivots randomly. This work presents a statistical anal-
ysis comparing the proposed method with BPA, which demonstrates that the
proposal achieves an important increase in the accuracy of the solutions and
a significant decrease of the output variance. Later, in [39] an evolutionary
metaheuristic to solve the OBOP is designed and compared with current
state-of-the-art algorithms, improving the accuracy of the solutions by more
than 10%.

5.3.2 The Linear Ordering Problem with Clusters

In this problem, the set V is partitioned into h disjoint subsets (clusters):
V = V1 ∪ V2 · · · Vh and Vr ∩ Vs = ∅ for all r, s ∈ {1, . . . , h} r �= s. H
is the set of subsets, H = {1, . . . , h}. The objective is to choose only one
representative of each cluster in order to find the best linear order of them.

In order to formulate a model for the Linear Ordering Problem with Clus-
ters (LOPC), the following families of binary variables are defined: for all
i ∈ V, variable yi takes the value of one, if and only if index i is the
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element chosen from its cluster as representative; for all i, j ∈ V belonging
to different clusters, zi j takes the value of one if and only if indexes i and
j are representative of their clusters and the cluster to which i belongs goes
before the cluster to which j belongs.
The linear integer formulation of LOPC is presented in [35] as follows:

max
∑

r,s∈H :r �=s

∑
i ∈ Vr
j ∈ Vs

ci j zi j (5.20)

s.t.
∑

k ∈ Vt
j ∈ Vs

zk j −
∑

i ∈ Vr
j ∈ Vs

zi j

−
∑

k ∈ Vt
i ∈ Vr

zki ≤ 0 r, s, t ∈ H : pairwise disjoint (5.21)

∑
j∈Vr

(zi j + z ji ) − yi = 0 r ∈ H, i /∈ Vr (5.22)

∑
i∈Vr

yi = 1 r ∈ H (5.23)

zi j ∈ {0, 1} i ∈ Vr , j ∈ Vs, r �= s (5.24)

yi ∈ {0, 1} i ∈ V (5.25)

In the previous model, the objective function is to maximize the weighted
sum of the z-variables. (5.21) ensure transitivity in the order of clusters.
Constraints (5.22) state that given i is the representative of a cluster, for any
different cluster Vr , we can find a representative which will be ordered before
or after element i. Constraints (5.23) determine that each cluster has only one
representative. Any solution satisfying all the constraints induces a permuta-
tion of m elements in V , which are representative of the clusters and thus a
permutation of the same.

Example 5.5 (cont. Example 5.1). Following with the example given before,
let us now suppose that voters are grouped in three different clusters. Let
V1 = {a, b}, V2 = {c, d} and V3 = {e, f }. The optimal solution for the
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Table 5.5 Voter preferences on selected candidates

Voter 1: b c e
Voter 2: c b e
Voter 3: c b e
Voter 4: c b e
Voter 5: c e b

LOPC is (c, b, e) ≡ (c|d, a|b, e| f ) and the optimal value is 2.6. If the
preferences of non-selected candidates are removed, the list of preferences
would be the list in Table 5.5 and a consensus permutation with zero disagree-
ment would give an objective value of 3. Then, the optimal solution (c, b, e )
guarantees 86.6%((2.6/3) × 100) of voter preferences.

Besides, the LOP solution does not lead to the LOPC solution. The LOP
solution is (a, c, d , b, f , e ), then the first three elements of different clusters
are (a, c, f ) ≡ (a|b, c|d, e|f), which is not the LOPC solution. In fact,
the objective value for the solution (a, c, f ) in the LOPC is 2, which only
guarantees the 66.6%((2/3) × 100) of voter preferences.

The LOP can be seen as a particular case of LOPC when all the clusters
have only one element. Therefore, the LOPC is also NP-hard. In this sense,
in [35] authors state that LOPC is more difficult than LOP because the relax-
ation of the transitivity constraint in the LOPC does not provide a integer
solution unlike the LOP.
The computational study provided in [35] shows some insights of how

the complexity of the problem increases in line with the number of clusters.
When the same number of elements are split into more clusters, the compu-
tation time needed to solve the problem increases. This makes it difficult
to solve medium or large-sized instances through the binary linear model
presented above in reasonable computation times. Therefore, the authors
also propose a metaheuristic which is compared to the exact approach. This
algorithm outperforms the model in terms of computational time. The meta-
heuristic proposed is a hybrid scatter search which employs genetic operators
designed to exploit the problem-specific knowledge in an efficient way. As far
as we know, this is the only metaheuristic proposed to solve the problem.

5.3.3 The Linear Ordering Problem of Sets

The problem of determining a ranking of subsets from a ranking of the
elements of the set, namely Linear Ordering Problem of Sets (LOPS) or
Kendall-τ partition ranking, was introduced in [8]. In the same paper, the
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authors apply the LOPS for ranking the OECD countries from the ranking
of schools obtained from the Programme for International Student Assess-
ment (PISA). Let π be a ranking of the elements of V and let V1, V2,..., Vh
be a partition of V = ∪h

r=1Vr with Vr = {1, . . . , nr } for all r ∈ {1, . . . , h}.
The ranking of the subsets in the partition ρ is defined as the ranking of
elements πρ such that elements in Vr for all r are consecutively listed and
the Kendall-tau distance K (π, πρ) is minimized, i.e., the number of pair-
wise disagreements from π is minimized. If mπ

rs is the number of times that
an element of subset Vr is ranked before an element of subset Vs in π , then
the solution of LOPS is the solution of the LOP for matrix Mπ = mπ

rs .

Example 5.6 (cont. Example 5.1). Following with the example given
before, let us now suppose that the candidates are listed in ranking π =
(a, c, d, b, f, e). Candidates are grouped into three different political parties,
let V1 = {a, b}, V2 = {c, d} and V3 = {e, f }. The LOPS provides a linear
order of the political parties ρ = (V1, V2, V 3), where ρ is the solution of
the LOP for matrix:

Mπ =
⎛
⎝− 2 4

2 − 4
0 0 −

⎞
⎠

Note that ρ = (V2, V1, V 3) is also an optimal solution for this problem.

The authors in [8] present the properties of the LOPS and compare it
with classical mean and median-based rank approaches. These properties are
extracted from social choice theory and are adapted to a partition ranking, see
[40, 41]. Two of these properties are only true for the LOPS: the Condorcet
and Deletion Independence properties. The Condorcet property establishes
that the most preferred subset must be listed before any other in any ranking;
and the Deletion Independence property establishes that if any subset is
removed, then the induced order of subsets does not change.
The problem in obtaining a ranking of sets from a ranking of elements is

an easier problem than the LOP because the preference matrix already comes
from a linear order of elements. The authors in [8] establish that the inte-
grality gap of the LOPS converges to 8/7, when the preference matrix is done
in normal form, i.e., mπ

rs + mπ
sr = 1 for all r �= s.

The distance K (π, πρ) between the ranking of sets from the ranking of
elements can be normalized by the maximum number of disagreements that
may occur between them, i.e., the maximum disorder for a permutation
of elements. This distance, which is the number of pairwise disagreements
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needed in a permutation of elements to reach a permutation that establishes
a total order between treatments, is denominated by the disorder of a permu-
tation by the authors of the work [8], and allows to define the relative disorder
of a permutation of elements as:

relative disorder of π = K (π, πρ)∑
r<s nrns − (GBo + ∑

r<s
nr ns
2 )

where GBo is the pentagonal number and o the number of sets with odd
cardinality.

In [42], the authors use the relative disorder of a permutation to define
the Concordance Coefficient which is that used to measure the ordinal asso-
ciation between quantity and quality measures when two or more samples
are considered. The authors propose this new measure as an alternative
to the non-parametric mean rank-based methods for comparing two or
more samples, and compare it with the classical Kruskal-Wallis method. An
R-package to solve this problem is presented in [43]. Additionally, the R-
package provides routines for solving the LOP problem; it calculates the
Kendal-tau distance between two permutations and the relative disorder of
a permutation of elements.

5.3.4 The Center Ranking Problem of Sets

An extension to the LOPS, when different linear orders of elements are avail-
able, is the problem of determining the best ranking of sets close to the linear
orders of elements. The next example illustrates two ways to aggregate these
linear orders of elements; the LOP and the center ranking problem of sets
(CRPS).

Example 5.7 Let π1 = (a, b, c, b), π2 = (b, b, c, a) and π3 = (b, c, a, b)
be three ranking of elements in V = A ∪ B ∪ C : A = {a}, B = {b, b}
y C = {c}. Each ranking establishes a preference matrix of the subsets A, B
and C .

Mπ1 =
⎛
⎝− 2 1

0 − 1
0 1 −

⎞
⎠ Mπ2 =

⎛
⎝− 0 0

2 − 2
1 0 −

⎞
⎠ Mπ2 =

⎛
⎝− 1 0

1 − 1
1 1 −

⎞
⎠

The optimal solution of LOP for M = Mπ1+Mπ2+Mπ3 is the ranking ρ

such that the elements of A, B and C are listed consecutively and the number
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of pairwise disagreements from π1, π2 and π3 is minimized. M (π1,π2,π3) =

Mπ1 + Mπ2 + Mπ3 =
⎛
⎝− 3 1

3 − 4
2 2 −

⎞
⎠

The optimal solution of the Linear Ordering Problem (LOP) for
M (π1,π2,π3) is the permutation ρ = (B,C, A) with a objective value of 9.
Therefore, permutation ρ needs 6 disagreements from π1, π2, y π3, i.e., 15-
9=6. Distances of ρ from π1, π2 and π3 are K (π1, ρ) = 4, K (π2, ρ) = 0,
and K (π1, ρ) = 2,, respectively.

Notice that ρ, which is the optimal solution of the LOP, provides an
unbalanced optimal solution, i.e., ρ presents 4 disagreements from π1 while
it is the optimal solution for π1 but in reverse order.

Conversely, ranking ρ∗ = (A, B,C) needs 1,3 and 3 disagreements from
π1, π2, y π3, therefore ranking ρ is a more robust solution of our problem
than the classical mean solution.

Ranking ρ∗ = (A, B,C) is the optimal solution for center ranking
problem of sets (CRPS).

Let T be a set of ranking of elements. The CRPS can be modeled as the
following linear problem:

max k

s.t. k ≤
∑
r∈Mπ

∑
s∈Mπ : j �=i

mπ
rs zrs ∀π ∈ T (5.27)

s.t. zrs + zsr = 1 ∀r, s ∈ H : r < s (5.28)

zrs + zst + ztr ≤ 2 ∀r, s, t ∈ H : r �= s, s �= t, t �= r (5.29)

zrs ∈ {0, 1} ∀r, s ∈ H : r �= s (5.30)

5.4 Feasible Regions Similarities
and Differences Through a Small Example

In this section, the feasible region of the seven different presented models is
illustrated with a small example. It helps to go deep into the scope and the
applications of the models.
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Let D be the following 3 × 3 preference matrix:

D =
⎛
⎝− 0 2

4 − 1
1 3 −

⎞
⎠

If D represents the number of times that player i has beaten player j, the
LOP looks for the ranking of the players. Three players participate in a tour-
nament. Player 1 has played 7 games, he has beaten player 3 twice and he has
lost four times against player 2 and once against player 3. Moreover, player
2 has played 4 games with player 3 and he has won only one of these. The
LOP looks for the ranking of the players that best fits with this situation.

If D represents the number of orders in which task i must be executed
before task j every day, the RAPC looks for the sequential ranking of tasks.
Each week a certain number of orders is received, in none of them task 1
precedes task 2, in two of them task 1 precedes task 3 and so on. The RAPC
looks for the best ranking of tasks from this data and on the premise that
when the last task is finished the first one will start again.

If D represents the benefit of serving target i before target j and a 4 × 4
cost matrix C is known, the TVP looks for the route/ranking that best
balances preferences and distances. The first row and column of the cost
matrix corresponds with the depot, let us say 0. W.l.o.g. Let us suppose
c0i = ci0 = cii = 0 for all i ∈ {1, 2, 3}, c32 = c21 = 2 and ci j = 0.5
otherwise.
Table 5.6 shows the feasible solutions, with its values, for the LOP, RAPC

and TVP (all of them for obtaining a ranking of elements). Columns LOP,
RAPC andTVP give the set of all the feasible solutions and v(LOP), v(RAPC)
and v(TVP) the associated objective values. All the feasible solutions for the
LOP are all the permutations of the three players. The first value in column
v(LOP) indicates that 1 goes before 2, 1 also goes before 3 and 2 goes before
3, d12 + d13 + d23 = 0 + 2 + 1 = 3, the rest of values are computed

Table 5.6 Solutions and values for three ranking of elements: LOP, RAPC and TVP

LOP v(LOP) RAPC v(RAPC) TVP v(TVP)

(1, 2, 3) 3 (1, 2, 3) 10 (0, 1, 2, 3, 0) 1.5
(1, 3, 2) 5 (1, 3, 2) 20 (0, 1, 3, 2, 0) 2
(2, 1, 3) 7 (0, 2, 1, 3, 0) 4
(2, 3, 1) 3 (0, 2, 3, 1, 0) 1.5
(3, 1, 2) 4 (0, 3, 1, 2, 0) 2.5
(3, 2, 1) 8 (0, 3, 2, 1, 0) 3.5
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analogously. All the feasible solutions for RAPC are the two representatives of
the two equivalence classes. The first value in column v(RAPC) is the addition
of the values in column v(LOP) for the elements of the equivalence class with
representative (1,2,3), i.e., 3+3+4=10. All the feasible solutions for the TVP
are all the possible routes starting from and arriving to the depot and visiting
all the three players. The first value in column v(TVP) is d12 + d13 + d23 −
c01 − c12 − c23 − c30 = 1.5, that is the value that represents that 1 goes
before 2, 1 also goes before 3 and 2 goes before 3 and the route goes from
0 to 1, from 1 to 2, from 2 to 3 and from 3 to 0. The optimal solution for
each problem is in bold. In this small example, the optimal value for RAPC
is the representative for the class to which the optimal value of LOP belongs,
however it does not hold in general.

Let us suppose again that D represents the number of times that player
i has beaten player j but that the goal is to split the players into two teams
(buckets) and rank the buckets, then the OBOP looks for the best solution.

If it is known that players 1 and 2 belong to the same team A and that
player 3 belongs to a second team B, LOPC looks for a good representative
of each team and a good ranking of the selected representatives.
Table 5.7 shows the feasible solutions, with its values, for the OBOP and

LOPC (both for obtaining ranking of sets). All the feasible solutions for the
OBOP are all the permutations of two non-overlapped sets, one with one
player and another with two players. For the values in column v(OBOP), the
B matrices are the following:

B1 =
⎛
⎝0.5 1 1

0 0.5 0.5
0 0.5 0.5

⎞
⎠, B2 =

⎛
⎝0.5 0 0.5

1 0.5 1
0.5 0 0.5

⎞
⎠, B3 =

⎛
⎝0.5 0.5 0
0.5 0.5 0
1 1 0.5

⎞
⎠,

B4 =
⎛
⎝0.5 0 0

1 0.5 0.5
1 0.5 0.5

⎞
⎠, B5 =

⎛
⎝0.5 1 0.5

0 0.5 0
0.5 1 0.5

⎞
⎠, B6 =

⎛
⎝0.5 0.5 1
0.5 0.5 1
0 0 0.5

⎞
⎠.

Moreover, matrix D′ can be obtained from D filling the diagonal with the
value 0.5 and projecting the values in [0, 1] by performing d ′

i j = di j/(di j +
d ji ), i,e,

D′ =
⎛
⎝ 0.5 0 0.67

1 0.5 0.25
0.33 0.75 0.5

⎞
⎠.

The first value in the column v(OBOP) is
∑3

i=1
∑3

j=1 |b1i j − d ′
i j | = 3.16.
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All the feasible solutions for the LOPC are all the permutations for one
representative of each team. The first value in column v(LOPC) is d13 = 2.
The optimal solution for each problem is in bold. In this small instance there
are two optimal solutions for the OBOP, data support that player 2 goes
before player 1 but player 3 can belong to player 2’s team or to player 1’s team.
It is not common that data cannot discriminate between different solutions
but, as this example illustrates, it might happen.

CRP, LOPS and CLOPS cannot be illustrated by using matrix D since all
of them require different inputs and do not make use of D.

CRP requires a preference list. Let’s consider that three players hold the
positions in Table 5.8 in six different and equally prestigious tournaments.

All the feasible solutions for the CRP are all the permutations of the
three players, see Table 5.9. The value in column v(CRP) is the minimum
between the distance of the solution/ranking and each of the rankings in
each tournament; these distances are reported in the last column of the table.

LOPS requires a ranking of elements and the affiliation of the elements to
the clusters. Let’s consider that it is known that there are still three players,
the best is player 3, the second is player 2 and the third is player 1 and that
players 1 and 2 belong to the same team A and that player 3 belongs to a
second team B. Thus, the input is π = (3, 2, 1) ≡ (B, A, A). All the feasible
solutions for the LOPS are all the permutations of two consecutive A and one
consecutive B, see Table 5.10. Values in column v(LOPS) are the LOP values

Table 5.7 Solutions and values for two ranking of sets: OBOP and LOPC

OBOP v(OBOP) LOPC v(LOPC)

(1, 2|3) 3.16 (1, 3) 2
(2, 1|3) 1.84 (2, 3) 1
(3, 1|2) 2.84 (3, 1) 1
(2|3, 1) 1.84 (3, 2) 3
(1|3, 2) 2.84
(1|2, 3) 3.16

Table 5.8 Player rankings in the four tournaments

Winner Second Third

Tournament 1: 1 2 3
Tournament 2: 1 3 2
Tournament 3: 1 3 2
Tournament 4: 2 1 3
Tournament 5: 2 3 1
Tournament 6: 3 1 2
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Table 5.9 Solutions and values for CRP

CRP v(CRP) distance from the 6 tournaments

(1, 2, 3) 2 =max{0, 1, 1, 1, 2, 2}
(1, 3, 2) 3 =max{1, 0, 0, 2, 3, 2}
(2, 1, 3) 3 =max{1, 2, 2, 0, 1, 3}
(2, 3, 1) 3 =max{2, 3, 3, 1, 0, 2}
(3, 1, 2) 3 =max{2, 1, 1, 3, 2, 0}
(3, 2, 1) 3 =max{3, 2, 2, 2, 1, 1}

for matrix

Mπ =
(− 0
2 −

)

(mπ
AB = 0 is the number of times that an element of subset VA = {1, 2}

is ranked before an element of subset VB = {3} in π ). Alternatively, the
optimal solution for LOPS is the one with the smallest Kendall-tau distance
to the input.

CRPS requires several rankings of elements and the affiliation of the
elements to the clusters. Let’s consider the rankings in Table 5.8 and that
player 3 is still in a cluster and players 1 and 2 in another. All the feasible
solutions for the LOPS are all the permutations of two consecutive A and
one consecutive B, see Table 5.10. Values in column v(CRPS) are the
maximum of the distances to the rankings in Table 5.8. It is not common
that data cannot discriminate between different solutions but, as this example
illustrates, it might happen.
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Table 5.10 Solutions and values for two ranking of sets: LOPS and CLOPS

LOPS v(LOPS) CLOPS v(CLOPS)

(A, A, B) 0 (A, A, B) 2 =max{0, 1, 1, 0, 1, 2}
(B,A,A) 2 (B, A, A) 2 =max{2, 1, 1, 2, 1, 0}
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6
Multi-Objective Optimization: Methods

and Applications

Dylan F. Jones and Helenice O. Florentino

Multi-objective optimization is concerned with finding solutions to a decision
problem with multiple, normally conflicting objectives. This chapter focusses
on multi-objective optimization problems that can be characterized within
the paradigm of mathematical programming. Three modelling techniques
that are well established in the literature are presented: Pareto set generation,
goal programming and compromise programming. Each method is described,
along with its strengths, weaknesses and areas of application. The underlying
assumptions and philosophies of each method, nature of interaction of deci-
sion makers and nature of solutions produced are discussed and compared
between the three methods. A small but representative example is given for
each method and the results are discussed and conclusions are drawn.
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6.1 Introduction to Multi-Objective
Optimization

Multi-objective optimization involves the formulation and solution of deci-
sion problems with two or more normally conflicting objectives by which the
value of a solution can be measured. The field of multi-objective optimization
falls within the wider field of multiple criteria decision-making or analysis
(MCDM/A), which is concerned in supporting decision makers who are
encountered with problems with multiple, normally conflicting criteria. In
this chapter, the overview of multiple objective optimization concentrates on
problems that can be specified within a mathematical programming frame-
work. That is, the decision maker(s) problem can be mathematically specified
as:

Min z = (
f1(x), f2(x), . . . , fQ(x)

)
(6.1)

Subject to,

x ∈ F, (6.2)

where fq(x) represents the objective function of the q ′th objective, where
q=1,..., Q . That is there exist Q underlying criteria of importance to the deci-
sion maker. In the case that an objective is naturally of maximization type, its
negative (− fq(x)) can be used without loss of generality. x represents a vector
with the decision variables over which the decision maker(s) have control,
which is bounded by the set F of constraints and sign restrictions. The nature
of x , F and fq(x), q=1,...,Q will determine the type of multiple objec-
tive optimization model (e.g. linear, non-linear, integer, binary, stochastic),
following the same nomenclature and rules as in the wider mathematical
programming field.

As formulation (6.1)–(6.2) normally does not have a unique, single
optimal value for all objectives, the concept of a Pareto-optimal solution is
key to generating solutions that will aid the decision maker in understanding
the range of solutions available and hence making a choice of preferred
solution. A solution in decision space x to (6.1)–(6.2) is termed Pareto
optimal (sometimes termed Pareto efficient) if no objective can be improved
without worsening another objective. If at least one objective can be improved
without worsening any other objective then solution x is termed Pareto sub-
optimal (sometimes termed Pareto inefficient) and the corresponding vectors
z in objective space are termed nondominated and dominated, respectively.
A widely accepted theory is that no decision maker will willingly choose
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a Pareto sub-optimal solution if they know of the existence of a Pareto
optimal solution that dominates it. The field of multi-objective optimiza-
tion therefore concentrates on the search for Pareto-optimal solution(s), with
different models and solution methods arising depending on the characteris-
tics of the decision problem, the number of objectives involved, the assumed
underlying philosophies of the decision maker and their ability or willing-
ness to express preferential information at different stages of the modelling
and solution process and the number and characteristics of Pareto optimal
solutions required. The different multi-objective optimization modelling
and solution techniques have been well described in seminal books over
their period of development such as [4, 14, 18, 43, 54, 62]. This chapter
concentrates on three of the most prolific techniques within the field of
multi-objective optimization: Pareto set generation, goal programming and
compromise programming. These are developed in Sects. 6.2–6.4, respec-
tively. Section 6.5 presents some recent applications and recommendations
for usage and Sect. 6.6 draws overall conclusions.

6.2 Solving a Multi-objective Problem

Ehrgott and Gandibleux [19] present two classes of multi-objective methods:
Generating methods, which aim at the generation of optimal Pareto points
without advance contribution from the decision maker and methods based
on preferences, in which the solutions are generated with information from
the decision maker.

6.2.1 Basic Concepts

For a better understanding of optimality used in multi-objective optimiza-
tion, some basic concepts are necessary.

Definition 6.1 Pareto Dominance A solution x1 ∈ F to (6.1)–(6.2) domi-
nates another solution x2 ∈ F (or x2 is dominated by x1) if fq(x1) ≤
fq(x2) for q = 1, . . . , Q and fi (x1) < fi (x2) for at least one objective
function i ∈ { 1, . . . , Q} .

If x1 dominates x2 and fi (x1) = fi (x2) for at least one objective
function, i ∈ { 1, . . . , Q} , it is said that the vector objective z1 weakly domi-
nates the vector objective z2 where z1 = ( f1(x1), f2(x1), . . . , fQ(x1)) and
z2 = ( f1(x2), f2(x2), . . . , fQ(x2)).
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If x1 dominates x2 and fq(x1) < fq(x2), for all q = 1, . . . , Q, it is
said that the vector objective z1 (or point z1 ) strictly dominates the vector
objective z2. In both cases it is said that z2 is dominated by z1.

Definition 6.2 Pareto-optimal (or Pareto efficient or Nondominated) solu-
tion A solution x∗ ∈ F is termed Pareto optimal (or Pareto efficient, or
Nondominated) if there does not exist a point z that dominates z∗, where
z = ( f1(x), f2(x), . . . , fQ(x)) for all x ∈ F , x �= x∗ and z∗ =
( f1(x∗), f2(x∗), . . . , fQ(x∗)). However, if weak dominance exists, x∗ is
termed Pareto sub-optimal (or Pareto inefficient).

Definition 6.3 Pareto-optimal Set The Pareto-optimal Set (or nondomi-
nated solution set) is a set of all Pareto-optimal solutions.

Definition 6.4 Pareto-optimal front The Pareto-optimal front is the
boundary defined by the set of all points mapped from the Pareto-optimal
set.

Definition 6.5 Ideal Point (Ideal Vector) (I1, I2, . . . , IQ) is an Ideal Point
if Iq = min ( fq(x), x ∈ F), q ∈ {1, . . . , Q}.

Definition 6.6 Lexicographic Points Lq = ( f1(x Lq), . . . , fq−1(x Lq), Iq ,
fq+1(x Lq), . . . , fQ(x Lq)) is an Lexicographic Point if Iq =
min( fq(x), x ∈ F) and x Lq = arg min( fq(x), x ∈ F), q ∈ { 1, . . . , Q} .

We present an example in order to illustrate the elements defined.

Example 6.1 Consider the bi-objective optimization model

Min z =
(
x21 + x2, −x21 − x1x2 − x22 + 10

)
(6.3)

Subject to,

1.5x21 + x22 ≤ 6, (6.4)

−0.75x21 + 2.75x1 + x2 ≥ 2.5, (6.5)

x1 ≥ 0 and x2 ≥ 0. (6.6)
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Fig. 6.1 a Solution (decision) space for the problem in Example 6.1. b Objective
space for the problem in Example 6.1

In this example Q = 2, x = (x1, x2), f1(x) = x21 + x2, f2(x) =
−x21−x1x2−x22+10 and F = { (x1, x2) : 1.5x21+x22 ≤ 6,−0.75x21+
2.75x1 + x2 ≥ 2.5, x1 ≥ 0 and x2 ≥ 0} .
The set F of constraints is shown in Fig. 6.1a. This figure also shows the

Pareto-optimal set (all points shown along the dotted line), the points xL1
and xL2 whose images are the lexicographic points, and some other feasible
points in the solution space (A, B, C , xz∗), aimed at giving a better under-
standing of these spaces. Looking at Fig. 6.1b, which shows the objective
space, the images of the points represented in the solution space can be seen.
Note also that point z1 weakly dominates the point z2 and strictly dominates
z3. The point z∗, image of x∗

z , is not dominated by any other feasible point,
therefore it belongs to the Pareto-optimal front. All points of the Pareto-
optimal front are shown in a darker colour in Fig. 6.1b. In this figure the
Ideal and Lexicographic Points can also be observed.

6.2.2 Pareto Set Generation

The multi-objective optimization process is basically composed of two stages:
(i) the search for solutions and (ii) decision-making. This process allows for
the determination of the elements of the Pareto-optimal Set and the quan-
tification of trade-offs. According to [13], to assist the decision maker it is
necessary to find Pareto-optimal solutions using procedures that obtain pref-
erential information and generate solutions based on these preferences. In this
way, the Pareto set generation methods consist of a process divided into two
phases: In the first phase the Pareto-optimal solutions are generated. After
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Fig. 6.2 Characteristics of the Pareto set generation methods

that, the decision maker selects from among all the possible alternatives, the
most preferred solution, as summarized in Fig. 6.2.
The advantage of the Pareto set generation methods is that they convey

a lot of information to the decision maker since these methods generate the
Pareto front, which may assist in more informed, and hence safer decision-
making. However, generating the optimal Pareto complete set is a very
difficult and often even impossible task, and hence the most used strategy is
the generation of some points of this front. Thus, some authors characterize
the quality of the results of a multi-objective study based on a set of factors,
such as: obtaining the greatest possible number of elements from the optimal
Pareto set; the points on the Pareto-Optimal front must be evenly distributed
in order for the decision maker to obtain an accurate picture of the trade-offs;
the determined points on the Pareto front must capture the entire spectrum
of the Pareto front (the Pareto front must have a large range); if approximate
processes are used to determine the Pareto front, the points found must be
as close as possible to the real Pareto front and not contain dominated points
[17, 63].

According to [40] the most widely used among the generation methods are
the Weighted Sum Method and the ε-Constraint Method. These methods
can determine a representative subset of the Pareto set. This author points
out some advantages of ε-Constraint Method over Weighted Sum Method,
which are: contrary to the Weighted Sum Method, the ε-Constraint is able
to produce non-extreme efficient solutions for linear problems, produce



6 Multi-Objective Optimization: Methods and Applications 187

unsupported efficient solutions in multi-objective integer and mixed-integer
programming problems and it is not necessary to put the objective func-
tions onto a common scale. In this context, the focus in this section is the
ε-Constraint Method.

6.2.2.1 ε-Constraint Method

Considering the multobjective problem (6.1)–(6.2), the ε-Constraint
Method proposed by [29] consists in keeping fi (i ∈ { 1, . . . , Q} ) as
the only objective function and limiting the other objective functions to
εq(q = 1, . . . , Q and q �= i), hence using them as constraints, as shown
in the mono-objective optimization problem (6.7)–(6.9).

Min fi (x) (6.7)

Subject to,

fq(x) ≤ εq for all q ∈ { 1, . . . , Q} and q �= i, (6.8)

x ∈ F. (6.9)

According to [14], different Pareto-optimal solutions can be found by varying
the values of the parameters εq , for convex or non-convex image set in objec-
tive space. This is the great advantage of this method when compared with
other Pareto set generation methods, as Weighted Sum Method. Example 6.2
illustrates this method for different values of the εq .

Considering the bi-objective optimization model in Example 6.1, the
ε-Constraint Method is used to generate 30 and 60 points of the Pareto-
Optimal Set. For this, the objective function 2 is minimized and the objective
function 1 is placed as a constraint, as shown in the following model.

Example 6.2 Consider the bi-objective optimization model

Min f 2(x) = (−x21 − x1x2 − x22 + 10) (6.10)

Subject to,

x21 + x2 ≤ ε1, (6.11)

1.5x21 + x22 ≤ 6, (6.12)
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Fig. 6.3 a 30 points generated by the ε-constraint method for the Pareto-Optimal
Set of the problem in Example 6.1. b 60 points generated by the ε-constraint method
for the Pareto-Optimal Set of the problem in Example 6.1

−0.75x21 + 2.75x1 + x2 ≥ 2.5, (6.13)

x1 ≥ 0 and x2 ≥ 0. (6.14)

To generate k points of the Pareto-Optimal Set it is necessary to solve k
sub-problems using k different values of ε1. For this example, the ideal point
is (1.42, 2.35) and the lexicographic point L2 is (3.28, 2.35), in this way,
we take k values from ε1 equally spaced in the range [1.42, 3.28]. Figure 6.3
shows the results of the ε-constraint method for the k=30 and k=60 different
values of ε1.

A disadvantage of this method is the need to choose an appropriate range
to take the values of the parameter ε1.

6.2.2.2 Multi-Objective Evolutionary Algorithms

The aim of a Multi-objective Evolutionary Algorithm (MOEA) is to find an
approximation of the Pareto-optimal set that capture the trade-offs among
objective functions. This technique was inspired by Darwin’s theory of evolu-
tion by natural selection, such as mutation, selection and crossover that occur
in a population, where each individual represents a solution to the problem
investigated [26]. The selection operator has a great influence on the perfor-
mance of the MOEAs and the improvement of these algorithms in the last
decades was based, in a way, on the adequacy of the form of selection, as
discussed in [12].



6 Multi-Objective Optimization: Methods and Applications 189

Schaffer [52] proposed the Vector Evaluated Genetic Algorithm (VEGA)
where, for model (6.1)–(6.2), it creates Q subpopulations, in which the
fitness of individuals in each subpopulation q is based on the fq objective
and the crossover is carried out among the best individuals of all subpopula-
tions, using some random selection process. According to [12] this method
is very simple and naive, therefore it does not perform well. This and other
works developed in the 70s and 80s had many practical limitations, but they
were very important historically [30, 52].

Goldberg in 1989 [26] proposed some ideas for MOEAs using selec-
tion based on Pareto optimality, creating a ranking for the selection scheme,
giving to all nondominated solutions the best rank possible and also discussed
the idea of elitism to increase the population diversity of solutions, what
guarantee the convergence to optimal in Pareto sense [50]. These ideas
favoured the emergence of several MOEAs from the 90s, as an example:
Multi-Objective Genetic Algorithm (MOGA) [24], Nondominated Sorting
Genetic Algorithm (NSGA) [53], Strength Pareto Evolutionary Algorithm
(SPEA) [65], Nondominated Sorting Genetic Algorithm-II (NSGA-II) [16],
among others.

In the last 20 years, decision-making in all areas has become more complex
due to the dimensions of the problems, often encompassing the fulfillment of
social, economic, political, environmental demands, increasing the number of
objectives to be addressed. In this way, the Pareto-based MOEAs have been
presented with many challenges [12, 67]. In an attempt to obtain different
type of algorithmic designs that works with many-objective problems (more
than three) and with a more efficient selection scheme, indicator-based
selection [64] and decomposition-based selection [66] were proposed.

Indicator-Based Evolutionary Algorithm (IBEA) [64], S Metric Selection
Evolutionary Multi-objective Algorithm (SMS-EMOA) [5, 20] and Hyper-
volume Estimation Algorithm for Multi-Objective Optimization (HyPE) [3]
are examples of the indicator-based MOEAs, which are algorithms that incor-
porate any performance indicator into the selection mechanism [12]. Among
the performance indicators, the most used and which has strong theoretical
properties is the hypervolume indicator. However, a practical difficulty of
the hypervolume measure is the high computation cost, especially for many-
objectives problems. An alternative is to use an approximation of the exact
hypervolume values [3], although this does not present competitive results
[12].

Decomposition-based MOEAs are being actively researched. Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D)
[66] and Nondominated SortingGenetic Algorithm-III (NSGA-III) [15] are
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examples of this type of the MOEA. The decomposition-based MOEAs
consist in the use of scalarization methods (see Fig. 6.2) to generate nondom-
inated solutions. According to [12], these kinds of algorithms have the
advantage of generating non-convex portions of the Pareto front, work with
disconnected Pareto fronts, and can deal with many-objective problems.

All of the metaheuristics discussed above have limitations associated with
the number of objectives addressed, so MOEAs are still the subject of much
ongoing research [12]. A promising approach that has been investigated in
recent years is the hyper-heuristic. A hyper-heuristic is a learning mechanism
or investigation method for selecting or generating heuristics to solve compu-
tational problems [7]. It generates or chooses, among a given number of the
heuristics, one that solves the problem. Therefore, the hyper-heuristic works
on a heuristic search space, solving the problem indirectly by recommending
which heuristic can be applied at which stage of the solution process, where
the source of feedback information during the execution process can be
without a learning mechanism and the selection made by a heuristic process
(no-learning), or with knowledge in the form of rules (offline learning), or
the learning occurs while the algorithm is solving an instance of a problem
(online learning).

In the field of multi-objective optimization, many hyper-heuristics
have been developed and applied, for example: Markov Chain hyper-
heuristic (MCHH) [41], multi-objective Optimization, controlling and
combining (NSGA-II, SPEA2, and MOGA) [39], MOEA/D Hyper-
Heuristic (MOEA/D-HH) [28], multi-objective sequence-based hyper-
heuristic (MOSSHH) [56], hyper-heuristic combining the strengths and
compensates for the weaknesses of different scalarizing functions [27].

As discussed in this section, MOEAs have supported multi-objective
(including many-objective) problem solution, but research in this area is still
intense and necessary.

6.2.2.3 Quality of the Pareto-Optimal Set

As previously discussed, there is a range of exact and heuristic techniques for
Pareto-optimal set generation. However, methods to evaluate and compare
the quality of the solution sets generated by these techniques are also neces-
sary. According to [14], when the preferences are unknown a priori, this
quality is associated with the number of solutions (cardinality) close to the
true Pareto-optimal front (convergence) and the ability to span the entire
Pareto-optimal region uniformly (coverage (spread) and uniformly), as shown
in Fig. 6.4. In Fig. 6.4, nondominated solutions generated by 4 hypothetical
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Fig. 6.4 Visual analysis of the quality of hypothetical methods A, B, C and D: Method
A: good in convergence and cardinality, poor in coverage and uniformly. Method B:
good in cardinality and uniformly, poor in convergence. Method C: good in conver-
gence, cardinality, coverage and uniformly. Method D: good in convergence, poor in
coverage and uniformly

methods are visually compared. Method C is the one with the best quality
when compared with the others, because the method A is good in conver-
gence to the Pareto-optimal front, but does not present diversity (coverage
and uniformly) of the solutions, method B is poor in convergence and its
points are dominated by solutions of the all other methods, and method D
is good in convergence but poor in Pareto-optimal front coverage.
The greater the quantity of objectives of the problem, the greater the diffi-

culty of analysing the quality of the solution set. In this way, many methods
and algorithms use mechanisms (such as weight vectors, niching, clustering,
cellular structures, etc.) to obtain a solution set with better quality [14, 37].
There are also indicators that were proposed to measure quantitatively the
quality of the set of points found using methods or heuristics (cardinality
of the found solution set, convergence to the Pareto-optimal front, coverage
over the Pareto front and uniformly among solutions), these metrics help
in the comparison of results achieved by different multi-objective problem-
solving techniques. Deb [14] presents a very broad discussion on metrics for
analysing the quality of a set of solutions generated for multi-objective prob-
lems and other solution quality approaches. Li and Yao [37] discuss current
approaches of multi-objective solution sets quality evaluation, categorising
100 quality indicators for convergence, spread, uniformity, cardinality, for
both spread and uniformity, and for combined quality of the four quality
aspects. The authors present examples detailing indicators and their desirable
properties. An important conclusion of these is that the choice of the quality
indicator to be used depends on the characteristics of the problem and the
solution set obtained.
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6.3 Goal Programming

Goal programming was introduced by [11] in the context of an extension
of linear programming in order to satisfy multiple goals related to execu-
tive remuneration. The technique was formalized by [8], who introduced the
term goal programming and gave formulations that allowed for pre-emptive
prioritization of goals by the decision maker (now commonly termed lexi-
cographic GP) or without the pre-emptive prioritization of goals, instead of
aggregating them according to their relative preferences to the decision maker
(now commonly termed weighted GP). The goal programming technique has
an underlying satisficing philosophy [51], that is the decision maker wishes
to achieve a set of multiple, conflicting goals as closely as possible, penalizing
any unwanted deviations from the goals. This results in the transformation
of the set of objectives into the following generic goal programming model
[35]:

Min z = g(n1, . . . , nQ, p1, . . . , pQ) (6.15)

Subject to,

fq(x) + nq − pq = bq , q = 1, . . . , Q, (6.16)

x ∈ F, (6.17)

nq ≥ 0 and pq ≥ 0, q = 1, . . . , Q. (6.18)

Figure 6.5 demonstrates the progression of goal programming since the
formative work of [8]. Significant variants in terms of preferential modelling
include Chebshev GP [23], also termed Minmax GP, which introduces the
concept of balance between goals. The Extended GP [47] and Meta GP [55]
variants allow for a combination of the weighted (optimization) and Cheby-
shev (balance) by means of parametric analysis and formation of meta-goals,
respectively. Multi-Choice GP [9] allows decision makers to set multiple
target levels. The extended network variant [34] allows for the consideration
of balance, optimization and the effect of centralization over a multi-objective
network of stakeholders. Additionally to the above, there are many GP vari-
ants based around the nature of the goals, target values, constraints and
decision variables. Many of these are given in detail in [32] and summarized
in [35]. These variants include fuzzy GP, stochastic GP, non-linear GP, integer
GP and binary GP.
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Fig. 6.5 Evolution of goal programming paradigm 1955–2020

The usage of one of the most used recent goal programming variants,
extended GP [47] in its non-pre-emptive form, is demonstrated via Example
6.3.

Example 6.3 Consider the model

Min a = αλ + (1 − α)(
v1 p1
20

+ u2n2
30

+ u3n3
35

+ u4n4 + v4 p4
30

)

(6.19)

Subject to,

x1 + x2 + x3 + n1 − p1 = 20, (6.20)

2x1 + x2 − x3 + n2 − p2 = 30, (6.21)

x1 − x2 + 2x3 + n3 − p3 = 35, (6.22)

−x1 + 2x2 + x3 + n4 − p4 = 30, (6.23)
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v1 p1
20

≤ λ, (6.24)

u2n2
30

≤ λ, (6.25)

u3n3
35

≤ λ, (6.26)

u4n4 + v4 p4
30

≤ λ, (6.27)

xi ≥ 0, n j ≥ 0, p j ≥ 0, i = 1, . . . , 3, j = 1, . . . , 4. (6.28)

Table 6.1 gives the results of a parametric analysis with respect to the
parameter α, which is set by the analyst in order to give the decision maker an
indication of the range of available solutions between optimization (α = 0)
and balance (α = 1). The variable λ represents the maximal unwanted,
weighted, normalized deviation from among the set of goal target values.
The example includes all three principal goal types, that is goals (6.21) and
(6.22) require penalisation of just negative deviations from the goal (e.g. a
profit target). Goal (6.20) requires just penalization of positive deviations
from the target (e.g. a cost target). Finally, goal (6.23) requires penalization of
both types of deviation (e.g. a number of required workers target). The pref-
erential weights v1, u2, u3, u4 and v4 represent the relative importance of
their deviational variable in the achievement function (6.19) to the decision
maker(s). Many schemes have been used for the elicitation of these weights,
with Analytical Hierarchy Process Based methodologies [25] among the most
popular. Although goal programming is traditionally used as an a priori tech-
nique (see Fig. 6.2), weight sensitivity algorithms such as [33] allow for its
usage as a posteriori technique. For the sake of simplicity of demonstration,
an equal weight solution: v1 = u2 = u3 = u4 = v4 = 1 is used to solve
goal programming model (6.19)–(6.28).
Table 6.1 demonstrates the extended goal programming model solutions

in parameter, decision and unwanted deviational variable space. The first
column gives the ranges of parameter α, at 0.01 fidelity, where each of the

Table 6.1 Solutions to goal programming model (6.19)–(6.28)

α range x1 x2 x3 p1 n2 n3 n4 p4 λ

0.00-0.12 16.07 14.64 16.79 27.50 0 0 0 0 1.38
0.13-0.33 10.57 16.48 7.62 14.67 0 25.67 0 0 0.73
0.34-1.00 9.52 8.68 9.95 8.15 12.22 14.26 12.22 0 0.41
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three distinct solutions is found. Columns 2–4 represent the solutions in deci-
sion (x) space. Columns 5–9 give the solutions in terms of the values of the
unwanted deviational variables. All other deviational variables (n1, p2, p3)
took the value zero in all three solutions, although this is co-incidental to
this example. The final, tenth column gives the value of λ, the maximal,
unwanted, weighted deviation. Table 6.1 demonstrates the change from an
unbalanced yet efficient solution to a more balanced solution as α increases.
For instance the first row solution (α ∈ [0, 0.12]) has a total normalized
deviational sum of 27.50

20 = 1.38 to 2sf and also an λ value of 1.38 (as a single
deviation, p1, comprises both measures). However, the third row solution has
a total normalized deviational sum of 8.15

20 + 12.22
30 + 14.26

35 + 12.22
30 = 1.63

to 2dp and a λ value of 0.41, indicating a poorer level of efficiency but a
higher level of balance. It should also be noted that three of the four goals
are satisfied in the first row solution but none of the goals are in the third
row solution, thus showing the compromise necessary to provide a balance
between the achievement of goals for this example. Furthermore, the fact that
the α solution ranges (0.12, 0.2, 0.66) are unequal shows that care should be
taken when conducting parameter sensitivity analysis or with respect to α or
choosing an appropriate number of α values to generate solutions that accu-
rately demonstrate the transition from efficiency to balance. Finally, it should
also be noted that setting α = 0 (the first row solution) gives a weighted goal
programme and setting α = 1 (the third row solution) gives a Chebyshev
goal programme [47].

6.4 Compromise Programming

The technique of compromise programming is first introduced by [60] and
further detailed by [62]. The main principle is to find a subset of Pareto effi-
cient solutions which have the specific solution of minimizing an L p distance
between the feasible set and the ideal point, for some value of 1 ≤ p ≤ ∞.
The set of Pareto efficient solutions fulfilling his property is known as the
compromise set. Utilizing the notation of Sect. 6.2, the minimization to find
a point in the compromise set corresponding to a specific distance metric p
is given by:

Min Z =
[ Q∑

i=1

(
Iq − fq(x)

Iq − Nq

)p]
1
p

(6.29)
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Subject to,

x ∈ F. (6.30)

Similar to the extended goal programming model presented in Sect. 6.3, the
compromise set allows the decision maker to investigate a set of solutions
that range from efficiency (represented by the L1 distance metric) to balance
(represented by the L∞ distance metric). The mathematical connections
between goal and compromise programming are detailed by [49]. However,
there are some important differences in underlying philosophy to be noted.
The principal difference is that the goal programming models minimize
the distance between a set of decision maker specified goals and the set of
achieved values whereas the compromise programming model minimizes the
difference between the ideal values and the set of achieved values. Further-
more, the goal programming model often tends, by convention, to utilize
percentage normalization (scaling by division by the target value), whereas
the compromise programming model utilizes zero-one scaling. That is, the
normalizing factor in (6.29) is the difference between the ideal value (Iq)
and a measure of the worst value (Nq). The latter is either the nadir value
(the worst value from among the Pareto efficient set of solutions) or the
anti-ideal value (the worst value within the feasible set F ). It should also be
noted that in this chapter, formulation (6.29)–(6.30) includes the simplifying
assumption that all objectives are of equal importance to the decision maker,
as the main emphasis of compromise programming is the investigation of the
trade-off between balance and efficiency. In the case of unequally weighted
objectives, weights can be added to objective function (6.29).

Example 6.4 A regional government is considering investing in some of a
set of regional development projects. Each project has a cost (in £100,000s),

Table 6.2 Cost, environmental payoff and economic payoff for the projects

Project Cost (£1,000s) Environmental Payoff (1–10) Economic Payoff (1–10)

1 1.2 1.3 1.5
2 6.8 10.0 3.8
3 6.0 6.3 4.2
4 5.5 5.7 5.2
5 5.8 1.1 10.0
6 6.3 3.7 6.2
7 7.0 7.1 7.4
8 6.6 9.3 3.4
9 4.5 8.2 1.0
10 8.3 9.1 9.0
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an environmental payoff (as it replaces older, less environmentally friendly
infrastructure) and an economic payoff. All economic and environmental
payoffs are standardized onto a 1–10 scale where 10 is the highest payoff
and 1 is the worst payoff. The regional government has a budget of 25
million pounds which cannot be exceeded. The cost, environmental payoff
and economic payoff for each potential project are given in Table 6.2.

Indexing the projects as i = 1, . . . , 10 allows the assignment of a cost ci ,
an environmental payoff ri and an economic payoff ei . The binary decision
variables are defined as:

xi =
{
1 if project i is selected.
0 otherwise i = 1, . . . , 10.

(6.31)

The first phase of solution is to find the ideal (maximum) total environmental
payoff, termed Rmax and the ideal (maximum) total economic payoff, termed
Emax. These are found by the single objective optimizations of

Max z =
10∑

i=1

ri xi (6.32)

and

Max z =
10∑

i=1

ei xi (6.33)

Subject to
10∑

i=1

ci xi ≤ 60, (6.34)

xi = 0 or 1, i = 1, . . . , 10. (6.35)

The solution to (6.32), (6.34) and (6.35) yields the ideal environmental value
Rmax. Furthermore, as the problem is bi-objective, the term

∑10
i=1 ei xi will

yield the nadir economic value, which can be denoted as Emin. Similarly, the
solution to (6.33), (6.34) and (6.35) yields the ideal economic value Emax,
and the term

∑10
i=1 ri xi will yield the nadir environmental value, which can

be denoted as Rmin. Note that this logic does not always hold in three or more
objective problems, in which case the anti-ideal value or an approximation of
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the nadir should be used instead. In the case of the example, the optimizations
yield the ideal and nadir values of Rmax = 35.1, Emax = 31.2, Rmin = 17.7
and Emin = 21.7. Thus, the compromise programming model is:

Min z =
[(

Rmax − ∑10
i=1 ri xi

Rmax − Rmin

)p

+
(
Emax − ∑10

i=1 ei xi
Emax − Emin

)p] 1
p

, 1 ≤ p ≤ ∞.

(6.36)

Subject to the budget constraint (6.34) and sign restrictions (6.35), the
two ends of the compromise set are found at the distance metrics p = 1 and
p = ∞. These can be found by the two respective minimizations:

Min z1 =
(
Rmax − ∑10

i=1 ri xi
Rmax − Rmin

)
+

(
Emax − ∑10

i=1 ei xi
Emax − Emin

)
(6.37)

Subject to

(6.34) and (6.35). (6.38)

and

Min z∞ = λ (6.39)

Subject to

(6.34), (6.35) and (6.40)

(
Rmax − ∑10

i=1 ri xi
Rmax − Rmin

)
≤ λ, (6.41)

(
Emax − ∑10

i=1 ei xi
Emax − Emin

)
≤ λ, (6.42)

where λ is the maximum of the two unwanted deviations. Romero et al.
[49] details the similarities between formulations (6.37)–(6.38) and weighted
goal programming and formulations (6.396.40)–(6.42) and Chebyshev goal
programming. Furthermore, [60] demonstrates that in the case of a linear, bi-
objective model such as (6.32)–(6.35) the compromise set is a straight line in
objective space with the co-ordinates of z1 and z∞ solutions as end points.
In this case, the compromise set can be defined in objective space by the
parametric equation:
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zc = αz∞ + (1 − α)z1, 0 ≤ α ≤ 1.
which is based on the same underlying philosophy as the extended goal

programming model (6.19)–(6.28), that is a parametric mix between effi-
ciency and balance. The compromise set in three or more objectives exhibits
more erratic behaviour, with some observations regarding its nature given by
[6].
Therefore the compromise set for a bi-criteria linear model can be found by

solving four linear programmes: the maximizations of (6.32), (6.34)–(6.35)
and (6.33)–(6.35) to find the ideal and nadir points and the minimizations
of (6.37)–(6.38) and (6.396.40)–(6.42) to find the two endpoints of the
compromise set. Returning to our example, we note that the model is binary
in nature, so not every point in the compromise set may be available to the
decision maker or lying exactly on the line given by zc due to the integer
restrictions. In fact, conducting a parametric analysis with respect to p or α

with fidelity 0.1 for p or 0.01 for α yields the results given in Fig. 6.6 and
Table 6.3.

Table 6.3 gives the properties of the three solutions in terms of the para-
metric, decision and objective spaces of the problem, respectively. Columns 2
and 3 give the α and p ranges that generate the solution, respectively. Column
4 gives the value of x in decision space in the form of the chosen projects, i.e.

Table 6.3 Compromise Set Solutions to Example 6.4

Solution α range p range Projects Environment Economic

A [0, 0.41] [1, 1.5] 1, 2, 4, 7, 9 32.3 18.9
B [0.42, 0.66] [1.6, 10.5] 1, 2, 7, 10 27.5 21.7
C [0.67, 1] [10.6, ∞] 2, 5, 7, 9 26.4 22.2

Fig. 6.6 Compromise set of Example 6.4
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those where xi = 1. Columns 5 and 6 give the solution in objective space,
containing the total environmental score,

∑10
i=1 ri xi and the total economic

score
∑10

i=1 ei xi . Figure 6.6 portrays the solutions graphically, where solu-
tion A is the most efficient in terms of the scaled Manhattan (p = 1) distance
from the ideal and solution C is the most balanced (p = ∞) with respect
to the environmental and economic objectives. As solution B is slightly

displaced from the line (
→
AC) due to the aforementioned integer restrictions,

the compromise set is piecewise linear and defined by the lines (
→
AB) and

(
→
BC). It is finally due to the decision maker(s) preferences regarding balance
and efficiency as to which of the three available compromise solutions they
prefer.

6.5 Applications and Usage

6.5.1 Application of Techniques

The fields of application of the multi-objective techniques described in
Sects. 6.2–6.4 are many and diverse. The list of applications is continu-
ally expanding as new fields of discovery give rise to novel situations with
multiple, conflicting criteria. Jones and Tamiz [35] highlight the combined
usage of multi-objective techniques with techniques from the wider fields
of MCDM/A and Operational Research to gain more insight into arising,
complex decision problems. Recently this has been supplemented by combi-
nation with techniques from the wider fields of artificial intelligence, machine
learning and analytics. Due to the volume of literature involved, it is not
possible to give an exhaustive list of all multi-objective applications, but the
remainder of this sub-section highlights some recent examples from emerging
fields.

Firstly, considering the field of renewable energy, sustainability and the
environment, decisions in this field can be inherently multi-objective, for
example consideration of economic, environmental, social and technical
sustainability criteria. Akbari et al. [1] give an example of interval coeffi-
cient goal programming and cluster analysis applied to selection of marine
renewable energy projects with sustainability criteria. Wang et al. [57] use
the ε-Constraint Method to solve a non-linear, integer model pertaining to
optimal design and operation of a hybrid renewable energy system. Miao
et al. [42] use compromise programming to investigate trade-offs between
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economic and environmental criteria for combined solar and wind energy
systems.
The wide field of healthcare, including humanitarian, disaster and public

health management gives rise to a varied range of conflicting criteria on many
levels of planning, management, organization and assisted treatment. For
instance, [2] use revised multi-choice goal programming to model a blood
supply network considering environmental, social and cost criteria. Farughi
et al. [21] use the MOEA2 multiple objective genetic algorithm to generate
solutions to a healthcare district partitioning problem. Ferrer et al. [22] use
compromise programming for last-mile logistical planning of disaster relief
aid. They consider time, cost, equity, priority, security and reliability aspects
of the problem.
The field of logistics, supply chain management and transportation has

also given rise to multiple objective problems across the strategic, tactical
and operational decision-making levels. These frequently require heuristic
solution techniques because of the complexity of the underlying problems.
Zajac and Huber [61] provide a recent review of multi-objective routing
advances and applications. Homayouni et al. [31] utilize multi-choice goal
programming to design green supply chains under uncertainty. Wang et al.
[58] use a revised version of the evolutionary multi-objective algorithm
NSGA-II, along with Tabu search and clustering techniques to devise collab-
orative logistics distribution networks for fresh and perishable products. Onat
et al. [44] use compromise programming to calculate the optimal distribu-
tion of alternative (sustainable) vehicles following life cycle-assessments, and
demonstrate their methodology on a Qatari case study.

Finally, considering the field of risk, safety and security management,
the arising multiple objective challenges include designing systems that have
sufficient levels of safety and security, but also maximize efficiency, effective-
ness and usability. Lin et al. [38] consider data security in an internet of
things (IoT) environment, and design an ant colony optimization heuristic
to generate a Pareto front considering maximization of data security and
minimization of unwanted side effects. Yu et al. [59] utilize weighted goal
programming in an iterative fashion to solve a hazardous waste trans-
portation problem considering risk and cost objectives. They illustrate the
methodology on a Chinese case study. Pla-Santamaria et al. [45] utilize
compromise programming to provide a balance between debt quality and
risk concentration in a credit risk management problem. They demonstrate
their methodology with a case study arising from the Spanish stock market.
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6.5.2 Use of Techniques

To attempt to produce a global ranking of multi-criteria or multi-objective
techniques is, in the authors’ opinion, a nugatory exercise. As detailed in
Sects. 6.2–6.4, different techniques have their own set of characteristics.
Thus, the discussion in the multi-objective field has correctly evolved to
answering the question of which techniques are better for which classes of
problems. With this in mind, we note that compromise programming is
the most clearly delineated of the three techniques considered, in that it
has attractive properties for linear, bi-objective problems where the complete
compromise set can be characterized by a relatively small (four) number of
optimizations. It does, however, produce a smaller portion of the efficient
set, restricted to solutions which are optimal for an L p distance metric,
1 ≤ p ≤ ∞. So if the decision maker is looking for a restricted set of
potential solutions to a bi-objective problem that explore the range from
optimization to balance, then compromise programming appears a good
choice.

For a wider exploration of the set of available Pareto efficient solutions,
with a still relatively low number of global objectives (typically in the range
of two to four, but possibly up to seven), then Pareto efficient set generation
has some advantages. With a good methodology for selecting and presenting
a representative set of solutions to the decision maker(s) for discussion, it
can be an effective technique. However, the computational burden can be
large, particularly for higher criteria problems. Efficient set generation is thus
perhaps at its best where a strategic multi-objective decision of high impor-
tance but few criteria must be considered and decision maker(s) wish to invest
effort in considering the full range of options available.
The goal programming technique is designed to allow the decision maker

to achieve a set of multiple, conflicting goals as closely as possible. It is hence
at its strongest when the underlying problem structure has this format. It
can hence deal effectively with problems with many criteria, including those
with networks of sub-criteria. Its additional computational solution load
for considering the multi-objectives is low compared to some other multi-
objective techniques, making it suitable for computationally challenging
multi-objective problems, at either the strategic or operational level, especially
with high numbers of objectives. Conversely, it may not be the natural choice
for bi-objective models as other techniques, such as compromise program-
ming or Pareto set generation may provide a better representation and
visualization of the trade-offs involved in two dimensions.
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6.6 Conclusions

This chapter has reviewed the development, principles and usage of three
of the most prolific multi-objective programming techniques. Sections 6.2–
6.4 showed their ability in providing decision maker(s) with solutions that
demonstrate the nature of the available solutions and the trade-offs between
them. The discussion of applications in Section 6.5.1 showed their continued
relevance in emerging and expanding fields such as renewable energy and
sustainability; healthcare and humanitarian aid management; modern logis-
tics, supply chain and transportation systems management and risk, security
and safety management. Section 6.5.2 outlined the fact that all of the
discussed techniques have specific strengths and situations in which they are
recommended. Furthermore, the discussions on recent advances and appli-
cations throughout this chapter demonstrate that the field of multi-objective
optimization is continuing to evolve and hence future techniques, variants,
combinations with techniques from other fields and applications should be
anticipated and looked forward to.
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7
Competitive Facilities Location

Tammy Drezner

7.1 Introduction

The competitive facilities location problem is the location of one or more
facilities among existing competing facilities. The facilities attract demand
generated by customers in the area. The objective is to maximize the market
share captured by the new facilities. Over the years many ways to estimating
the market share captured by each facility were proposed. It is assumed that
customers divide their buying power among facilities according to the facil-
ities’ attractiveness and their distance relative to other facilities. Once the
market share attracted by one or more facilities can be estimated, a proce-
dure for finding the best locations for the new facilities can be constructed.
The objective function is not convex. Therefore, only heuristic procedures,
that do not guarantee optimality, were proposed for solving most models.
The basic competitive model is to find the location of one or more facil-

ities that maximize the market share captured by the new facilities. Some
extensions/variations to the basic model were investigated. These extensions
are listed below and are detailed in Sect. 7.4.
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Minimax Regret: Incorporating future market conditions, such as future
changes in demand, into the model. Future market conditions are defined
by a set of possible scenarios. For each scenario there is an optimal location
for a facility yielding the maximum possible market share for that scenario.
We find a location for a facility to accommodate the individual scenarios.
For each scenario, some market share is lost at a location, compared to
the optimal value at the best location for that scenario. The objective is to
minimize the maximum loss in market share across all scenarios.

The Threshold Criterion: Rather than the objective of maximizing the total
buying power attracted by the chain, there is a minimum buying power
threshold to be met. If the chain fails to attract the threshold buying power,
the company fails. The proposed objective is minimizing the probability
that the company fails to meet the threshold.

The Leader-Follower: (Von Stackelberg equilibrium [121]). We find the best
location in anticipation of future competition. The leader locates his facility
and the follower (competitor) locates his facility knowing the leader’s
location. The follower has all the necessary information for his location
decision. Therefore, the follower’s problem is the standard competitive loca-
tion problem. The leader’s problem is more complicated. The objective is to
maximize his market share following the follower’s decision.

Location and Design: A limited budget is available. The improvement in the
attractiveness of a facility depends on the budget allocated to it. We find the
location of a new facility, its attractiveness, and possibly improving existing
facilities subject to the limited budget.

Lost Demand: Customers may choose a substitute product if the product they
are looking for is located too far. For example, if potential customers are
interested in a Chinese restaurant but the closest one is too far, they may
choose a non-Chinese restaurant which is close by, or eat at home.

Cannibalization: Minimize the cannibalization of one’s chain facilities when
constructing new ones. Cannibalization at the retail chain facilities is impor-
tant, especially in the case of franchises. Franchisees may lose sales, which
may be more than is allowed by the contract they signed with the company.

Recent reviews of competitive facilities location models are Berman et al.
[6], Drezner [23, 24], Drezner and Eiselt [48], Eiselt [59], Eiselt et al. [60],
Kress and Pesch [87], Lederer [90], Marianov et al. [96], Pelegrín et al. [109].
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7.2 Approaches to Estimating Market Share

7.2.1 Deterministic Rules

According to the deterministic rules all customers residing at the same
demand point patronize the same facility.

Proximity Rule: Hotelling [79] proposed that competitors compete by
charging different mill prices and customers select the facility that provides
the lowest mill price plus the cost of travel. This approach led to many
papers, for example [50, 64, 69–72, 116, 119], that apply the proximity
rule, i.e., customers patronize the closest facility. The proximity rule implies
that all facilities charge the same price and thus are equally attractive.

Utility Function: The utility model is an extension of the proximity rule [16,
18]. A list of M quality measures, Qi , i = 1, . . . , M , each with a weight
wi , is determined. The utility function is

∑M
i=1 wi Qi − d, where d is the

distance to the facility. A customer selects the facility with the maximum
utility.

7.2.2 Probabilistic Rules

By the probabilistic rules, customers residing at the same demand point
divide their patronage among several competing facilities. It can be inter-
preted as “each facility is patronized with a certain probability”.

Random Utility: The random utility rule [25, 91] is an extension of the utility
rule. The utility function parameters, except for the distance, are randomly
distributed. Each customer patronizes the facility with the largest utility
according to his assessment of the parameters. Therefore, not all customers
residing at the same demand point patronize the same facility.

Gravity Model: The gravity model, sometimes referred to as the “Huff”
model, was proposed by Reilly [115] and refined by Huff [80, 81].
According to the gravity model, the probability that a customer patron-
izes a facility is proportional to its attractiveness and declines according to a
distance decay function. The basic gravity model is based on p competing
facilities and n demand points that exist in an area [17]. A distance decay
function f (d, λ) with a parameter λ depending on the retail category
is defined. For example, the distance decay function for grocery stores is
different from the one for shopping malls. Let:
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Bi be the buying power at demand point i for i = 1, . . . , n,
A j be the attractiveness level of facility j for j = 1, . . . , p,
di j be the distance between demand point i and facility j,
f (d, λ) be the distance decay function,
λ be the parameter of the distance decay function which depends

on the retail category.
Mj be the expected market share captured by facility j.

The estimated market share captured by facility j according to the gravity
model is:

Mj =
n∑

i=1

Bi
A j f (di j , λ)
p∑

k=1
Ak f (dik, λ)

. (7.1)

where the distance decay function f (d, λ) is the same for all competing
facilities in the same retail category. Note that some models assume a decay
function f (d ) without a parameter λ.

In the original gravity model [115] it is assumed that the distance decay
parallels gravity decay and thus f (d) = 1

d2
. Huff [80, 81] suggested a decay

function f (d, λ) = 1
dλ . Other distance decay functions include: exponen-

tial decay f (d, λ) = e−λd [77, 132], f (d) = e−1.705d0.409 [5], and a logit
function [56]. Based on a real data set, Drezner [20] showed that expo-
nential decay f (d, λ) = e−λd fits the data better than a power decay
f (d, λ) = 1

dλ . It is well recognized that the decay function varies across

retail categories. For example, for the decay function f (d, λ) = 1
dλ it was

found that λ = 3 for grocery stores [81], λ = 3.191 for clothing stores
[80], λ = 2.723 for furniture stores [80], and λ = 1.27 for shopping malls
[20].

Flow Interception: Berman and Krass [8] introduced a competitive location
model where demand is attracted from customers traveling en route to some
destination while passing by a facility (“impulsive” shoppers) and demand
originated at nodes of the network (planned purchase trips). Customers may
change their mind on the way to the selected facility and stop at a less
attractive facility just because they noticed it on the way. The latter issue is
discussed in [37] concluding with a recommendation to locate a small retail
facility “on the way” to a large shopping mall.

Cover Based Model: Launhardt [89] and Fetter [62] coined the term “Eco-
nomic law of market areas”. This concept was formalized by defining a
“radius of influence”, which is at the core of central place theory [11, 94].
According to central place theory there is a maximum “range of the good”,
depending on retail category, that customers are willing to travel to obtain
the good. Drezner et al. [38, 39] proposed that each competing facility has
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a “sphere of influence” determined by its attractiveness level. More attrac-
tive facilities have a larger sphere of influence. The buying power spent by
a customer in the sphere of influence of several facilities is divided among
the competing facilities. The buying power of a customer located outside
all the spheres of influence is lost. Drezner et al. [42] refined the model by
assuming that patronage does not drop abruptly at the radius of influence,
but declines gradually near that radius.

7.2.3 Estimating Attractiveness

The models for estimating the captured market share (except for the prox-
imity rule) rely on a good estimate of the facilities’ attractiveness levels. There-
fore, estimating the attractiveness of a facility is an important component
required for a successful implementation of the models.

Nakanishi and Cooper [101] suggested to determine a list of properties
and calculated the attractiveness of a facility as a product of these prop-
erties’ values, each raised by a power. Many researchers conducted public
opinion surveys to determine the attributes affecting the attractiveness of
the competing facilities and then establish their attractiveness. Properties that
were found by opinion surveys to affect attractiveness include:

Supermarkets: Square footage [81]; price [113]; price, freshness, availability,
convenience, quality service, parking [118]; choice range for daily/non-daily
goods, price for daily/non-daily goods, parking [127]; store image, layout,
appearance, accessibility, service, employee composition [83]; cleanliness,
brands I like, better produce, low prices [16]; cost of products [5].

Furniture: Square footage [80].
Clothing: Square footage [80]; parking availability, choice range [126].
Central Business District: price, visual appearance, reputation, range of goods,

shopping hours, atmosphere, design, service [15].
Shopping Malls: variety of stores, mall appearance, favorite brand names [49].

They tested 6 more attributes that were not found significant: Mall prices,
distance to mall, adequate parking, mall safety, food court/restaurants,
movies/entertainment.

There are other approaches to estimating and analyzing attractiveness
levels:

• Drezner and Drezner [29] observed that the annual sales of a retail facility
are a clear indication of its attractiveness. Higher attractiveness level is
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reflected in higher sales figures. However, sales figures alone cannot be
directly used as the attractiveness measures because sales are also depen-
dent on the affluence (or buying income) of potential customers in a retail
facility’s trade area. The proposed procedure adjusts the sales figures by
the demographic characteristics of the area, thus deriving the attractiveness
measures of the retail facilities mainly from these two pieces of data.

• Drezner [20] estimated the attractiveness of facilities by asking shoppers
about the zip code they came from and determined the attractiveness level
by a least squares approach. She found the best fit to the observed distances
by defining the attractiveness levels as variables.

• Drezner et al. [46] refined the gravity model by assigning different decay
functions to different facilities. Customers patronize a more attractive
facility at greater distances. A more attractive facility has a flatter decay
function. The multiplicative attractiveness values are replaced by different
decay functions. This approach is easier to implement because there is no
need for public opinion surveys. It yielded more accurate results on a real
data set. They modified the Drezner [20] approach by replacing the multi-
plicative attractiveness coefficients A j as variables, with different decay
parameter λ j as variables. There is no multiplicative attractiveness level,
i.e., A j = 1∀ j . Drezner et al. [47] incorporated the attractiveness level A j
in addition to variable decay parameters λ j into the model.

• Drezner et al. [45] observed that not all customers perceive the same attrac-
tiveness level for the same facility. They proposed that the attractiveness
level A j is normally distributed with some mean and variance. Existing
models use the mean attractiveness as A j . Drezner et al. [45] defined an
“effective” attractiveness level which is found to be lower than the average
attractiveness assumed in gravity models. Greater variances yield lower
effective attractiveness because the loss in market share by a given decline
in attractiveness is greater than the gain in market share by increasing the
attractiveness by the same amount.

7.3 Distance Correction

In most location models it is assumed that demand is generated at demand
“points”. In reality demand is generated in neighborhoods and not all resi-
dents in a neighborhood reside at the same distance from a facility. Demand
generated in an area (for non-competitive location models) is investigated in,
for example, [55, 122, 131].
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Fig. 7.1 Discrete and continuous market share surfaces

Drezner and Drezner [26] proposed a distance correction to the gravity
model. Data may be available by zip codes or census tracts. Listing all indi-
vidual customers is impractical. The distance correction incorporates these
considerations. Drezner and Drezner [26] suggested that if the area of a
demand “point” is A, the distance to a facility from the center of the area
(the demand point) is d , then the corrected distance to be used in the gravity
model is about

√
d2 + 0.24A.

Drezner and Drezner [26] used an example problem of 100 demand points
in a square of size 10 by 10 with seven existing facilities. This example
problem was used in many papers, for example [18, 106]. Each demand point
has an area of 1. The market share captured by the new facility is plotted in
Drezner and Drezner [26], and depicted in Fig. 7.1. On the left, the surface
plot of the “standard” gravity model using f (d) = 1

d2
as the decay function

is depicted. In the middle, the market share captured when demand is contin-
uous in the 10 by 10 square is shown. On the right, the market share surface
using a decay function of f (d) = 1

d2+0.24
(distance correction) is depicted.

When demand is generated at demand “points” there are many local maxima
at various locations. The surface on the right is “smooth” and very close to
the continuous surface with two local maxima.

7.4 Extensions

7.4.1 Minimax Regret Criterion

Drezner [21] incorporated future market conditions into the gravity model
for the retail facility location. Future market conditions were analyzed as a set
of possible scenarios. The best location for a new retail facility is at a location
where the market share captured at that location is as close to the maximum
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as possible regardless of which future scenario takes place. Each scenario may
also span different time horizons. The objective is the minimax regret which
is used in other models of location analysis, for example [4, 13, 114].

Suppose there are K possible scenarios, k = 1, . . . , K . For each scenario
we can calculate the market share Mk(X) at location X . The maximum
buying power that can be captured according to each scenario, M∗

k =
max
X

{Mk(X)}, is calculated. The minimax regret objective R (X ), to be

minimized, is then

R(X) = max
k=1,...,K

{
M∗

k − Mk(X)
}

Drezner [21] applied the multi-start heuristic approach to find M∗
k and

minimize R (X ) for the location of one facility in the plane.

7.4.2 The Threshold Objective

Drezner et al. [44] suggested a different objective for competitive location
models. Rather than the objective of maximizing the total buying power
attracted by a chain, there is a minimum buying power threshold T to be
met. If the chain fails to attract the buying power T , the company fails. The
proposed objective is minimizing the probability that the company fails to
meet the threshold. The threshold concept has been employed in financial
circles as a form of insurance on a portfolio, either to protect the portfolio or
to protect a firm’s minimum profit, for example [82, 84, 107].

In competitive facility location, let the buying power at demand point 1 ≤
i ≤ n be distributed according to some distribution with a mean of μi and a
standard deviation σi . The buying powers of two demand points i and j are
correlated with a correlation coefficient ri j . The total buying power attracted
by the chain has a mean of μ and a standard deviation σ (see [44] for detailed

calculations). The objective function is to minimize p(X) = P
(
Z ≤ T−μ

σ

)
.

By the Central Limit Theorem M (X ) can be assumed Normal but this is
unnecessary because any cumulative distribution is monotonically increasing,
thus minimizing p(X ) is equivalent to minimizing T−μ

σ
.

This problem was solved heuristically in [44]. It is possible to solve it opti-
mally using BTST [53], but to the best of our knowledge no such attempt
was made.
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7.4.3 Leader-Follower Models

Drezner and Drezner [36] provide a review of the leader-follower model.
Other papers on the topic are Küçükaydın et al. [112], Plastria and Vanhaver-
beke [88].
There are two well researched two players’ games: Nash equilibrium [102]

and the leader-follower game also termed the von-Stackelberg equilibrium
[121] and in voting theory is known as Simpson’s problem [120]. In the
Nash equilibrium game no player can improve his objective when the other
player does not change his strategy. In many cases no equilibrium exists. In
the leader-follower game the leader adopts a strategy and the follower adopts
his best strategy knowing the leader’s strategy. The follower’s goal is to maxi-
mize his objective function while the leader’s goal is to maximize his objective
function following the follower’s action.

Early contributions to Nash equilibrium location problems include Eaton
and Lipsey [58], Hotelling [79], Lerner and Singer [92], Wendell and
McKelvey [130]. The leader-follower location problem was introduced to
competitive location models by Hakimi [69], and published in Hakimi [70–
72], for location on network nodes using the Hotelling [79] premise that
each customer patronizes the closest facility, see also Hansen and Labbè [73].

Drezner [50] analyzed two competitive location models in the plane. One
is the location of a new facility that will attract the most buying power from
an existing facility (the follower’s problem). The other is the location of a
facility that will secure the most buying power against the best location of
a competing facility to be set up in the future (the leader’s problem). The
proximity rule using Euclidean distances is assumed.

Let n demand points be located in the plane. A buying power bi > 0
is associated with demand point i for i = 1, . . . , n. The leader locates his
facility at X and the follower locates his facility atY . Customers will patronize
the follower’s facility Y if the Euclidean distance between the customer and
Y is less than the distance between the customer and X . Two problems are
considered:

The follower’s problem: Given the location of an existing facility X serving the
demand points, find a location for a new facility Y that will attract the most
buying power from demand points.

The leader’s problem: Find a location for X such that it will retain the most
buying power against the best possible location for the follower’s facility Y .
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For given locations X and Y , the distribution of the buying power can be
found by constructing the perpendicular bisector to the segment connecting
X and Y . This perpendicular bisector divides the plane into two half planes.
All points in the closed half plane which includes X (including points on the
perpendicular bisector itself ) will patronize X and all the points in the other
open half plane which includes Y , will patronize Y . This is a generalization
of Hotelling’s analysis on a line [79].

It is shown in [50] that one of the optimal locations for Y when X is given
is infinitesimally close to X but not on X . It follows that the best location for
the follower, Y ∗, is “adjacent” (close) to X . The variable yet to be determined
is the direction in whichY is “touching” X . In conclusion, finding an optimal
location for Y is equivalent to finding the best line through X such that the
open half plane defined by this line contains the most buying power for Y .
Finding the best line by simple enumeration is detailed in [50].
The algorithm that solves the leader’s problem is based on the algorithm

used for solving the follower’s problem. It can be found whether attracting a
certain market share P0 or higher by Y is possible by finding whether there is
a feasible solution to a linear program. The algorithm is based on a bisection
on the value of P0. Complete details are given in [50].
The two problems can be modified by an extra restriction that the follower

cannot locate his facility closer than a given distance R from the leader’s
facility. To solve the modified follower’s problem for a given X it can be
shown that the best solution for Y is determined by open half planes defined
by tangent lines to the circle centered at X with a radius of 1

2 R rather
than lines through X . The details of the algorithms for solving the modified
problems are available in [50].

Drezner and Zemel [57] considered the following problem: a large number
of customers are spread uniformly over a given region A ⊆ R

2. What config-
uration of facilities that cover the area will best protect against a future
competing facility? The proximity rule is assumed, i.e., each customer patron-
izes the closest facility. There are three evenly spread configurations that cover
the whole R2 plane with equilateral polygons depicted in Fig. 7.2: a trian-
gular grid; a square grid; and an hexagonal grid (beehive). No other cover of
the plane by identical equilateral polygons exists. Drezner and Zemel [57]
found that the solution to the problem of covering the whole R

2 plane
is the hexagonal pattern. Then they analyzed the finite area problem and
found bounds on the difference between the configurations as the number
of facilities increases.

Since customers are attracted to the closest facility, the market share
captured by each facility is proportional to the area attracted to the closest
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Fig. 7.2 Various configurations

facility. This is similar to the Voronoi diagram concept [3, 104, 124, 129].
In the configurations depicted in Fig. 7.2, the market share attracted by each
facility is the area of the polygon. Let A be the area attracted by each facility
(the area of the triangle, square, or hexagon). It is shown in [57] that:

• For the triangular grid the competitor’s facility can attract a maximum of
2
3 A.

• For a square grid the competitor’s facility can attract a maximum of 9
16 A =

0.5625A.
• For an hexagonal grid the competitor’s facility can attract a maximum of

0.5127A.

The hexagonal pattern provides the best protection from a future
competitor. It is interesting that for hexagonal and square grids the
competitor captures at least half of A at any point in the plane.

Hexagonal pattern is optimal for many location problems with numerous
facilities covering a large area. For example:

• packing the largest number of circles in an area [12, 76, 125],
• p-median [105], p-center [122] and p-cover [54],
• p-dispersion [52, 93, 95, 103],
• equalizing the load covered by facilities [123].

It is also the preferred arrangement for a beehive in nature which has
developed over the years in the evolutionary process.

Drezner and Drezner [27] proposed three heuristic approaches for finding
a good solution to the leader-following model where market share is estimated
by the gravity model: brute force, pseudo mathematical programming, and
gradient search.
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The Brute Force Approach: A grid of potential locations for the leader that
cover the area is generated. For each grid location, the market share attracted
by the follower is found and the market share attracted by the leader (after
the follower locates at his best location) is calculated. If the grid is dense
enough, the vicinity of the global maximum can be identified. If a more
precise location is sought, a finer grid can be evaluated in that vicinity.

The Pseudo Mathematical Programming Approach: If the market share
captured by the leader and the follower were concave, the following math-
ematical programming formulation (termed the “pseudo” problem) would
have solved the problem: Maximize the market share captured by the leader
subject to the derivative of the market share captured by the follower equal
to zero (indicating a local maximum for the follower).

The Gradient Search Approach: A gradient search that directly finds a local
maximum for the leader-follower problem is suggested. It guarantees termi-
nation at a local maximum once the optimal market share attracted by the
follower can be found. It is recommended that this procedure is repeated
many times in order to have a reasonable chance of getting the global
optimum.

Drezner et al. [40] investigated a leader-follower competitive location
model incorporating facilities’ attractiveness (design) subject to limited
budgets for both the leader and follower. The competitive model is based
on the concept of cover [38, 39]. The leader and the follower, each has a
budget to be spent on the expansion of their chains either by improving their
existing facilities or by constructing new ones. The objective of the leader is
to maximize his market share following the follower’s reaction. The follower’s
problem is identical to the three problems analyzed in [39] because market
conditions are fully known to the follower. A branch and bound algorithm as
well as a tabu search [65–67] were proposed in [39] for the solution of each
of these three strategies. For complete details the reader is referred to [85].

7.4.4 Location and Design

Combining the location decision with the design (treating the attractive-
ness level of the facility as a variable) was investigated, for example, in
[1, 19, 61, 111, 128].

Drezner [19] assumed that the facilities’ attractiveness are variables. A
budget is available for locating new facilities and for establishing the new
facilities’ attractiveness levels. The problem is determining the facilities’
attractiveness levels within the available budget. It is solved by a gradient
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search when the budget constraint is kept as equality. Plastria and Vanhaver-
beke [112] combined the limited budget model with the leader-follower
model.
The analysis in [19] for various assumptions about the attractiveness as a

function of the investment in the facility leads to some interesting insights:

1. For firms with a decreasing marginal return on investment curve, the fixed
budget allocation solution with equally divided budget among the new
facilities is very close to optimality.

2. For firms with a fixed (constant) marginal return on investment the fixed
budget allocation solution with equally divided budget works well, and
can be used if the computational effort required to obtain the flexible
budget allocation solution is prohibitive.

3. For a rapidly increasing marginal return, one should consider opening
only one new facility investing all the budget in it.

4. Mildly increasing marginal return leads to a middle ground solution and
none of the extreme budget allocation strategies is appropriate. In this
case it is recommended to find the best budget allocation by applying the
algorithm in [19].

Aboolian et al. [1] studied the problem of simultaneously finding the
number of facilities, their location, and their design. For the problem with
discrete design scenarios the TLA (tangent line approximation) procedure
(see Sect. 7.5.3) can be applied. Aboolian et al. [1] assume that A j , the attrac-
tiveness of facility j, is a function of K attraction attributes. These attributes
can be continuous (e.g. facility size, product price) or discrete (e.g. number of
parking spots, product variety). Moreover, it is assumed that for any potential
facility j there is a basic design γ j and K levels of improvement y jk j ∈ Ē ,
k ∈ {1, . . . , K } over the basic design. The attractiveness of facility j can now
be expressed as:

A j = I jγ j

K∏

k=1

(
1 + y jk

)Qk

where Qk is the sensitivity parameter of the utility function with respect to
attribute k, 0 ≤ Qk ≤ 1, and I j = 1 if facility j is open and 0 otherwise.
When y jk is continuous, it is assumed to belong to an interval [0, ymax

jk ],
and when it is discrete it is assumed to belong to a certain discrete set (note
that y1jk > y jk if y1jk is preferred to y jk). The utility ui j is now defined as:

ui j = A j (di j + 1)−β .
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Two heuristics are introduced: an adapted weighted greedy and a steepest
descent. The adapted greedy heuristic starts with an empty set of facilities and
at each iteration the location design pair that results in the largest improve-
ment per unit cost is added as long as it is within the available budget. The
ascent approach starts with a given location set Q0 and at each iteration either
a new facility in the neighborhood of Q0 is added to Q0, or a facility is
removed from Q0 or an exchange of a new facility with one of the facilities
from Q0 takes place.

Drezner et al. [41] suggested the model assuming that the market can be
partitioned into mutually exclusive sub-markets. For example, expanding a
franchise around the world in New York, Paris, Tokyo, Beijing, etc., that
customers residing in one sub-market patronize facilities only in that sub-
market. Suppose that a procedure for finding the market share at each
sub-market for a given budget allocated to the sub-market is available. The
problem is then to determine the allocation of the budget among the sub-
markets. A constraint that the sum of these individual budgets is equal to the
available budget is added.
Three objectives were investigated: (i) maximizing the firm’s profit, (ii)

maximizing the firm’s return on investment, and (iii) maximizing profit
subject to a minimum threshold return on investment. Once the market share
for a given budget at each individual market can be determined, the alloca-
tion of the budget among the markets is found by dynamic programming.
For complete details see [41].

7.4.5 Lost Demand

Standard competitive location models assume that the total expenditures of
each customer are a constant and are not affected by the location or number
of service facilities. Therefore, locating new facilities only changes the alloca-
tion of the market share between the existing and new facilities. However, if
there are no facilities nearby, customers may choose a substitute facility and
the potential demand is lost.

As an example consider Chinese restaurants. There exists a certain buying
power in the area which people who “love” Chinese food are willing to spend
in Chinese restaurants. If there is at least one Chinese restaurant close to
a customer, the available buying power will likely be completely spent at
Chinese restaurants. If the closest Chinese restaurant is quite far from the
customer, this customer may patronize a closer non-Chinese restaurant or eat
at home rather than travel a long distance, and thus the buying power will be
lost by the chain of Chinese restaurants.
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Drezner and Drezner [33] suggested the following approach to estimating
lost demand. The buying power at a demand point will be completely spent
at a facility which is at distance “0” from the community. Furthermore, let
k retail facilities be located at distances d1, . . . , dk from a community with
buying power B. We assume that the probability that a customer located at
the community will not spend his/her buying power at facility j is 1−e−λ j d j

for some constant λ j . The probability that a customer will not spend his

buying power at any of the facilities is
k∏

j=1
[1 − e−λ j d j ]. The total buying

power spent at all competing facilities is therefore:

B

⎧
⎨

⎩
1 −

k∏

j=1

[
1 − e−λ j di j

]
⎫
⎬

⎭
(7.2)

and the buying power lost is

B
k∏

j=1

[
1 − e−λ j di j

]
(7.3)

Drezner and Drezner [33] suggested to adjust the buying power at each
community by Eq. (7.2).

Another approach to modeling lost demand is proposed in [35]. They
assume that there is a maximum distance D that customers are willing
to drive to a facility. A “dummy” competitor is created at an imaginary
location which is at a distance D from all demand points. This dummy
competitor attracts the lost demand. By the proximity rule, if the distance to
the closest facility is greater than D, demand is lost. By the gravity model, the
dummy competitor attracts the lost demand and the total market share is that
attracted by “real” facilities. By Eq. (7.1)

∑p
j=1 Mj = ∑n

i=1 Bi . However,

not including the dummy facility in the sum,
∑p

j=1 Mj <
∑n

i=1 Bi and the
difference is the lost market share.

7.4.6 Cannibalization

Marketers commonly use a definition of cannibalization that focuses on a
company eating into its own market by introducing a new product to an
existing product line or an established brand (product line extension and
multi-brand strategies) at the expense of the old brand. For example, if Coca
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Cola introduces Coke2, and customers buy Coke2 instead of the original
Coke, sales may be up for the new product, but these sales may be eating into
Coke’s sales of the original Coke. In such cases, overall company sales may
not be increasing. This form of cannibalization is well recognized and well
researched in the marketing literature. See for example [10, 22, 97, 98, 100].

Another form of cannibalization occurs at the retail level of chain facilities,
especially in the case of franchises. In this form of cannibalization, opening
a new retail outlet in close proximity to an existing outlet, the new outlet
cannibalizes the sales of the existing one. Though not a franchise, this applies
to Starbucks coffee and other chain retailers. Unlike cannibalization in new
product development and introduction that is well researched, cannibaliza-
tion at the retail level has been overlooked for the most part. With the growth
of franchise operations, this emerges as an important and timely issue. For as
long as companies wish to grow and expand, managers will be faced with
the strategic decision of optimally locating new, additional facilities so that
cannibalization of existing chain members is minimized.

Schneider et al. [117] report cases of lawsuits regarding cannibalization in
fast food franchise systems such as Arby’s, Burger King, KFC, McDonald’s,
Subway, and Taco Bell. This phenomenon is referred to as encroachment.
A similar problem is observed and documented in the hospitality/lodging
industry for such franchise systems as Holiday Inn, Days Inn, Howard
Johnson, Ramada, Comfort Inn, and Quality Inn [108]. Many franchisees
believe they have lost business as a result of cannibalization from new units
in the same chain, a phenomenon referred to in the lodging industry as
“impact”.

When a retail chain plans an expansion in a market by building addi-
tional outlets, two not necessarily compatible objectives should be considered:
(1) Maximize the market share captured by the expanding chain (if the expan-
sion cost is fixed, profit is an increasing function of the market share captured
and therefore maximizing market share is equivalent to maximizing profit).
(2) Minimize cannibalization of existing chain outlets so as not to gain market
share at the expense of member outlets. Cannibalizing chain members may
render them nonprofitable and may result in channel conflict (both hori-
zontal and vertical conflict). This consideration is especially critical when the
outlets are franchised and gain in market share at the expense of member
franchisees may be damaging to the profitability of the whole chain.

Drezner [22] formulated and solved the problem of maximizing the market
share captured by the chain facilities subject to a given limit of cannibaliza-
tion. The market share captured, and consequently the cannibalized portion
of it, was calculated using the gravity model [80, 81].
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Plastria [110] applied the utility function model [17] in which the optimal
solution to maximizing market share usually is not unique but there is an area
in the plane such that a facility located at any point in that area attracts the
same (maximal) market share. Plastria [110] suggested to locate the facility at
the point in that region that minimizes cannibalization, thus maintaining the
maximum market share. When the gravity model is used, there is only one
optimal solution point that maximizes chain’s market share and the planner
must accept the cannibalization at that point if he or she does not wish to
consider sub-optimal location solutions regarding the market share captured.

Zeller et al. [133] considered the market share captured by an expanding
chain. The franchisor attempts to maximize the total market share of the
chain (thus implicitly considers the cannibalization of existing outlets) while
the new franchisee considers the market share captured by his new outlet.
They conclude that the franchisee of a new store may choose a different loca-
tion for his store than the franchisor. In reality, the franchisee has no input
into the location decision and thus his objective is ignored.

Ghosh and Craig [63] developed the FRANSYS model for franchise
system growth. Firms seeking to expand franchise distribution systems have
to balance two incompatible goals, maximizing system revenues and mini-
mizing the cannibalization of sales of existing outlets. The model uses two
constraint types: (1) constraints that disallow new unit locations that do not
provide a minimum revenue threshold for the new unit, (2) disallow new
units that fail to either protect current revenue for existing units as a group,
or, protect current revenue for each existing unit. The first, weaker constraint
is not very satisfying to existing franchisees because individual units may lose
revenue. The “best” location in terms of maximizing system revenues while
protecting current revenue for all existing units, results in a mediocre new
location that barely meets its minimum revenue threshold [117]. Application
of the FRANSYS model to the hospitality industry would require modifica-
tion of data input to conform to the market and product characteristics of
the hospitality industry [108].

Fernández et al. [61] proposed a related model. Their model is a bi-
objective model of maximizing profit while minimizing cannibalization. They
consider the location of the new facility along with its attractiveness as a deci-
sion variable. The construction cost of the new facility is included in the
profit function. In addition, they added constraints forbidding the location
of a facility in the vicinity of demand points. All of these components lead
to a complicated model that requires extensive data collection and relies on
many modeling assumptions.
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7.5 Solution Methods

7.5.1 Single Facility

Drezner and Drezner [30] optimally solved the single facility gravity-based
competitive location problem by applying the Big Triangle Small Triangle
(BTST) global optimization algorithm [53]. The procedure BTST requires
effective upper and lower bounds on the market share captured when the
facility is located anywhere in a triangle. The procedure is very efficient
and finds the optimal solution for 10,000 demand points in less than six
minutes of computer time. The generalizedWeiszfeld algorithm [51] repeated
from 1,000 different starting solutions required about the same time for all
1,000 runs but does not guarantee optimality. However, it found the optimal
solution at least 17 times out of 1,000 on a set of test problems.

7.5.2 Multiple Facilities

Drezner et al. [43] proposed five heuristic procedures for the maximization
of the market share by locating p new facilities with given attractiveness levels
using the gravity rule. The most successful heuristic was found to be:

1. Applying a simulated annealing approach [86] for locations restricted to
grid points.

2. Finding a good location for each facility, one at a time, by the generalized
Weiszfeld algorithm [51].

3. The two steps are repeated 100 times from randomly generated starting
solutions and the best one is selected.

7.5.3 The TLA Method

The TLA (tangent line approximation) method [2] can find an optimal solu-
tion to the gravity model within a given accuracy. For its implementation,
the objective function should be a concave function, twice differentiable and
non-decreasing of a linear function. These conditions hold for the gravity
model. The idea is to replace the objective function by a piece-wise linear
function. The feasible range is divided into segments and a tangent line is
constructed in each segment touching the objective function at the segment’s
center. The objective function is formulated by adding a binary variable for
each segment and maintaining the original constraints. Optimal solutions of



7 Competitive Facilities Location 227

the modified problem are then found by non-linear solvers. The number of
segments is determined by the pre-specified accuracy. For details see [2].

7.6 Applying the Gravity Rule to Other
Objectives

The gravity rule can be applied to other commonly used non-competitive
location objectives. Rather than assuming that a user gets services from the
closest facility, he chooses a facility according to the gravity rule. The prob-
ability of patronizing a facility is proportional to the facility’s attractiveness
and to some decay function of the distance.

7.6.1 Gravity p-Median

In the standard p-median model [14] it is assumed that each user travels
to the closest facility. This implicitly implies that facility choice is centrally
controlled or that all facilities charge the same price for the service. Drezner
and Drezner [31, 32] proposed the gravity p-median model. It is assumed
that users choose from among the facilities providing services according to
the gravity rule rather than from the closest facility. Users consider facilities’
attractiveness in their choice. Similar to the standard p-median problem, the
objective is to minimize the sum of the expected weighted distances.

Brimberg et al. [9] suggested a similar p-median model based on this
idea that customers do not necessarily patronize the closest facility. A list of
probabilities P1 ≥ P2, . . . , ≥ Pp that add up to 1 is constructed. The prob-
ability that a customer patronizes the closest facility is P1. The probability he
patronizes the second closest facility is P2, and so on.

7.6.2 Gravity Hub Location

Drezner and Drezner [28] applied the gravity rule to the hub location
problem. A traveler needs to fly from one airport to another. Several potential
hubs are available. If the origin or the destination is a hub airport, the trav-
eler chooses a non-stop flight. Otherwise, the probability that a certain hub
is selected is proportional to the hub’s attractiveness (price, walking distance
from the arrival gate to the connecting one, chance of inclement weather,
etc.) and to a distance decay function such as the total travel distance (or
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time) raised to a given inverse power. Such a model can be generalized to
selecting a sequence of two or more hubs.

7.6.3 Gravity Multiple Server

Drezner and Drezner [34] considered the gravity rule version of the multiple
server location problem [7]. Total service time consists of travel time to the
facility, waiting time in line, and service time. There is a given number
of servers to be distributed among the facilities. Each facility acts as an
M/M/k queuing system. In [34] customers select a server with a probability
proportional to its attractiveness and to a decay function of the distance,
not necessarily the closest one. Two models are proposed: a stationary one
and an interactive one. In the stationary model it is assumed that customers
do not consider the expected waiting time in line and service time at the
facility in their facility selection decision simply because they do not know
these values. In the interactive model it is assumed that customers know the
expected waiting time in line and service time at the facility and do consider
them in their facility selection decision.

7.7 Summary and Suggestions for Future
Research

In this chapter we reviewed competitive location models which are part of the
field of facility location. Facility location models investigate the location of
one or more facilities to achieve a certain objective. In competitive location
models the objective is to attract as much buying power as possible from
competitors’ facilities by constructing new facilities and/or improving existing
ones. A main component of such models is the estimation of how customers
select the facility to patronize. Demand attracted by a facility depends on its
attractiveness, on the buying power customers are planning to spend, and on
the distance customers need to travel to get to the facility. What distinguishes
different models is the assessment of the relationship between these factors
and the market share captured. It is clear that higher attractiveness and buying
power lead to higher market share, and a greater distance lowers the expected
market share captured.
The gravity model [80, 81, 115] estimates the probability of patron-

izing a facility by these three components. Other approaches include the
proximity rule (customer patronize the closest facility), utility and random
utility models, cover-based models, and the flow interception model (all
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discussed in Sects. 7.2.1 and 7.2.2). One important implementation issue
is the assessment of these components, especially the attractiveness level of a
facility.

Many extensions to the basic models were investigated. For example, antic-
ipating future changes in the market, considering lost demand due to long
distances, cannibalization of one’s chain facilities. Optimal location of one
facility can be found by branch and bound algorithms such as Big Square
Small Square [75], or Big Triangle Small Triangle [53]. Location of multiple
facilities is usually solved heuristically by various approaches tailored to the
specific model, or metaheuristic methods such as tabu search [65–67], simu-
lated annealing [86], genetic algorithms [68, 78], variable neighborhood
search [74, 99] and others.
There are many opportunities for future research. Improving and fitting

the models better to real circumstances; obtaining better estimates for attrac-
tiveness of facilities. There are many solution methods for multiple facilities
location models and constrained models that can be improved by designing
more efficient heuristic algorithms that will enable practitioners to solve larger
problems.
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8
Interval Tools in Branch-and-Bound Methods

for Global Optimization

José Fernández and Boglárka G.-Tóth

8.1 Introduction

Given the set A ⊆ R
n , and the functions f : A −→ R, g : A −→ R

m and
h : A −→ R

k , we deal with the nonlinear programming (NLP) problem

min f (x)
s.t. g(x) ≤ 0

h(x) = 0
x ∈ x0

(8.1)

where x0 ⊆ A is an n-dimensional interval of Rn . It is assumed that f
and/or g and/or h are nonlinear functions and the variables can take any
value within x0, i.e., we have a continuous NLP problem. If at least one
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of the variables is constrained to take integer values, then we have a Mixed-
Integer Nonlinear Programming (MINLP) problem. Problem (8.1) is said to
be a global optimization problem when it has local minimum points different
from the global minimum points. If x∗ is a global minimum point, we will
denote by f ∗ = f (x∗) the corresponding global minimum value. Checking
that h(x ) is exactly equal to 0 is usually impossible in practice. That is why
in most applications the equality constraints are changed to ε1 ≤ h(x) ≤ ε2,
where [ε1, ε2] � 0 and the problem is assumed to have only inequality
constraints.

In general, problem (8.1) is NP-hard. Depending on the mathematical
properties of the functions involved, different methods can be devised to
cope with it [44]. Branch-and-bound (B&B) algorithms are among the most
successful ones. They manage a working list of subregions of the feasible set
still to be investigated, initially composed by x0. At each iteration, a subre-
gion from the list is chosen and investigated. The subregion is discarded if it is
found to be infeasible, if the minimum objective value that can be attained by
any of its feasible points is greater than the current best value f̃ found so far
by the algorithm, or if the optimal solution of the problem within the subre-
gion can be found. Also, the subregion is no further investigated and sent to
the solution list if the difference between a lower bound and an upper bound
of the objective function over the subregion is less than a given tolerance ε f .
Otherwise, the subregion is subdivided, and the new subregions are inserted
in the working list. Every time that f̃ is updated (when evaluating the objec-
tive function at some feasible point) the subregions whose lower bound is
greater than f̃ are also discarded. The process finishes when the working list
is empty. The subregions in the solution list contain then any global optimal
solution, and any point in those subregions differs from f ∗ less than ε f .

8.1.1 Interval Analysis

The difficulty in designing a B&B method lies in obtaining the lower and
upper bounds of the objective function in a given subregion. And it is here
where interval analysis comes into play. Interval analysis started in the early
sixties with the seminal work by R. E. Moore [63, 64] about automatic error
analysis in digital computing, although its application in B&B methods for
solving global optimization problems dates back to the seventies [39, 46, 86].
In a nutshell, interval analysis is similar to real analysis, but it uses closed and
bounded intervals instead of real numbers.

We follow the notation suggested in [50]. According to it, intervals are
denoted by boldface letters, the corresponding endpoints with lower- and
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over-lines, x = [x, x], the midpoint by mid x = (x + x)/2 and the width
by wid x = x − x . An n-dimensional interval, also called as a box, is denoted
in the same way, and its components are then distinguished with the use of
subscripts, x = (x1, . . . , xn). The midpoint of a box should be understood
component-wise, and the width as wid x = max{wid xi : i = 1, . . . , n}.
The set of intervals will be denoted by IR and the set of n-dimensional boxes
by IRn .
The arithmetic operations should be understood logically, in the sense that

for ⊗ ∈ {+, −,×, ÷} we define

x ⊗ y = {x ⊗ y : x ∈ x, y ∈ y}.

There are simple formulae which allow us to compute the result intervals:

x + y = [x + y, x + y]
x − y = [x − y, x − y]
x × y = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}]
x ÷ y = x × [ 1y , 1

y ](only defined when 0 /∈ y)

When implemented in a computer, directed rounding is required, as the
endpoints may not be exactly represented in the binary system employed by
the computer.

Unfortunately, the use of those formulae may not give the exact expected
result, due to the so-called interval dependence. For instance, the result of
x − x for x = [0, 1] is [0, 1] − [0, 1] = [−1, 1]. This is because what
is computed is x − y, with x = [0, 1] and y = [0, 1] but assuming that
x ∈ x and y ∈ y vary independently. In general, this may lead to an over-
estimation of the result. For example, (x + 1)(x − 1) when x = [−2, 2]
gives [−9, 3] when the true range is [−1, 3]. Notice, however, that the result
always contains the true range, so the bounds are valid. This follows from the
so-called inclusion isotony:

a ⊆ b, c ⊆ d ⇒ a ⊗ c ⊆ b ⊗ d, ∀a, b, c, d ∈ IR.

This property helps to construct inclusion functions, which is the main tool
employed in B&B methods. Given a real function f : A ⊆ R

n → R, a
function f : I(A) → I is said to be an inclusion function for f provided
that range f (x) ⊆ f (x) for all x ⊆ I(A). Here, I(A) denotes the set of
all boxes included in A and range f (x) = { f (x) : x ∈ x} is the range of f
over x. Observe that if f is an inclusion function for f then we can directly



240 J. Fernández and B. G.-Tóth

Fig. 8.1 f (x) is an inclusion function of f (x)

obtain lower and upper bounds of f over any box x just by taking f (x)

and f (x), respectively (see Fig. 8.1). Inclusion functions for vector-valued
functions should be understood component-wise.

For a function f predeclared in some programming language (like sin or
exp) it is not difficult to obtain a corresponding inclusion function since
the monotonicity of predeclared functions is well-known, and then we can
take f (x) = range f (x). For a general function f : A ⊆ R

n → R there
are several methods which allow to obtain an inclusion function [75]. The
easiest one (and the quickest one from the computational point of view) is
to replace each occurrence of a variable by its corresponding interval, each
predeclared function by its corresponding predeclared inclusion function and
the real arithmetic operations by their interval counterparts. The inclusion
function so obtained is called natural inclusion function.

If the function f is differentiable, another inclusion function that could
be used is the centered form, given by f (x) = f (c) + (x − c)T∇ f (x)

where c is any point of x (usually its midpoint) and ∇ f (x) an inclusion
function of the gradient ∇ f of f at x (usually obtained as the natural interval
extension of ∇ f ). Whereas the centered form usually gives over small boxes
tighter bounds as compared to the natural interval extension, the opposite
usually holds over big boxes. For instance, the natural interval extension of
f (x) = x2−x+1 at x = [−1, 1] gives [−1, 1]2−[−1, 1]+1 = [0, 3] and
the centered form (using c = mid [−1, 1] = 0, and ∇ f (x) = [−3, 1]) gives
1 + ([−1, 1] − 0)[−3, 1] = [−2, 4], whereas range f ([−1, 1]) = [3/4, 3].
In general, given a function and a box, it is not known which of the possible
inclusion functions will provide the tightest inclusion for the range [90].
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Regardless of the inclusion function employed, it will provide valid lower
and upper bounds automatically, which allows us to build a B&B method
easily.

Surprisingly, although we can find in the literature B&B methods designed
to cope with MINLP problems (see for instance [1, 8, 9, 87]), and even some
of them use interval analysis tools in some steps, the general machinery of
interval B&B methods commonly used for continuous problems has seldom
been applied to MINLP problems.

8.1.2 Aim of the Chapter

The aim of this chapter is twofold. First, we want to do a review of the
most relevant publications about interval B&B methods for single-objective
optimization problems from 2011 to March 2021. The following search
was done in Scopus within article title, abstract or keywords: (interval W/0
“branch-and-bound”) OR (interval W/0 branch W/1 bound) OR (interval
W/0 analysis AND (optimiz* OR optimis* OR minim* OR maxim* OR
contract* OR filter* OR extension)) OR (interval W/0 method* AND
(optimiz* OR optimis* OR minim* OR maxim* OR contract* OR filter*
OR extension)) OR (interval W/0 tool* AND (optimiz* OR optimis* OR
minim* OR maxim* OR contract* OR filter* OR extension)) OR (interval
W/0 arithmetic* AND (optimiz* OR optimis* OR minim* OR maxim* OR
contract* OR filter* OR extension)) OR (interval AND constraint W/0 pro*)
OR (interval W/2 optimiz*) OR (interval W/2 optimis*) OR (interval W/2
contract*). In all, 4148 references were found. To select the most relevant
ones, they were exported to a .ris file, and the ASReview software (https://asr
eview.nl/) was used with the default strategies. ASReview uses artificial intel-
ligence techniques to improve the screening process. The revision of abstracts
was stopped when 20% of the papers had been checked. At that moment,
195 non-relevant papers in a row were discarded. As a result, 81 papers were
selected and investigated in depth, although only some of them are finally
included in this revision.
To put the new research in context, first, in Sect. 8.2 we briefly comment

some of the most important strategies used in interval B&B methods up to
2010. The books [37, 40, 47, 49, 76, 89] provide a broader coverage of the
research done in interval B&B methods until that date. It is in Sects. 8.3–8.6
where the review is done. We do not include in the review papers devoted
exclusively to constraint programming techniques for constraint satisfaction
problems nor hybrid techniques which combine interval B&B with heuristic
procedures, so as not to make the chapter excessively long. For the same

https://asreview.nl/
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reason, research work devoted to applications of interval B&B methods to
the solution of real optimization problems is also left out. However, we
do include a section concerning the software available as of May 2021 to
implement interval B&B methods (see Sect. 8.7).
The second aim of the paper is to highlight which of the interval tools

designed for continuous NLP problems could also be employed, maybe
with some modifications, to cope with MINLP problems, as well as tools
specifically designed for MINLP problems (see Sect. 8.8).

8.2 Prototype Interval B&BMethod

The prototype interval B&B algorithm is as pseudo-coded in Algorithm 1.

Algorithm 1: A general interval B&B algorithm.
Funct IBB( 0 )
1: Set the working list 0 and the final list
2: while ( ) do
3: Select a box from Selection rule
4: Compute Bounding rule
5: if cannot be eliminated Elimination rule
6: Divide into 1 , subboxes Division rule
7: for 1 do
8: if satisfies the termination criterion Termination rule
9: Store in
10: else
11: Store in
12: endif
13: endfor
14: endif
15: endwhile
16: return

Depending on how the steps are carried out, different algorithms can be
obtained. And how a specific step is designed depends on the mathematical
properties of the problem. Usually it is assumed that the functions defining
the problem are continuous, although it is possible to construct inclusion
functions for non-continuous functions, too [30, 31, 49, 72]. In many cases,
it is assumed that f is differentiable, and that an inclusion function ∇ f =
(∇1 f , . . . , ∇n f )T of the gradient ∇ f = (

∂ f
∂x1

, . . . ,
∂ f
∂xn

)T is available. In
some cases, f is required to be twice differentiable; in that case, the inclusion

of the Hessian matrix H( f ) = (
∂2 f

∂xi∂x j
)ni, j=1 will be denoted by H f =
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(H i j f )ni, j=1. Usually, the inclusions for the gradient and the Hessian matrix
are obtained via automatic differentiation [36, 74].

Next, we briefly discuss some of the most commonly used rules in the
literature up to 2010.

8.2.1 Bounding Rule

In interval B&B methods, the usual way to obtain bounds for the range of a
function f over a box x is to evaluate an inclusion function. Apart from the
natural inclusion function [64] and the center form mentioned above [38,
56], other inclusion functions have been proposed in the literature, such as
the Baumann’s optimal centered form [7] (which uses a particular point c ∈ x
in the centered form to minimize the range overestimation), the slope form
[77] (where instead of inclusion of derivatives, inclusion of slopes are used),
or the affine form [22] (which uses affine arithmetic instead of the classical
interval arithmetic).

Notice that if f 1, . . . , f r are inclusion functions for f , then a tighter
interval containing range f (x) can be obtained as ∩r

i=1 f i (x).

8.2.2 Elimination/Filtering Rules

Usually, several tests are applied successively to the same box to try to discard
it or to reduce its size. Most of the tests in the literature are designed for the
unconstrained version of problem (8.1).

Cut-off test: A box x is rejected whenever f (x) > f̃ , where f̃ is the best

known upper bound of the global minimum f ∗. f̃ is usually updated eval-
uating the objective function at the midpoint of the boxes, that is why this
test is also known as midpoint test .

Monotonicity test: It can only be used when the objective function is differ-
entiable. If 0 /∈ ∇ f (x) for a given box x, then the objective function
is monotonous over it. Hence, if x is not on the boundary of the search
region, it can be rejected; otherwise it can be narrowed to the intersection
of x and the boundary of the search region.

Non-convexity test: The objective function must be twice differentiable. If for
some i ∈ {1, . . . , n} the condition H i i f (x) < 0 holds, then f cannot be
convex at x. Hence, if x is not on the boundary of the search region, it can
be rejected; otherwise it can be narrowed to the intersection of x and the
boundary of the search region.
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Newton step: The objective function must be twice differentiable. It consists of
applying an interval version of Newton’s method to the system ∇ f (x) = 0,
by iterating

N
(
x(k+1)

)
=mid

(
x(k)

)
−

[
H f

(
x(k)

)]−1∇ f
(
mid

(
x(k)

))

x(k+1) =N
(
x(k+1)

)
∩ x(k)

until x(k+1) = ∅ or x(k+1) = x(k) for some k. In the first case it is proved
that there is no global optimizer in the box x, while in the later case all local
optimizers of x are included in x(k+1), if any. Moreover, if N (x(k+1)) ⊂
x(k) for some k, then it is proved that there exists a unique local optimizer in
the interval x(k+1). This procedure is rather costly, due to the computation
of the Hessian matrix and its inverse matrix. On the other hand, even if it
converges to a local optimum, maybe the box could be deleted a few steps
later by the cut-off test. That is why it is recommended to perform only
one step of the Newton method [40, 49, 66].

Except for the cut-off test, the rest of the discarding test mentioned above
can only be applied to unconstrained (or bound constrained) problems. If
there are inequality constraints, it is first needed to know whether the box is
feasible or not. This can be done using the

Feasibility test: We say that a box x satisfies the constraint g j (x) ≤ 0 if
g j (x) ≤ 0 and that x does not satisfy it if g

j
(x) > 0. A box x is said

to be feasible if it satisfies all the constraints, infeasible if it does not satisfy
at least one of the constraints, and undetermined otherwise. A box x is said
to be strictly feasible if g j (x) < 0, j = 1, . . . ,m. The Feasibility test [76]
discards boxes that are infeasible. It also provides information about the
feasibility of a box. Notice that to apply this test, we just need an inclusion
function g j for each of the functions g j defining the inequality constraints.

The monotonicity and non-convexity tests can be applied to a box x when-
ever it is feasible. However, in [29] some conditions are described under
which the monotonicity test can be applied to undetermined boxes as well.
Something similar is done in [91] for the non-convexity test.
The Newton step can be applied as described above if the box is feasible,

and it could be applied to the Karush-Kuhn-Tucker of Fritz John opti-
mality conditions if the box is undetermined. Also, in [29] a projected
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one-dimensional interval Newton method is proposed which can be applied
to feasible boxes, and also, under some conditions, to undetermined boxes.

Other discarding tests suitable for being applied to feasible boxes try to
make an efficient use of the gradient information, by constructing a linear
lower bounding function of the objective function (similarly to what is done
in Lipschitz optimization [41]). See for instance [17, 88, 94].

Discarding tests specially designed for inequality constrained problems can
be found in [28], such as the best corner test and, for the case of undetermined
boxes for which only one linear constraint is not satisfied, the monotonicity-
border test and the reduction test .

8.2.3 Selection Rule

Since (8.1) is a minimization problem, usually the box x such that f (x) =
min{ f (x j ) : x j ∈ LW } is selected, as it is thought to be the most likely box
to contain a global optimum solution.

In some papers, instead of using f (x) as a proxy for the likelihood of the
optimality of the box x, other indexes have been suggested. For instance, in
[18, 20] the RejectIndex

p( f ∗, x) = f ∗ − f (x)

wid f (x)

is suggested for unconstrained problems, and the box with the highest index
is selected. The index was modified in [59] to handle inequality constrained
problems, in order to take the feasibility degree of the box into account, and
substituted by

pup( f ∗, x) = pu(x) · p( f ∗, x),

where

pu(x) =
m∏
j=1

min

{ −g
j
(x)

wid g j (x)
, 1

}
.

In the implementations, the unknown optimal value f ∗ is approximated by
the objective value of the best feasible point found so far by the algorithm,
f̃ . The computational studies in those papers showed that in some cases
the CPU time required by the interval B&B algorithm could be reduced
considerably with the new rules.
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8.2.4 Division Rules

Two things have to be decided when subdividing a box x: (1) along which
coordinate direction (or directions) should the box be cut and (2) how many
cuts should be performed perpendicularly to the chosen direction(s). The
division procedure employed in most of the literature is the bisection along
the direction of maximum width.

Selecting the direction of maximum width allows a uniform subdivision
of the searching region x0. However, for unconstrained problems, other rules
which try to select the coordinate direction along which the objective func-
tion varies the most, have proved to be successful. For instance, among other
rules, in [21, 78] it is suggested to select the direction r where the maximum
max{wid (∇i f (x)(xi − mid xi )) : i = 1, . . . , n} is attained (see also [52]
for a related rule). Note, however, that this rule is more time-consuming.

Bisection avoids that the B&B tree grows too fast, specially when it is antic-
ipated that some of the subboxes generated will be discarded by the discarding
tests. However, around the global optimal solutions many boxes are usually
evaluated (the so-called cluster effect ) because it is difficult to discard them,
and in those cases a multisection may be more advantageous [12]. In fact,
in [19] an adaptive multisection technique is suggested, where the box is
subdivided into a larger number of subboxes when if it is located in the
neighborhood of a minimizer point, it is bisected when it is far, and tetra-
sected otherwise. The index p( f ∗, x) is used as a surrogate to measure the
proximity of a box to a minimizer point. See also [59].

8.2.5 Termination Rule

A box x is sent to the final list LS whenever f̃ − f (x) < ε f . Sometimes, the
more demanding condition wid f (x) < ε f is employed instead. Both rules
work with absolute units, which may be inconvenient in some cases. That is
why the rule

f̃ − f (x)

max{ f̃ , 1} < ε f

is also commonly employed. Furthermore, this last rule has the advantage of
reducing both the cluster problem and the excess processing that occurs when
an infinity of equivalent non-isolated solutions exists, as pointed out in [71].
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Sometimes, due to the overestimation, the criteria above alone are not
enough, and in order to avoid that the computer runs out of memory, a box
is also sent to LS if wid x < εs for some εs > 0.

8.2.6 Interval B&B Methods for MINLP Problems

Interval B&B methods have rarely been applied to MINLP problems. In [40]
(see also [97]) it is suggested to add, for any integer variable xi , the constraint
sin(πxi ) = 0 and to apply the interval B&B method for continuous prob-
lems. Although this can, at least theoretically, solve the problem, in practice
has not proved to be a good strategy.

In [40] it is also suggested to use the prototype algorithm to problem
(8.1) when some of the variables can only take integer values. To take advan-
tage of the integrity of a variable xi ∈ Z, when subdividing the box x
perpendicularly to coordinate direction i through the point c, instead of
generating the subboxes x1 = (x1, . . . , xi−1, [xi , c], xi+1, . . . , xn) and
x2 = (x1, . . . , xi−1, [c, xi ], xi+1, . . . , xn), in x1 the point c can be
changed to �c� and in x2 to �c� (note that no integer solution is lost). In
this way, the endpoints of the intervals of integer variables are always integer
numbers. The monotonicity test can also be adapted to integer variables: if
x is a feasible box and 0 /∈ ∇i f (x) for an integer variable xi , then the box
can be reduced to the facet containing the minimum values in the box. For
instance, if ∇i f (x) < 0, x can be reduced to (x1, . . . , xi , . . . , xn) (see
Fig. 8.2).
This strategy was put in practice in [62] (see also [32]) to solve a

constrained MINLP problem (although only the feasibility and cut-off tests
were used) and in [93], where other discarding tests were also proposed.

In [9], Belotti et al. introduced the software package COUENNE for
MINLP problems. It follows a B&B scheme, and uses interval analysis in
some steps. Some ideas introduced in [9] could also be of help in a general
interval B&B algorithm for MINLP problems.
To our knowledge, no more relevant work has been presented in the

literature up to 2010.

8.3 Bounding Techniques

Having tight lower bounds of the objective function over boxes is impor-
tant, because they may allow to discard the boxes thanks to the cut-off test.
In [11] the case of single variable functions that can be decomposed into
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Fig. 8.2 The facet corresponding to the upper bound xi ∈ Z of the interval xi of
the integer variable xi cannot be discarded, since the monotonicity of the objective
function may change in the box (x1, . . . , [xi , xi + 1], . . . , xn)

sub-functions is investigated. The basic idea is to compute bounds for the
sub-functions, and then put together at work all those bounds to compute a
bound for the original function. In particular, in [11] the case of additively
separable functions is analyzed, i.e., functions f : A ⊆ R → R which can
be written as f (x) = ∑p

j=1 f j (x). Notice that

min
x∈A

f (x) ≥
p∑

j=1

min
x∈A

f j (x).

In particular, if F j is a lower bound of f j over A then
∑p

j=1 F j is a lower
bound for f over A, and sometimes it may be tighter than the bound obtained
with the natural inclusion function or the centered form. In their paper, the
authors work with the Baumann’s optimal centered form and the so-called
Lower Boundary Value Form (LBVF), a centered form that uses the eval-
uation at the endpoints of the interval. The latter seems to provide better
bounds, although when applied to solving a test bed of problems it does not
speed-up the interval B&B algorithms.



8 Interval Tools in Branch-and-Bound Methods ... 249

Posypkin and Khamisov [73] also work with single variable func-
tions, and again, they decompose them into sub-functions. However, their
approach is rather different. They try to exploit the monotonicity and the
convexity/concavity of the sub-functions in order to obtain better bounds
of the original function. They can even handle nondifferentiable composite
functions. Their approach restricts the objective function’s range even if the
latter is not convex neither concave, and it was experimentally proved that
the technique can significantly reduce the bounds on the function’s range and
enhance the interval B&B algorithm for global optimization. For this, a set
of rules for deducing monotonicity, concavity, and convexity of a univariate
function are proposed, which are then implemented via operator overloading.

Araya et al. [4] also try to exploit the monotonicity of the sub-functions
in which the original function is decomposed. They present their procedure
for functions of several variables. Assume that f is monotonous on the vari-
ables x1, . . . , xq (we assume they are the first q out of the n variables of f
without loss of generality). And consider the values x−

i and x+
i such that:

if f is increasing (resp. decreasing) along xi , then x−
i = xi and x+

i = xi
(resp. x−

i = xi and x+
i = xi ). Let us denote w = (xq+1, . . . , xn) the

non-monotonic variables and consider the functions

fmin(w) = f (x−
1 , . . . , x−

q , w)

fmax(w) = f (x+
1 , . . . , x+

q , w)

Then, an interval containing the image of f over a box x can be obtained as
[ fmin(w), fmax(w)], which is sharper (smaller) than the one produced by
the natural interval inclusion function of f . If f is monotonous with respect
to all its variables, then the exact range is obtained. When f is not mono-
tonic with respect to a variable xi , but is monotonic w.r.t. a subgroup of
occurrences of xi , the paper groups the occurrences of xi into three sets,
increasing, decreasing and non-monotonic auxiliary variables, and exploits
the monotonicity of the first two sets. One could think about grouping all
increasing variables in the first group, all decreasing variables in the second
one, and the non-monotonic variables in a third one. However, the evalu-
ation by monotonicity of the new function will provide the same result as
the natural interval extension. The key point is to include in the first group
(resp. second group) some decreasing (resp. increasing) or non-monotonic
variables so that, when considered together, the corresponding sub-function
is still increasing (resp. decreasing). For instance, f (x) = −x3+2x2+14x is
not monotonous in the interval [−2, 1]. Its exact range is [−13.18, 15] while
the natural inclusion functions gives [−29, 30]. If we group f og(xa, xb) =
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−x3b + 2x2a + 14xa , notice that the interval derivative of the group corre-
sponding to xa is 4[−2, 1] + 14 = [6, 18], which is positive, so the
function is increasing. And the group corresponding to xb is decreasing.
Hence, evaluating both parts using their monotonicity, we obtain the inclu-
sion [2(−2)2 + 14(−2), 2 · 12 + 14 · 1] + [−13, −(−2)3] = [−21, 24].
Notice, however, that the interval extension by occurrence grouping is not
unique for a function f since it depends on the occurrence grouping used.
For instance, in the previous example, we could also have used the grouping
f og(xa, xc) = −x3a +2x2c +14xa (where xc groups the non-monotonic vari-
ables) and then the inclusion [–20,21] would be obtained. That is why the
authors also present in [4], first, a 0-1 linear program to automatically select
the grouping, and second, a continuous linear program to do the grouping
using a linear convex combination of the variables. The computational studies
show that the methodology is useful when applied to solving systems of
equations.

Makino and Berz [58] propose to use Taylor models (which combine
Taylor polynomials and remainder error enclosures) to obtain sharper inclu-
sion functions, alleviating the overestimation provoked by the dependency
problem. Although it is more time-consuming to work with Taylor models
than with classical interval inclusion functions, it can be done in an automatic
way (as interval arithmetic) and provides much better bounds. In particular,
it is suggested that the use of first and second order Taylor models provides
improved bounds quickly.

Moscato et al. [65] present a formalization of the affine arithmetic [22]
which only supports polynomial expressions. Computational experiments
show that when dealing with problems with a high level of coupling between
sub-expressions (and hence, where the dependency problem is high), the
affine method performs significantly better than the classic interval arith-
metic.

Ninin et al. [71] propose to use a simplified affine arithmetic form to
compute bounds for the objective function and the functions defining the
constraints. Furthermore, they use those affine forms to generate a linear
programming problem which is a linear relaxation of the global optimiza-
tion problem. The linear problem has the same number of variables than the
original global optimization problem, and its number of constraints is at most
twice. New tighter bounds can be obtained in this way for the objective func-
tion since in the computation of those bounds the constraints are also taken
into account. This new technique is specially useful at discarding small boxes.
The authors included those techniques in a branch-and-bound algorithm,
where constraint programming techniques were also included. The constraint
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programming techniques were specially useful at discarding/reducing bigger
boxes. The combination of both affine techniques and constraint program-
ming techniques leads to a fast and reliable algorithm.
The use of auxiliary linear programming problems to compute better

bounds is also proposed in Araya et al. [5], although in a different context.
In this paper the authors propose an interval Newton-like operator called
X-Newton, which constructs a convexification of the problem over a given
box by using a mean value form (for each of the functions defining the
constraints) but based on two opposite extreme points of the box (instead of
using as base point the midpoint of the box). Then, the box hull containing
the polytope produced by the linear convexification is found by calling the
simplex algorithm twice per variable. This procedure is included in a recursive
procedure where constraint programming tools are used to reduce the search
space. X-Newton does not require the system to be preconditioned, and it can
handle both well-constrained as well as under-constrained systems. And the
computational studies show its usefulness when applied to solve constrained
global optimization problems and constraint satisfaction problems.

Araya et al. [92] and Trombettoni et al. [6] also use auxiliary linear
programming problems to compute bounds. This time, the authors exploit
“inner regions” in the upper bounding phase. Although equality constraints
lead to empty inner regions, the procedure can also be applied to equality
constraints provided that equations can be defined with a tiny admissible
precision error. The strategy proposed to obtain an inner region constructs a
linear upper bounding function for each constraint using again a mean value
form based on a corner of the box. And doing something similar for the
objective function, a linear optimization problem is obtained. If it is infea-
sible, nothing can be said, since the linear problem is more constrained than
the original problem. If it has an optimal solution, it can be used to update
the best upper bound of the original global optimization problem. Another
procedure base on constraint programming techniques is also proposed in
[6]. Similarly, an “outer” linearization of the constraints can be built, leading
to another linear programming problem, where this time infeasibility means
that the box contains no feasible points and can be discarded, and in case
the problem has an optimal solution, it can be used to update the best lower
bound of the original problem on the box.

In all the previous cases, the use of the simplex method with floating-
point arithmetic may lead to unsafe results. That is why it is suggested to
employ the methodology introduced in [68] to have those errors always under
control.
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Kearfott [53] investigates how to obtain rigorous upper bounds when the
problem has equality constraints or the optimal solution is active at some
inequality constraints. As in [6, 92], equality constraints are transformed into
inequality constraints with a tiny admissible precision error. A procedure to
compute a feasible point from an approximate infeasible (but almost feasible)
solution is proposed. The computational results show the procedure is usually
successful at finding feasible points, and when included in an interval B& B
algorithm can speed-up its convergence, as it allows to update the best upper
bound of the objective function.

8.4 Discarding Tests

Araya [2] shows through a computational study that interval B&B methods
can be speed-up if an upper bound close to the optimal value is available.
A good upper bound makes the cut-off test more efficient. In interval B&B
methods, the best upper bound is usually updated by evaluating the objective
function at feasible points. The proposal in [2] is instead to estimate upper
bounds UBest during the execution of the algorithm based on the actual
values of the global lower bound LB and upper bound f̃ of the problem
and in the estimation of the upper bound previously generated, UBprev

est . In
particular, the following estimation is suggested:

UBest = f̃ − h(�, α)( f̃ − LB)

where � = (UBprev
est − f̃ )/(UBprev

est − LB) and

h(�, α) =
{ α�

1−α
if � ≤ 1 − α

�(1−α)−1
α

+ 2 if � > 1 − α

Here α is a parameter which controls how much risky we want the estimation
of the upper to be. When α = 0 we are pessimistic, and we setUBest = UB.
When α = 1 we are extraordinarily optimistic and we setUBest = LB. Note
that when UBest < f (x∗) extra work is required to complete the search, as
the boxes wrongly discarded should be reprocessed. In practice, α is suggested
to have a value in the interval [0.1, 0.5]. In fact, in [2] an adaptive approach is
suggested which increases or decreases the value of α depending on whether
the previous estimate was correct (an increase is then performed) or wrong
(a decrease is performed). The computational studies reported in the paper
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show that the so-called abrupt_decline adaptive strategy can reduce the CPU
time by more than 20%.

As already mentioned above, the use of a simplified affine arithmetic is
proposed in Ninin et al. [71] to generate a linear relaxation of the global opti-
mization problem. In particular, if for a given box the corresponding linear
relaxation is infeasible, the box can be discarded. The computational studies
in [71] show that this test is specially useful at discarding small boxes.

Domes and Neumaier [25] also propose a test specially suitable for
discarding small boxes, but their aim is to discard boxes around the global
optimum, where usually many small boxes have to be processed due to the
difficulty at discarding them (the so-called cluster effect ). Their idea is to apply
a local optimizer to hopefully find a global optimal solution of the problem. If
the point obtained is (nearly) feasible, then the Lagrange multipliers are used
to add to the problem a redundant constraint. On the contrary, if the point is
far from being feasible, then a different redundant constraint is added which
makes use of the infeasibility information of the point. With this constraint
aggregation technique the information in the redundant constraint is used to
obtain bounds on the feasible set. In some cases, it may discard the whole
box, whereas in other cases the size of the box is reduced. The usefulness of
the constraint aggregation technique within a interval B&B algorithm is still
to be investigated.

Schichl et al. [83] also try to avoid the cluster effect, but using a very
different approach. The idea is, given a approximate local optimum, to
generate an exclusion region Re and an inclusion region Ri such that any
solution of the problem inside Re must lie within Ri . Thus, the region
Re \ Ri can be removed from further consideration. Under some conditions,
it can be proven that the local minimum inside Ri is unique, which may
also allow to discard Ri if a better feasible solution is known. To construct
the exclusion and inclusion regions third-order information is required. The
Krawczyk operator applied to the first order necessary Frit John optimality
conditions plays a key role in the process. Despite the fact that this may be
time-consuming, its application may avoid or alleviate the cluster effect in
some problems, making them from unsolvable to solvable.

On the other hand, Granvilliers [35] proposes a new filtering method for
bound-constrained global optimization problems specially designed to cope
with the facets of the boxes when the facets lie on the boundary of the box
defining the bounds of the variables. The method exploits the necessary first-
order Karush-Kuhn-Tucker optimality conditions and in the computational
studies proved to be useful specially for problems with many variables.
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An extension of the classical interval arithmetic, called interval union arith-
metic is proposed in Schichl et al. [82]. It allows to work with sets of disjoint
intervals, and in particular provides a natural way to represent the division of
two intervals when the one in the denominator contains to 0. In the paper
it is proved that the new interval union arithmetic allows to speed-up the
interval Newton method for functions of a single variable, as well as the solu-
tion of interval linear systems of equations. See also [24]. The usefulness of
the new interval arithmetic within an interval B&B strategy for solving global
optimization problems is still to be investigated.

8.5 Selection of the Next Box to Be Processed

In [69], Neveu et al. study different selection rules. In all of them the best first
rule plays a role, since it is computationally proven that the only promising
selection rules select the box with the lowest lower bound at certain nodes
of the search tree. One of the most promising ones, called LBvUB, randomly
selects either the node in the working list LW with the lowest lower bound or
the one with the lowest upper bound. Both the lower and upper bound of a
box x are made more accurate with the use of some constraint programming
techniques. The selection of the box with the highest RejectIndex instead of
the one with the lowest upper bound also offers competitive results when
used randomly with the best first strategy. But the best strategy seems to be
the one in which the node with the lowest lower bound is chosen, but then,
a greedy dive in search of feasible points is performed. The FeasibleDiving
procedure performs a depth-first search that keeps the more promising node
at each iteration (the one with the lowest lower bound). No backtracking is
performed.

For optimization problems with interval coefficients in the objective func-
tion, Karmakar and Bhunia [48] propose to use an order relation for intervals
which takes into account the pessimistic view of the decision-maker, according
to which a decision-maker prefers the best alternative with less uncertainty.
They propose to use a branch-and-bound method at which, in each iteration,
a multisection of the selected box is performed (the selected box is bisected
perpendicularly to all the coordinate directions) and the box selected is the
best one according to the pessimistic order.
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8.6 Subdivision Rule

Concerning the subdivision rule, it seems that, apart from the papers [12, 19,
59], bisection perpendicular to a selected coordinate direction is the strategy
followed in all research works.

More research has been devoted to the selection of the coordinate direction
chosen to perform the bisection. In the seminar work of Kearfott and Novoa
[51], the smear value was first introduced. Given a function g j and a box x,
the smear value of the variable xi on g j at the box x is given by:

smear(xi , g j ) = |∇i g j (x)| · wid xi ,

where ∇i g j (x) is an inclusion of
∂g j
∂xi

over x, and | y| = max{|y|, |y|}
denotes themagnitude of the interval y ∈ IR. The rationale behind the smear
value is that it estimates the reduction of the image size of g j after a reduction
of the domain of xi . Selection methods based on the smear values select as
coordinate to be split the one which maximizes an aggregation of the smear
values associated to each of the constraints g j and to the objective function.
There are different ways to carry out that aggregation. The smearmax strategy
selects the variable xi which maximizes

max{smear(xi , f ),max{smear(xi , g j ) : j = 1, . . . ,m}}.

The smearsum selects the variable with maximizes

smear(xi , f ) +
m∑
j=1

smear(xi , g j ).

The variant proposed in [92] uses a relative smear value,

smearrel(xi , g j ) = smear(xi , g j )∑n
k=1 smear(xk, g j )

,

and the strategy smearsumrel selects the variable xi which maximizes

smearrel(xi , f ) +
m∑
j=1

smearrel(xi , g j ).
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Recently, in Araya and Nevey [3] a new variant, lsmear has been proposed,
which first weights the constraints by using the optimal Lagrangian multi-
pliers of a linearization of the original optimization problem. Specifically,
each constraint g j (x) function (and also the objective function) is approx-
imated by the first-order term of its Taylor expansion around the midpoint
of the box,

gl j (x) = g j (mid x) +
n∑

i=1

mid∇i g j (x) · (xi − mid xi ).

The dual of the corresponding linear problem is solved using the simplex
method for linear programming, and the dual variables λ∗

j are used to
construct the Lagrange-like function

L(x) = f (x) +
m∑
j=1

λ∗
j g j (x).

lsmear selects the variable which maximizes the smear value on L. The
computational results reported in [3] show that the new lsmear strategy is
superior to all the previous smear strategies, and also the classical rule which
selects the variable of maximum width.

On the other hand, Huang et al. [45] compare three bisection strategies,
namely, bisection perpendicular to the direction maximum width, a smear-
like strategy, and a so-called lookahead strategy, which takes into account the
effect of pruning along a given variable in previous steps. They carry out
a sound computational study on more than 11000 instances on constraint
satisfaction problem (no optimization problems) and, interestingly, none of
the strategies dominates the other.

8.7 Software

When talking about software for interval B&B methods, there are two
different groups to mention. The first one includes available interval arith-
metic libraries which can be used to build an interval B&B method. The
second group consists of software packages which are different implemen-
tations of interval B&B methods and alike. Some of those packages use
some of the libraries of the first group, but others use interval arithmetic
implementations which are just developed inside the code.
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8.7.1 Libraries

First, let us discuss the most used interval arithmetic libraries. Most of them
are written in C++, and contain not only the basic interval arithmetic, but
automatic differentiation and other useful techniques as well. The most rele-
vant libraries are C-XSC1 [43, 54], PROFIL/BIAS2 [55], BOOST3 [15] and
filib++4 [57]. C-XSC and PROFIL/BIAS were built in the 90s but work
robustly, although they needed some updates due to the newer compiler
versions. The BOOST interval package is part of a huge library, thus it is
the best option if you would need the other features of BOOST anyway. The
newer KV5 library is based on BOOST and contains in addition implemen-
tations of affine arithmetic and Taylor forms. KV and filib++ are the newest
libraries in the C++ category.
There is also an implementation of the basics of IEEE Standard for Interval

Arithmetic in theMoore: Interval Arithmetic in C++20.6 In [61] the efficiency
of that library was compared to filib++ and Boost IA, and the results showed
that in many cases it was the best, whereas in a few cases it had a similar
performance. Its drawback is that it uses the novel feature of the C++ language
called concepts.
There are also implementations where the type of precision for the

floating-point numbers can be arbitrary: Multiple Precision Floating-point
Interval Library MPFI7 [79] and Arbitrary precision arithmetics in C-XSC 8

implements it using C-XSC and MPFR, see [13].
On top of these libraries, there are additional bounding techniques that are

implemented in some packages. In [26] the authors describe ACETAF9 made
for the validated computation of bounds for Taylor coefficients and for Taylor
remainder series of analytic functions. Similarly, libraries exist for slope arith-
metic10 [14] and Modal Interval Arithmetic (ivalDb11) [42]. Slope arithmetic
works similarly as automatic differentiation, but enclosing the tangent of all

1 C-XSC: http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html.
2 PROFIL/BIAS: https://www.tuhh.de/ti3/software/profil.shtml.
3 BOOST: https://www.boost.org/doc/libs/1_77_0/libs/numeric/interval/doc/interval.htm.
4 filib++: https://www2.math.uni-wuppertal.de/org/WRST/software/filib.html.
5 KV: http://verifiedby.me/kv/index-e.html.
6 Moore IA: for the code directly email walter.mascarenhas@gmail.com.
7 MPFI: https://gitlab.inria.fr/mpfi/mpfi.
8 Arbitrary precision arithmetics in C-XSC: http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_soft
ware.html#mpfr-mpfi.
9 ACETAF: http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#acetaf.
10 Slope arithmetic: http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#slope.
11 ivalDB: http://www.ti3.tuhh.de/, https://sites.google.com/site/pauherrero/IVALDB.zip.

http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc.html
https://www.tuhh.de/ti3/software/profil.shtml
https://www.boost.org/doc/libs/1_77_0/libs/numeric/interval/doc/interval.htm
https://www2.math.uni-wuppertal.de/org/WRST/software/filib.html
http://verifiedby.me/kv/index-e.html
https://gitlab.inria.fr/mpfi/mpfi
http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#mpfr-mpfi
http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#acetaf
http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#slope
http://www.ti3.tuhh.de/
https://sites.google.com/site/pauherrero/IVALDB.zip
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possible slopes from a given base point. The main contribution of MIA is its
inherent capability to deal with a more complex class of problems involving
logical quantifiers (like ∃,∀) respecting an ordering of the quantifiers.
There are also a few libraries in other languages. The most used one is

Intlab12 for Matlab [80] which is not a standalone library, but a package for
Matlab containing also methods for many algorithms using interval arith-
metic, automatic differentiation, slope arithmetic, affine arithmetic and so
on. The newest and most promising way to implement software with interval
arithmetic is to use Julia13 [95], a new language for high performance scien-
tific computations (https://julialang.org/). Apart from the basic IA package,
there is a multiple-precision interval arithmetic library based on MPFR14,
Taylor models15 [10] and an implementation of interval arithmetic with
variable precision (“ubounds”) called Unums16. There is also a Python imple-
mentation for interval arithmetic, called PyInterval17 although containing
less complex techniques than Intlab or Julia.

8.7.2 Packages with Interval B&B Implementations

For the second group, we list only the software available and ready to use
in 2021. We can start the list with the already mentioned Intlab, since
based on the several interval arithmetics implemented there is a branch-and-
bound method to solve global optimization problems. Similarly, based on the
C-XSC library, there is a Numerical toolbox for C-XSC 18 [37] which contains
a general interval branch-and-bound method.

Ibex19 [70] implements an interval branch-and-bound based method,
which uses constraint propagation techniques, thus it works well on
constrained global optimization problems. The software pyIbex20 is a python
binding of Ibex. In Julia, there is an implementation of an Easy Advanced
Global Optimization (EAGO21) method [96], that use McCormick arith-
metic and many bound tightening techniques.

12 Intlab: https://www.tuhh.de/ti3/rump/intlab/.
13 Julia IA: https://github.com/JuliaIntervals/IntervalArithmetic.jl.
14 MPFR IA in Julia: https://github.com/andrioni/Intervals.jl.
15 Taylor models in Julia: https://github.com/JuliaIntervals/TaylorModels.jl.
16 Unums in Julia: https://github.com/JuliaComputing/Unums.jl.
17 PyInterval: https://pypi.org/project/pyinterval/.
18 Toolbox for C-XSC: http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#cxsc-too
lbox.
19 Ibex: http://www.ibex-lib.org/.
20 pyIbex: https://github.com/codac-team/pyIbex.
21 EAGO: https://github.com/PSORLab/EAGO.jl.

https://julialang.org/
https://www.tuhh.de/ti3/rump/intlab/
https://github.com/JuliaIntervals/IntervalArithmetic.jl
https://github.com/andrioni/Intervals.jl
https://github.com/JuliaIntervals/TaylorModels.jl
https://github.com/JuliaComputing/Unums.jl
https://pypi.org/project/pyinterval/
http://www2.math.uni-wuppertal.de/wrswt/xsc/cxsc_software.html#cxsc-toolbox
http://www.ibex-lib.org/
https://github.com/codac-team/pyIbex
https://github.com/PSORLab/EAGO.jl
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Last but not least, we mention the Coconut Environment22, a modular
environment for developing solvers for nonlinear continuous global opti-
mization problems. It provides rigorous computational tools using interval
arithmetic to promote the development of reliable computational methods.
See [60, 67, 83, 84] for the advanced techniques available. Among them,
Coconut includes: STOP (a heuristic starting point generator), Karush-
John-condition generator using symbolic differentiation, Point Verifier (for
verifying solution points), Exclusion Box generator (which computes an
exclusion region around local optima), interval constraint propagation tech-
niques, Linear Relaxation generator using slopes, wrappers for state of the
art linear programming solvers, a wrapper for DONLP3 (a general purpose
nonlinear local optimizer for continuous variables), Basic Splitter (computing
difficult variables and split variants), BCS (a box covering solver), Convexity
detection (for simple convexity analysis), and more.

All the above packages are open-source to facilitate the research on the
development of methods and/or its adjustment for solving special problems.

A somewhat outlier software is GloptLab23 [23] which implements
a configurable framework for the rigorous global solution of quadratic
constraint satisfaction problems, because it uses interval branch-and-bound
techniques only partially. It is made to build a solution strategy in the
graphical user interface by inserting, editing or removing tasks like scaling,
constraint propagation, linear relaxations, strictly convex enclosures, conic
methods, and also branch-and-bound methods.

Finally, there is an interesting software which is not directly related to
interval branch-and-bound methods, but implements an Optimization Test
Environment24 [27] which enables users to choose and compare diverse
solver routines, organize and solve large test problem sets, select interactively
subsets of test problem sets, and perform a statistical analysis of the results.

8.8 Interval B&BMethods for MINLP Problems

Although interval tools are used in some of the few software packages avail-
able for MINLP problems, such as COUENNE [9] or BARON [81], to our
knowledge there is no publicly available package for MINLP problems mainly
based in interval B&B methods.

22 Coconut: https://www.mat.univie.ac.at/~coconut/coconut-environment/.
23 GloptLab: https://www.mat.univie.ac.at/~dferi/gloptlab.html.
24 TestEnv: http://www.mat.univie.ac.at/~dferi/testenv.html.

https://www.mat.univie.ac.at/%7ecoconut/coconut-environment/
https://www.mat.univie.ac.at/%7edferi/gloptlab.html
http://www.mat.univie.ac.at/%7edferi/testenv.html
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The code of the IBBA algorithm developed by F. Messine and J. Ninin
and used to solve some MINLP problems (see for instance [16, 32]) includes
constraint propagation techniques and linear relaxations based on interval
and affine arithmetic [71]. But it is not publicly available.
The way in which Schöbel and Scholz [85] cope with MINLP problems

differs slightly from the classical interval B&B method. They assume that for
any subbox of the continuous variables it is possible to obtain a lower bound
of the objective function over the corresponding box obtained by adding the
domains of the integer variables. In that case, it is suggested to carry out a
B&B procedure on the continuous variables only. Some bounding procedures
are proposed for concave as well as D.C. functions. And a new discarding
test is proposed assuming that for each integer assignment of the integer
variables it is possible to solve exactly the corresponding continuous optimiza-
tion problem. Their method is suitable for problems with a small number of
continuous variables, but again is not publicly available.

However, notice that it is not difficult to adapt available implementations
of interval B&B algorithm for global optimization (see Sect. 8.7) to deal with
MINLP problems following the ideas highlighted in the second paragraph of
Subsection 8.2.6. In fact, this is what is done in [33] (see also [34]). The basic
idea is to assume that the integer variables are continuous, and then, when
the moment of discarding/filtering subregions arrives, to take the integrity of
the variables back into account so as not to remove any optimal solution (see
for instance the modification of the monotonicity test described in Subsec-
tion 8.2.6 when the objective function is found to be monotonous along an
integer variable).

Special care is also required when updating the best upper bound f̃ for
the problem, since the point x̃ such that f (x̃ >) = f̃ must be feasible, in
particular the components of x̃ corresponding to the integer variables must
be integer values. The feasibility test can be of help here. When a box x is
declared as feasible by the feasibility test (considering that the integer variables
are continuous), then, from any integer assignment within the box of the
integer variables we can obtain an integer feasible point, which can be used
to update f̃ .

Other discarding tests/filtering techniques can be adapted following the
same ideas. Consider for instance the non-convexity test. Let x be a strictly
feasible box and denote by ∇2 f (x) an inclusion of the Hessian matrix of f
at x. If ∇2

i i f (x) < 0 for some i, the objective function cannot be convex
at x. Thus, we know that the solution cannot lie inside the box. However, it
may be on one of the facets corresponding to an integer variable xi . Hence,
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we can remove the interior of the box and reduce it to the facets corre-
sponding to integer variables. Since x ∈ IR

n , it has 2n facets, given by
(x1, . . . , xi , . . . , xn) and (x1, . . . , xi , . . . , xn), for i = 1, . . . , n. This is
somehow related to the peeling procedure described in Section 5.2.3 in [49].
As in the monotonicity test, we cannot remove the whole box now, since the
non-convexity certification may no longer hold between an integer value xi
(or xi ) and the following one xi − 1 (or xi + 1).

Something similar can be done with the interval Newton method
(applying it only to the continuous variables while fixing the integer vari-
ables at their current values), the projected one-dimensional Newton method
[29], the best corner test, [28] or the monotonicity-border test [28].

Some of the techniques reviewed in sections 8.3 and 8.4 are also suitable
for being adapted to MINLP problems, such as the bounding techniques in
[4, 11, 73]. Also the linearization techniques described in [5, 6, 92] which
make use the mean value form based on corners of the box seem that could
be easily adapted. The use of estimated upper bounds described in [2] can
also be used directly, as well as the selection rule LBvUB in [69]. And the
FeasibleDiving strategy could be adapted to find integer feasible solutions.
The subdivision rules based on the smear value described in Sect. 8.6 can
also be applied without modifications.

In general, the interval techniques designed for continuous NLP prob-
lems should be revised to investigate whether they can be adapted to handle
MINLP problems too. Hopefully, when cleverly combined in an interval
B&B algorithm, they will allow to solve difficult MINLP problems which
still cannot be solved by the existing solvers. Some of those techniques could
also be incorporated in other software packages for MINLP problems so that
they can solve broader classes of problems.
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9
Continuous Facility Location Problems

Zvi Drezner

9.1 Introduction

Facility location models investigate the location of one or more facilities,
among a set of demand points, to achieve a certain objective. Discrete loca-
tion models assume that there is a set of potential locations for the facilities,
and a partial subset of locations is selected for locating them. Continuous
location problems assume that facilities can be located anywhere (usually
in the plane) or in a given area, and thus the set of candidate locations is
“infinite”. In this chapter we review continuous location models.

One of the earliest objectives investigated in the literature is minimizing
the weighted sum of distances between the demand points and their closest
facility. For example, locating warehouses to serve a given set of outlets. The
cost of service is proportional to the distance and if there are two or more
facilities, service to a demand point is provided by the closest facility.

Another objective is minimizing the maximum distance to the closest
facility so that the customer who gets the worst service is getting the service
as quickly as possible. For example, location of emergency facilities, such as
ambulances or fire trucks, so that the farthest customer is as close as possible
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to a facility. Some types of facilities such as polluting or noisy factories, land-
fills, airports, have a negative impact on neighborhoods and thus should
be located as far as possible from communities. Such facilities are termed
“obnoxious” facilities. Another objective is to locate facilities to provide equi-
table service to all demand points. Covering models attempt to cover as many
demand points as possible within a given distance from the closest facility.
Competitive location models, discussed in Chapter [52] in this book, involve
the location of facilities, such as retail outlets, to attract as much demand as
possible from competing facilities.

Commonly used distance measures between points (x, y) and (u, v)
include:

• Euclidean distance (also termed �2):
√

(x − u)2 + (y − v)2. This is a
straight line distance.

• Rectilinear (also termed Manhattan, or �1) distance: |x − u| + |y − v|.
This is a distance on a grid where roads are either in a North-South or
East-West directions and there are no diagonal roads.

• General �p distance: {|x − u|p + |y − v|p} 1
p . p = 2 is the Euclidean

distance, and p = 1 is the rectilinear distance.

There are extensions to the basic location models. For example, some
models are formulated on the surface of a sphere. Distances on the globe are
not “straight” lines but great circle distances used by airplanes flying between
origin and destination. Spherical models are discussed in Sect. 9.2.5.

9.2 Single Facility Location Problems

In this section we review single facility location models. The location of
multiple facilities is discussed in Sect. 9.3.

9.2.1 The Weber (One-Median) Location Problem

The first and most basic location problem is the Weber problem [202]. A set
of demand points with associated weights exist in the area. The problem is to
find a location for a facility that minimizes the weighted sum of distances to
the set of demand points. The formulation and solution methods are detailed
in Sect. 9.4.2.4. The simple form of the problem dates back to the French
mathematician Pierre de Fermat who lived in 1601–1665. For historical
reviews the reader is referred to [207, 39, 97]. As detailed in [39, 147], Pierre
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Fig. 9.1 Solution to the minimum sum of distances in a triangle

de Fermat asked the question of finding the point in a triangle that mini-
mizes the sum of the distances to the vertices of the triangle. The problem
was solved by Torricelli (1608–1647). Torricelli showed (see Fig. 9.1), that
the optimal location (Fermat point) is at a point forming three angles of 120◦
each with the sides of the triangle (and on a vertex if an angle at a vertex is
120◦ or greater).
This is the solution to connecting three cities by the shortest possible rail-

road. Suppose that we need to connect four cities on the vertices of a square
with a side of 1. Connecting three sides, or forming an H shape, has a total
length of 3. The two diagonals have a total length of 2

√
2 = 2.828. The

optimal solution to this problem is depicted in Fig. 9.2. The two points in
the interior of the square are Fermat’s points in the triangles formed by two
vertices and the square’s center C . Therefore, all the angles are 120◦. The total
distance is 1+ √

3 = 2.732. The general problem of connecting n points by
the shortest tree is called the Steiner tree problem [180].

9.2.1.1 Extensions to the Basic Weber Problem

Drezner et al. [90] investigated a model where travel time is not necessarily
proportional to the distance. Every trip starts at a speed of zero, then the
vehicle accelerates to a cruising speed, stays at the cruising speed for a portion
of the trip, and then decelerates back to a speed of zero. A time equiva-
lent distance which is equal to the travel time multiplied by the cruising
speed is defined. It is proved that every demand point is a local minimum
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Fig. 9.2 Solution to the minimum sum of distances in a square

for the Weber problem defined by travel time rather than distance. Accurate
estimate of travel time is especially important when evaluating hub location
[187, 176, 30, 46, 1]. When a flight has one or more stopovers, the under-
estimation of flight time is increased, in addition to the waiting time at the
stopover, because there are more acceleration and deceleration periods. There-
fore, when using distances rather than flight times, hub location models may
underestimate the decline in quality of service due to stopovers at hubs.

Drezner and Wesolowsky [110] and Drezner and Drezner [61] considered
the Weber problem when the distance from point A to point B is not the
same as the distance from B to A. This is common in rush hour traffic or
for flights that in one direction have tail winds and in the opposite direction
have head winds.

Drezner et al. [101] considered the Weber problem on a network where
demand points can be on nodes of the network or anywhere in the plane
off the network. Distances to demand points located on the network can
be either network distances or Euclidean distances, while distances to points
off-the network are Euclidean. Travel time on the network is slower by
a given factor but is cheaper than using Euclidean distances. Applications
include building a hospital providing emergency services either by an ambu-
lance using network roads, or by a helicopter flying directly to the patient,
especially when the patient is off the network. The facility can be located
anywhere on the network and the optimal solution is not necessarily on a
node. The problem is optimally solved by the “Big Segment Small Segment”
global optimization algorithm (see also Sect. 9.4.2.3 and Berman et al. [9]).
Locating a transfer point where service is switched from one vehicle to
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another on the way to a demand point or on the way back is investigated
in [13, 14, 15].

Drezner [74] considered the Weber problem when there is uncertainty in
the location of demand points. Each demand point can be located anywhere
in a circle. The set of all possible optimal locations is found.

Farahani et al. [120] investigated the Weber problem with multiple reloca-
tion opportunities. The weight associated with each demand point is a known
function of time. Relocations can take place at pre-determined times. The
objective function is the minimization of the total location and relocation
costs.

Drezner and Scott [100] considered the location of a facility that sells
goods to a set of demand points. The cost for producing an item and the
transportation cost per unit distance are given. The total cost is the sum of
the price charged at the source (mill price) and the transportation cost paid
by the customers. Demand by customers is elastic and assumed to decline
linearly in the total cost to customers.

Drezner [79] found the sensitivity of the optimal location of the Weber
problem to changes in the locations and weights of the demand points. An
approximate formula for the set of all optimal sites is found when demand
points are restricted to given areas and weights are within given ranges.

Drezner and Goldman [94] found the smallest set of points that may
include at least one optimal solution to the Weber problem for a given set
of demand points and any unknown set of weights.

Drezner and Simchi-Levi [103] proved that when n points with random
weights are randomly generated in a unit circle, the probability that the
Weber solution point with Euclidean distances is on a demand point is
approximately 1

n . One would expect that when the number of demand points
increases to infinity, the probability that a solution is on a demand point
converges to 1 because there is no “empty space” left in the circle. This
counter-intuitive result was verified by simulation.
The possibility that some of the weights in the Weber problem are negative

is proposed in [111, 160, 33, 178]. This problem is also termed “the Weber
problem with attraction and repulsion”. Schöbel and Scholz [184] generalized
it to multiple facilities.

Drezner et al. [72] proposed the Weber obnoxious facility location
problem. The facility location is required to be at least a given distance from
demand points because it is “obnoxious” to them. For example, locating an
airport that generates noise and pollution and thus should not be too close to
communities. However, it serves travelers and thus their total travel distance
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to the airport should be minimized. Kalczynski and Drezner [140] extended
this model to multiple facilities.

9.2.2 The Minimax (One-Center) Location Problem

The minimax facility location problem (also termed the one-center problem)
is to locate a facility so that the maximum distance to a set of demand points
is minimized. For planar Euclidean distances, this problem is equivalent to
finding the center of the smallest circle enclosing all points hence the term
“center” is used for this problem. When other metrics are used, the one-
center problem is equivalent to covering all points with a shape similar to
the unit ball of the metric. For example, when rectilinear distances are used,
the problem is to cover all points with the smallest possible rhombus (a square
rotated by 45◦). This objective can be viewed as locating a facility that will
provide the best possible service to the farthest community.
The smallest circle problem was first suggested and solved by the renowned

English mathematician James Joseph Sylvester [195, 196]. An almost iden-
tical algorithm is provided by Chrystal [38]. Chrystal [38] starts with a “large”
circle that encloses all the points and reduces the radius of the circle itera-
tively until the smallest circle is obtained. Drezner [86] reviewed planar center
problems and their history. Solution methods are discussed in Sect. 9.4.2.5.

A variation on the weighted one-center problem is proposed in [75]. The
objective is to maximize the total weight of n demand points within a given
distance from the facility. An optimal procedure of complexity O(n2 log n) is
proposed. This problem is a single facility covering problem. For its multiple
facility version see Sect. 9.3.4.

9.2.3 The Obnoxious Facility Location Problem

In most location problems, the closer is a facility to demand points the
better. However, there are facilities that have a negative impact on commu-
nities (being “obnoxious”) and being farther from communities is better. For
example, noisy or polluting factories, garbage dumps, airports, should not be
located close to communities. The maximin location problem is to find the
point that maximizes the minimum (weighted) distance to all demand points.
If no restrictions on the location of the facility are imposed, the best location
is at infinity. Therefore, the location is restricted to a finite region, such as the
convex hull of the demand points.
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Melachrinoudis and Xanthopulos [167] proposed a model of locating a
new facility that serves certain demand points. Two objectives are considered:
(1) minimize the undesirable effects introduced by the new facility by maxi-
mizing its minimum Euclidean distance with respect to all demand points,
and (2) minimize the total transportation cost from the new facility to the
demand points.

Drezner and Wesolowsky [112] and Drezner et al. [73] found the best
location of a facility inside a planar network. Drezner and Wesolowsky [112]
found a point that maximizes the minimum weighted distance to the links
and nodes of the network. Drezner et al. [73] investigated two equivalent
problems. In one problem it is assumed that the links of the network generate
a negative impact and the objective is to locate a facility, such as a school or
a hospital, where the total impact is minimized. An equivalent problem is
locating an obnoxious facility where the total negative impact generated by
the facility and inflicted on the links of the network is minimized.

Berman et al. [12] considered the location of an obnoxious facility by a
developer that has a given expropriation budget. Each demand point can be
bought by the developer at a given price. Demand points closest to the facility
are expropriated (bought and eliminated) with the given budget. The objec-
tive is to maximize the distance to the closest point not expropriated. This
model is similar to minimizing the population that is exposed to the negative
impact [40].

Melachrinoudis and Cullinane [165] considered the location of an obnox-
ious facility when some obnoxious facilities already exist in the area. The
facility must be located outside circles centered at the existing facilities.

A review of obnoxious facilities models is [41]. A review of single obnox-
ious facility location models is [164]. Solution approaches are discussed in
Sect. 9.4.2.4

9.2.4 Equity Models

The purpose of equity models is to provide equitable service to demand
points. Eiselt and Laporte [115] list nineteen equity objectives. Below are
some single facility location models with equity objectives. Models involving
location of multiple facilities are discussed in Sect. 9.3.6.

1. Minimizing the range of the distances to all demand points [55, 105].
2. Minimizing the variance of the distances to the facility

[55, 159, 31, 5, 54].
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3. Minimizing the quintile share ratio [119]. The quintile share ratio is the
ratio of total weight of the 20% of the demand points with the largest
distance (top quintile) to the weight of the 20% of the demand points
with the lowest distance (lowest quintile) [64].

9.2.5 Location on a Sphere

In this section we review several location models on the surface of a sphere.
For solution approaches see Sect. 9.4.2.7.

9.2.5.1 Calculating Spherical Distances

The distance between any two points on the sphere can be calculated by the
“great circle” formula, which is the shortest distance between two points on
the surface of a sphere, utilized by airplanes [106]. The distance d

∧

along the
great circle between two points whose latitudes are ϕ1, ϕ2 and longitudes
θ1, θ2 is:

d
∧

= R arccos{cosϕ1 cosϕ2 cos(θ1 − θ2) + sin ϕ1 sin ϕ2} (9.1)

where R is the sphere’s radius (3959 miles, or 6371 kilometers, for the earth).
This formula can be re-written to avoid large round-off errors for small

distances when cos d
∧

R ≈ 1 [93]. The identity cosα = 1 − 2 sin2 α
2 is used:

cosϕ1 cosϕ2 cos(θ1 − θ2) + sin ϕ1 sin ϕ2 = cosϕ1 cosϕ2 + sin ϕ1 sin ϕ2

− (1 − cos(θ1 − θ2)) cosϕ1 cosϕ2 = cos(ϕ1 − ϕ2)

− 2 sin2
θ1 − θ2

2
cosϕ1 cosϕ2

yielding

cos
d
∧

R
=1 − 2 sin2

d
∧

2R
= cos(ϕ1 − ϕ2) − 2 sin2

θ1 − θ2

2
cosϕ1 cosϕ2

→2 sin2
d
∧

2R
= 2 sin2

ϕ1 − ϕ2

2
+ 2 sin2

θ1 − θ2

2
cosϕ1 cosϕ2

→d
∧

= 2R arcsin

√

sin2
ϕ1 − ϕ2

2
+ sin2

θ1 − θ2

2
cosϕ1 cosϕ2

(9.2)
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Another way to calculate the great circle distance [146] is to convert the
points on the surface of the sphere to three-dimensional coordinates (x, y, z )
so that x2 + y2 + z2 = R2. A point (ϕ, θ) is transformed to: x =
R cosϕ sin θ; y = R cosϕ cos θ; z = R sin ϕ. The distance d between the
points (x1, y1, z1), (x2, y2, z2) in a three-dimensional space is

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (9.3)

The angle of the segment connecting the two points seen from the sphere’s
center is α = 2 arcsin d

2R . Therefore, the great circle distance d
∧

is:

d
∧

= Rα = 2R arcsin
d

2R
(9.4)

because the great circle is on the plane connecting the two points and the
center of the sphere. d

∧

> d for d > 0 because arcsin α > α for α > 0. For
very small values of d

R , arcsin α ≈ α and thus d
∧

≈ d.
Drezner and Wesolowsky [106] showed that the spherical distance is

convex up to a distance of πR
2 and not convex for greater distances. Therefore,

if all demand points are within a circle of radius πR
4 (about 5000 kilometers

or 3100 miles on earth), the Weber problem on the sphere is convex and
has one local minimum which is the global one. They also constructed an
example of a problem with all demand points in a circle of radius πR

4 + ε

for any ε > 0 that has two local optima with different values of the objec-
tive function. Drezner et al. [93] analyzed small multiple facility location
problems on the surface of a sphere.

9.2.5.2 Various Location Models on the Sphere

The antipode of a point on a sphere is a point on the line connecting the
point with the center of the sphere “on the other side”. For example, the
antipode of Hong Kong is near Rio de Janeiro. The antipode of a point (ϕ, θ)

is (−ϕ, θ ± π). Every circle, centered at the sphere’s center, passing through
these two points is a “great circle”, and the distance between the point and its
antipode is πR which is the largest possible distance between any two points
on the sphere. This distance is obtained by the three formulas above.

By Eq. (9.1), d
∧

= R arccos
{− cos2 ϕ − sin2 ϕ

} = R arccos{−1} = πR.
By Eq. (9.2), d

∧

= 2R arcsin
{
sin2 ϕ + cos2 ϕ

} = 2R arcsin{1} = πR.
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By Eq. (9.3), d = 2R. Then, by Eq. (9.4), d
∧

= 2R arcsin{1} = πR.

The concept of the antipode can be useful for analyzing spherical prob-
lems. The distance between any point X and point Y plus the distance
between X and the antipode of Y is equal to πR. Therefore, if there are
negative weights in a location problem, a point with a negative weight can
be replaced by its antipode with a positive weight. The maximin problem
based on a set of points, is equivalent to the minimax problem based on
the antipodes of these points. This property was utilized in [109] for solving
the maximin and minimax problems on the sphere, and in [76] for solving
constrained maximin and minimax problems on the sphere.

Drezner [81] investigated the Weber objective on a surface of a sphere
when the demand points and weights are randomly generated. It is proven
that when the number of demand points increases to infinity: (i) the ratio
between the maximum value of the objective function and the minimum
value converges to one, and (ii) the expected number of points that are a
local minimum converges to one.

9.3 Multiple Facilities Location Problems

Most multiple facilities location models assume that customers are getting
their services from, or are affected by, the closest facility. If only one facility
is located, all customers are served by that facility. However, if several facili-
ties are located, the set of demand points is partitioned into subsets so that
all demand points in each subset are closest to the facility located in that
subset. When Euclidean distances are used, the plane is partitioned into
polygons based on the perpendicular bisectors between all pairs of facilities
which is a Voronoi diagram (see Sect. 9.4.2.2). Such problems are not convex
and may have several (may be many) local optima. Most of the solution
methods proposed for such problems are heuristics. For solution methods
see Sect. 9.4.3. Models that do not assume that services are provided by the
closest facility are discussed in Sect. 9.3.7.

9.3.1 Conditional Models

Conditional location models investigate locating one or more facilities when
some facilities already exist in the area. Customers select the closest existing
or new facility. Many of the models listed in the rest of this section
can also be formulated as conditional problems. The first to suggest such
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models was Minieka [168]. Some papers investigating conditional models are
[174, 135, 7, 83, 80, 36, 35, 18].

9.3.2 The p-Median Location Problem

The continuous p-median problem [89, 99], also known as the multi-source
Weber problem [22, 150, 132], or continuous location-allocation problem
[158, 23] is an extension of the single facility Weber problem [202] discussed
in Sect. 9.2.1. The problem is to find p sites for facilities that minimize a
weighted sum of distances from a set of demand points to their closest facility.

Let Xi = (xi , yi ) denote the location of facility i ∈ {1, . . . , p}, and
A j = (a j , b j ); w j > 0 the known location of demand point j and its
associated weight for j ∈ N = {1, . . . , n}. For distances measured by the

Euclidean norm: d(Xi , A j ) =
√

(xi − a j )2 + (yi − b j )2.

The planar p-median problem is: min
X⊂R2

{

f (X) =
n∑

j=1
w j min

1≤i≤p
{d(Xi , A j )}

}

,

where X = {X1, . . . , X p}.
This model was originally proposed by Cooper [47, 48], who also observed

that the objective function f (X) is not convex, and may contain several local
optima. The problem was later shown to be NP-hard [163]. For a recent
review of the planar p-median problem see Brimberg and Hodgson [24].
In the discrete version of this problem (reviewed in Daskin and Maass[51,
50]), there is a list of potential locations for the facilities, rather than locating
facilities anywhere in the plane.

It can be easily shown that in the optimal solution for Euclidean distances,
the facilities must be located in the convex hull of the demand points. The
proof is based on the theorem in Wendell and Hurter [206]: if a point is
located outside the convex hull of the demand points, then there exists a
point in the convex hull that is closer to all demand points. Therefore, if a
facility is located outside the convex hull, there is a better location for it in
the convex hull.

An extension to the p-median problem was proposed in Brimberg and
Drezner [20] based on the procedure proposed in Drezner et al. [67]. Suppose
that the set of demand points can be separated into k disconnected subsets,
such as a subset in New-York, a subset in Tokyo, etc., so that demand points
get their services from a facility assigned to a subset and not a facility assigned
to another subset. p > k facilities are to be built in these subsets. The
problem is finding how many facilities to assign to each subset so that the
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sum of the individual p-median objectives, which is the p-median objective
for the whole set, is minimized.

9.3.3 The p-Center Location Problem

The p-center location problem is an extension of the 1-center problem
discussed in Sect. 9.2.2. The objective is to minimize the maximum
(weighted) distance of demand points to their closest facility. The problem
was proposed in a network environment [145]. Solution approaches are
discussed in Sect. 9.4.3.2.

9.3.4 Cover Models

Facilities need to be located in an area to provide as much cover as possible.
A demand point is covered by a facility within a certain distance [44, 183].
Such models are used for cover provided by emergency facilities such as
ambulances, police cars, or fire trucks. They are also used to model cover
by transmission towers such as cell-phone towers, TV or radio transmis-
sion towers, and radar coverage. For a review see [179, 124, 188, 43].
Drezner et al. [65, 66] applied the cover concept to competing facilities. Each
competing facility has a “sphere of influence” [151, 121, 157, 37, 182], and
customers patronize a facility up to a certain distance.

9.3.4.1 Gradual Cover Models

In the gradual cover models, up to a certain distance R1 the demand point
is fully covered and beyond a greater distance R2 it is not covered at all.
Between these two extreme distances the demand point is partially covered.
Suppose that the cover distance in traditional cover models is 3 miles. At a
distance of 2.99 miles the demand point is fully covered, while at a distance
of 3.01 miles it is not covered at all. This assumption may be convenient for
analyzing and solving covering problems. However, in reality cover does not
drop abruptly but the decline in cover is gradual.

Church and Roberts [45] were the first to propose the gradual cover model
(also referred to as partial cover). The facilities must be located within a finite
set of potential locations. The network version with a step-wise cover func-
tion is discussed in [16]. The network and discrete models with a general
non-increasing cover function were analyzed in [17]. The single facility planar
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model with a linearly decreasing cover function between R1 and R2 was opti-
mally solved in [114], and its stochastic version (randomly distributed R1
and R2) analyzed and optimally solved in [62]. Additional references include
[143, 116, 60, 10].

Drezner et al. [68] proposed the directional gradual cover. Communities
are usually areas and not points. Not all residents are at the same distance
from a facility and in many instances only some of the residents, that are
closer to the facility, are covered. Suppose that customers residing at a demand
“point” reside in a disc (centered at the demand point) of radius r, and the
facility is located at a point. The facility covers customers within a given
distance D. All the points in the disc centered at the facility with a radius
D are covered. The intersection area between this disc and the disc centered
at the demand point of radius r is covered. Therefore, the partial cover by one
facility is the ratio between this intersection area and the area of the demand
disc. A facility within a distance D − r from the demand point covers the
whole disc, and at a distance exceeding D + r it covers none. Follow-up
papers extending the concept of the directional cover are [69, 71].

A different gradual covering model where facilities “cooperate” in
providing cover was proposed in [8]. Each facility emits a signal (such as
light posts in a parking lot) whose strength declines according to a distance
decay function. A point is covered if the combined signal from all facili-
ties exceeds a certain threshold. Recent papers on the cooperative cover are
[170, 144, 201, 3].

It is not obvious how to estimate the total partial cover of a demand point
when it is partially covered by several facilities. This issue is discussed in [10].
Let c j be the partial cover of a demand point by facility j for j = 1, . . . , p.

Eiselt and Marianov [116] proposed a total partial cover of min

{
p∑

j=1
c j , 1

}

.

Partial cover can be interpreted as the probability of cover. Assuming that the

partial covers are not correlated, the total partial cover is: 1 −
p∏

j=1

(
1 − c j

)

[12, 113, 57]. In the directional gradual cover [68], if a demand point is
partially covered by two or more facilities, the total cover (area) depends on
the distances between the facilities and the demand point, and on the direc-
tions of the facilities from the demand point. For example, if two facilities
are located North of the demand point, the cover areas overlap and the total
cover is equal to the larger cover area. If one facility is to the North and one to
the South, total cover is greater than the larger cover area unless the demand
point is fully covered by one of the facilities. Total cover is at least the largest
cover by one of the facilities and cannot exceed the sum of the covers by
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individual facilities. When r = 0, the demand point is either fully covered or
not covered at all. The cover is identical to the cover applied in the standard
non-gradual cover models.

9.3.5 The Multiple Obnoxious Facilities Location
Problem

In all models of locating obnoxious facilities, all facilities must be located in
a finite feasible area. Otherwise, facilities will be located “at infinity”. For a
review of obnoxious facilities models see [41].

One of the models for the multiple obnoxious facilities location problem is
to locate p facilities, that are at least a distance D from one another, with the
objective of maximizing the shortest distance between facilities and demand
points [205, 96]. The problem is “extremely” non-convex. The surface of the
shortest distance to the communities is depicted in Fig. 9.3. The hilltops are
Voronoi points discussed in Sect. 9.4.2.2. There are 202 hilltops in the figure.
Drezner et al. [96] proposed to find locations on hilltops for p facilities that
are at least a given distance D from one another with the objective of maxi-
mizing the shortest distance between demand points and facilities. Kalczynski

Fig. 9.3 Surface of the distance to the closest demand point in a square
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and Drezner [139] improved this procedure. Kalczynski et al. [141] general-
ized this problem to include weights associated with demand points. Rather
than maximizing the minimum distance, the objective is maximizing the
minimum weighted distance. Solution methods are described in Sect. 9.4.3.3

Eiselt and Marianov [117] modeled the locations of landfills and transfer
stations. The model is formulated as a bi-objective problem. One objective
is cost-minimization, while the other is minimizing pollution. Melachri-
noudis et al. [166] proposed a multi-objective model for the location of
landfills. Teran-Somohano and Smith [199] present a model for the obnox-
ious, multiple capacitated facility location problem on a Euclidean plane. The
problem is solved using a bi-objective evolutionary strategy algorithm that
seeks to minimize social and non-social costs. The effects of under and over
capacitating the facility are included in the cost functions.

Kalczynski and Drezner [138] proposed solving two variants of obnoxious
multi-facilities problems with the objective of maximizing the sum of the
shortest distances rather than the minimum, which can be termed p-maxian
following the terminology of [42]. Since there is no advantage to locating
facilities close to one another, there is no need to require a minimum distance
between facilities. One problem’s objective is maximizing the sum of weighted
distances between each demand point and its closest obnoxious facility. The
second objective is maximizing the sum of weighted distances between each
facility and its closest obnoxious demand point. They first solved the prob-
lems using three general purpose nonlinear software packages from many
randomly generated starting solutions: Matlab’s [129] interior point, SNOPT
[125], and MSLP (Multi-start Sequential Linear Programming [95] which
performed the best of the three). However, as in [96], the best quality solu-
tions and shortest run times were obtained by selecting p starting locations
among the Voronoi points.

Drezner et al. [70] defined a different objective function. The negative
impact emitted by the facilities declines by the square of the distance and
is additive. The facilities “cooperate” in inflicting the disturbance. The objec-
tive is to minimize the disturbance inflicted on the most affected community.
Since locating two facilities at the same location doubles the disturbance
generated at that location, there is no need to require a minimum distance
between facilities. The model is a generalization of the single facility location
model proposed by Hansen et al. [133].
The p-dispersion problem, originally described by Shier [186] on a tree

network, deals with facility to facility interactions as no demand points are
included in the model. The objective is maximizing the minimum distance
between facilities. Kuby [149] designed an integer programming formulation
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for the discrete case. It was approached in the continuous space by [92, 161].
For the continuous case, there is a bounded area with no demand points.
An equivalent problem is circle packing in a convex area (finding p non-
intersecting circles inside a convex area with the greatest possible radius [154,
161, 173, 197]). Common convex areas investigated in the literature include
a square, a rectangle, a disk, and an equilateral triangle [197, 155].

9.3.6 Equity Models

Equity models aim to provide similar service to the demand points rather
than minimizing or maximizing some objective. Single facility models are
discussed in Sect. 9.2.4. Examples of multiple facilities models include:

1. Minimizing the Gini coefficient of the Lorenz curve [156, 126] calculated
by service distances to the closest facility [63].

2. Equalizing the load serviced by the facilities [193, 4, 11].
3. The set of demand points is partitioned into groups. These groups are

not necessarily divided by their locations but by characteristics such as
neighborhoods’ wealth. The objective is to provide equitable service to
the groups by locating one or more facilities. For example, poor neigh-
borhoods should get comparable service level to rich neighborhoods
[59].

9.3.7 Not Necessarily Patronizing the Closest Facility

Most multiple facility location problems assume that customers get their
services from the closest facility. There are a few papers that do not assume
that. Brimberg et al. [26] assumed that there is a sequence of probabilities
p1, p2, . . .. A customer is served by the closest facility with probability p1,
by the second closest with probability p2, and so on. In competitive location,
discussed in Chapter [52] in this book, one approach termed the gravity or
Huff model [181, 136, 137] assumes that customers split their patronage
among several competing facilities rather than patronize the closest one. The
probability of patronizing a facility declines by a distance decay function.

Some models propose that customers obtain their services according to the
gravity rule. Drezner and Drezner [56, 54] proposed the gravity p-median
model. It is assumed that users choose from among the facilities providing
services according to the gravity rule rather than getting them from the closest
facility.
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Drezner and Drezner [53] applied the gravity rule to the hub location
problem. A traveler needs to fly from one airport to another. Several potential
hub airports are available. If the origin or the destination is a hub airport, the
traveler chooses a non-stop flight. Otherwise, the probability that a certain
hub is selected is governed by the gravity rule.

Drezner and Drezner [58] considered the gravity rule version of the
multiple server location problem [6]. Total service time consists of travel
time to the facility, waiting time in line, and service time. There is a given
number of servers to be distributed among the facilities. Each facility acts as
an M/M/k queuing system [162]. Customers select a server with a probability
proportional to its attractiveness and to a decay function of the distance, not
necessarily selecting the closest one.

9.4 Solution Methods

9.4.1 Generating Replicable Test Problems

In order to compare computational results of test problems in future research,
access to the parameters of the test problems is required. Drezner et al. [96]
suggested a simple method, that was used in many follow-up papers, to
generate a pseudo-random sequence of numbers distributed uniformly in the
open range between 0 and 1 based on the idea of Law and Kelton [152].
Such test problems can be easily replicated without a need for an access to a
data base.

A starting seed r1 and a multiplier λ, which are odd numbers not divisible
by 5, are selected. Note that r1 can be an even number not ending with a
zero. Drezner et al. [96] used λ = 12, 219. The sequence is generated by the
following rule for k ≥ 1:

rk+1 = λrk − 
 λrk
100, 000

� × 100, 000

The number rk is an integer between 1 and 99,999, so rk
100,000 is a number

in the open range between 0 and 1. If a random number between a and
b is sought, we can use a + (b − a)

rk
100,000 . It turns out that r5001 = r1

and if a sequence of more than 5,000 points is needed, the 100,000 can be
replaced by 1,000,000 and sequences of up to 50,000 numbers can be gener-
ated [142]. Drezner et al. [96] used r1 = 97 to generate the x coordinates,
and r1 = 367 to generate the y coordinates of their test problem. The surface
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plot for n = 100 for the obnoxious facility problem depicted in Fig. 9.3 is
based on the points generated this way.

9.4.2 Solving Single Facility Problems

9.4.2.1 Solving with the Solver in Excel

Convex single facility location problems can be solved with the Solver in
Excel, mainly for instruction purposes. Expression (9.5) is easy to program.
There are only two variables (x, y). For the one-center problem, it is better
to formulate it as minimize {L} subject to the constraints that each distance
≤ L . The distances (9.1) for problems on the sphere are somewhat more
complicated to program, but spherical problems can serve as a good example
for a global FedEx idea of planes flying to a central airport, exchange packages
and fly back. If the company serves 20 cities all over the world, flying directly
between all pairs of cities will require 380 airplanes to fly daily, while this
scheme requires only 20 airplanes.

If a problem is not convex, it can be heuristically solved by Solver using
VBA (Visual Basic for Applications) in a multi-start approach (for example
repeating the process 100 times). Each starting solution is randomly gener-
ated, and the problem is solved by calling Solver in the VBA code, and the
best solution is selected.

9.4.2.2 Voronoi Diagram and Delaunay Triangulation

A Voronoi diagram [200] is constructed by a set of generator points. The
plane is partitioned into polygons so that all the points inside a polygon are
closest to one generator point. The sides of the polygons are equidistant from
two generator points (and closest to them), and the vertices of the polygons
(termed Voronoi points) are equidistant from three generator points. So, for
example, if the generator points are facilities, the plane is partitioned into
polygons so that the points inside a polygon are closest to the same facility. If
a demand point gets its services from the closest facility, each facility provides
service to the set of demand points in its polygon.
The Delaunay triangulation [153] is based on the Voronoi diagram. A

polygon whose interior is the feasible set, has demand points in its interior
(and boundary). The polygon is partitioned into non-overlapping triangles
so that the vertices of the triangles are demand points, and the union of the
triangles covers the whole feasible polygon. Figure 9.4 depicts an example
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Fig. 9.4 Delaunay triangulation of the convex hull

of a Delaunay triangulation of the convex hull of a set of points. The
Delaunay triangulation can be generated by Mathematica [208]. For a review
of Voronoi Diagrams and Delaunay triangulation see [2, 194, 175].

9.4.2.3 General Global Optimization Algorithms

The first global optimization procedure suitable for the location of a single
facility is the “Big-Square-Small-Square” (BSSS) proposed by Hansen et al.
[133]. It is a branch and bound algorithm. A relative accuracy ε > 0 is
given. A square that covers the feasible region is defined, and a formula (or
procedure) for finding lower and upper bounds in a square is needed. The
following steps are executed for a minimization problem. A procedure for
maximization is very similar.

1. Find the lower bound LB1 and the upper bound UB1 in the square. The
upper bound is at a feasible point. The list of squares has one member. The
best upper bound (best solution found so far) in the list is UB = UB1.

2. Select the square i in the list with the minimum LBi . If LBi > UB(1−
ε), stop with UB as the solution.

3. Remove square i (the “big” square) from the list and create four “small”
squares by perpendicular lines, parallel to its sides, through the big square’s
center.

4. For each of the four small squares:
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a. Calculate the lower bound LB and the feasible upper bound UB in
the square.

b. Update UB if UB < UB.
c. If LB ≤ UB(1 − ε), add the small square to the list.

5. If UB was updated in Step 4b, check all the squares in the list and remove
squares for which LBi > UB(1 − ε).

6. If the list of squares is empty, stop withUB as the solution within a relative
accuracy ε. Otherwise, go to Step 2.

The BSSS branch and bound algorithm was modified in several ways.
Drezner and Suzuki [104] constructed the “Big-Triangle-Small-Triangle”
(BTST) procedure. The feasible set, such as the convex hull of the demand
points, is triangulated by the Delaunay triangulation [153] described in
Sect. 9.4.2.2. The initial list consists of the Delaunay triangles. In the first
phase bounds are calculated for each triangle, and some triangles are removed
from the list. The second phase is similar to BSSS. Four “small triangles” are
created by connecting the centers of the sides of the selected “big triangle”.
The BTST algorithm is more efficient, especially when the feasible area is not
the whole square. In order to evaluate the bounds for BSSS, the feasibility of
points in a square needs to be considered. In BTST all Delaunay triangles
and consequently all small triangles are feasible by design and no feasibility
check is required.

Drezner [85] constructed a general algorithm for solving by BTST any
location problem whose objective is a sum of individual terms, one for
each demand point. Specific bounds are constructed when each term can be
expressed as a difference between two convex functions of the distance which
are not necessarily convex in the coordinates x and y. For example, − ln(d)

is convex for d > 0 but it is not convex (or concave) in the coordinates.
Drezner and Nickel [98] constructed general bounds for problems that can
be formulated as an ordered median problem [172].

Drezner et al. [72] constructed the “Big-Arc-Small-Arc” (BASA) algorithm
for solving location problems on peripheries of circles. Berman et al. [9]
designed the “Big-Segment-Small-Segment” algorithm for solving problems
on networks. Schöbel and Scholz [184] proposed the “Big-Cube-Small-Cube”
(BCSC) algorithm for solving problems in k-dimensional space for k ≥ 3.
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9.4.2.4 Solving the Weber Problem

The first algorithm for solving the Weber [202] problem with Euclidean
distances was designed by [203] (translated to English in [204]). It is an iter-
ative procedure converging to the optimal solution because the problem is
convex [177].

Let (xi , yi ) for i = 1, . . . n with weights wi > 0 be a set of demand
points in the plane. The objective function is:

min
x,y

{
n∑

i=1

wi

√
(x − xi )2 + (y − yi )2

}

(9.5)

A starting solution (x
∧

, y
∧

) is selected. The next iterate is obtained by equating
the derivatives of Eq. (9.5) by x and y at (x

∧

, y
∧

) to zero, and solving for (x, y).
Define w

∧

i = wi√
(x
∧

−xi )2+(y
∧

−yi )2
, then

n∑

i=1

w
∧

i (x − xi ) = 0;
n∑

i=1

w
∧

i (y − yi ) = 0 → x =

n∑

i=1
w
∧

i xi

n∑

i=1
w
∧

i

; y =

n∑

i=1
w
∧

i yi

n∑

i=1
w
∧

i

.

(9.6)

When the Euclidean distance is replaced by the squared Euclidean distance,
the solution is at the center of gravity (w

∧

i = wi ). When Manhattan (�1)
distances are used, the problem is separable into two unrelated one dimen-
sional problems. The solution in one dimension (on a line) is at the median
point, hence the name “the one-median problem”. For �p distances, a proce-
dure similar to Weiszfeld [203] is designed by Brimberg and Love [25]. For
details see [158, 122].

Several improvements of the Weiszfeld algorithm [203] were proposed.
Drezner [82] proposed to multiply the change between two consecutive itera-
tions by a factor of 1.8. An “ideal” multiplier that needs to be computed every
iteration was also proposed. Drezner [84] proposed to accelerate the proce-
dure by estimating the limit of a geometric series by the ratio of the changes
of two consecutive iterations. Drezner [87] proposed the fortified algorithm
based on the values of the objective function at 9 points (the present itera-
tion and eight points around it on the vertices and sides’ centers of a square
depicted in Fig. 9.5), and fitting a paraboloid to these nine values by a least
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Fig. 9.5 The square configuration for the fortified algorithm

squares quadratic regression. The next iterate is the minimum point of the
paraboloid. For details see Drezner [87].

9.4.2.5 Solving the One-Center Problem

Elzinga and Hearn [118] proved that the smallest circle enclosing all points
passes through two points (in which case the solution is in the middle
between the points), or through three points. They proposed the following
algorithm for solving optimally the unweighted 1-center problem:

1. Pick any two points. Construct a circle based on the segment connecting
the two points as a diameter.

2. If the circle covers all points, a solution has been found, stop.
3. Otherwise, add a point outside the circle to the pair of points to form a

set of three points.
4. If the triangle with the three points at its vertices has an angle of at least

90◦, drop the point on the obtuse angle and go to Step 3.
5. If the circle passing through the three points covers all points, a solution

has been found, stop.
6. If there is a point outside the circle, choose such a point, and add it as a

fourth point. One of the original three points needs to be discarded. Go
to Step 4.

Once the solution based on three points is available [108], the following
modification is faster and can be used for the weighted case as well.
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1. Select a point such as the center of gravity of the demand points.
2. Select the three farthest points (weighted for the general case).
3. Find the solution point based on these three points.
4. This point is the next iterate. Note that the solution point may be based

on only two of the points.
5. Find the largest weighted point from the next iterate. If it is within the

(weighted) distance obtained in Step 4 stop.
6. Otherwise, replace each of the three points by the farthest point (actually

solving the four point problem) and select the center of the best solution
as the next iterate. Go to Step 4

Drezner and Shelah [102] constructed a special configuration that shows
that the Elzinga and Hearn [118] algorithm can have a complexity of at
least o(n2) even though in practice the complexity is linear for most tested
problems.

9.4.2.6 Solving the Obnoxious Facility Problem

In Fig. 9.3 the surface of the shortest distance to a set of 100 randomly
generated demand points is depicted. The solution is on the top of the tallest
hill. There are 202 hilltops in the figure. It turns out that these hilltops are
Voronoi points (see Sect. 9.4.2.2). The Voronoi points can be easily generated
by Mathematica [208], or special FORTRAN programs such as Sugihara and
Iri [190, 191]. Shamos and Hoey [185] observed this property. Their idea was
to generate all the Voronoi points and select the one with the largest shortest
distance. Dasarathy and White [49] solved the unweighted maximin problem
directly without resorting to Voronoi diagrams. Drezner and Wesolowsky
[107] solved the weighted version of the problem.

Hansen et al. [133] observed that the negative impact inflicted by an
obnoxious facility usually declines by the square of the distance. Let a facility
be located at location X , and the distance between community i for i =
1, . . . , n and location X is di (X). There are wi residents in community i.
The objective is to minimize the cumulative effect on the residents in the
area by locating the facility in a pre-determined region S , with the objective:

min
X∈S

n∑

i=1

wi

d2i (X)
(9.7)
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They optimally solved this problem by the Big-Square-Small-Square (BSSS)
global optimization method (described in Sect. 9.4.2.3) designed in that
paper.

9.4.2.7 Solving Spherical Problems

Hansen et al. [130] and Suzuki [192] constructed global optimization algo-
rithms for location on a sphere’s surface based on the algorithms described
in Sect. 9.4.2.3. For spherical surfaces, Hansen et al. [130] generalized the
BSSS algorithm [133], and Suzuki [192] generalized the BTST algorithm
[104]. The spherical Delaunay triangles are found by the method in Sugihara
[189].

9.4.3 Multiple Facilities Solution Methods

Most solution methods of continuous multiple facilities locations are
heuristic. Only small instances can be optimally solved in reasonable
computer time.

9.4.3.1 p-Median

The planar p-median problem is known to be NP-hard [163], and there-
fore many heuristics have been developed for its solution. Classical heuristics
include the famous alternating procedure [47, 48], the projection method
[19], and gradient-based methods [34, 171]. An algorithm that can optimally
solve medium size problems is designed by Krau [148]. For recent reviews of
solution approaches to the planar p-median problem the reader is referred to
[88, 89, 27].

Cooper [47, 48] proposed the alternating (sometimes called location-
allocation) method. Starting locations for p facilities are selected (randomly or
otherwise). The set of demand points is partitioned into subsets, each served
by one facility. The best location of the facility serving each subset (the Weber
problem which is convex) is found, and possibly a different partition is found.
The process is continued until the partition into subsets stabilizes

Genetic algorithms [134, 128] in combination of additional heuristics
such as variable neighborhood search [169, 131], tabu search [127], were
proposed in [198, 21, 123, 88, 99]. The best results were obtained in [91].
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9.4.3.2 p-Center

Drezner [78] optimally solved the two-center and the two-median problems
on the plane. It is proved that in the optimal solution there is a line separating
the set of demand points into two subsets such that the single facility solution
point for each subset yields the optimal solution to the two facilities problem.
There are at most 1

2n(n−1) such lines. Once all separating lines are evaluated,
the optimal solution is identified. A lower bound for each subset improves the
efficiency of the algorithm.

Drezner [77] suggested two heuristics and one optimal algorithm for the
solution of the weighted p-center problem. The two heuristic procedures
are similar to the location-allocation algorithm [47, 48]. The optimal algo-
rithm is based on the property that the solution to the one-center problem is
based on two or three demand points [118]. There are 1

6n(n2 + 5) possible
maximal sets. Based on a proof in [75], the number of relevant maximal sets
is bounded by n(n − 1). The proposed optimal algorithm is polynomial in n
for a fixed p. The extension of the modified center problem [75] is also solved
in polynomial time.

Callaghan et al. [28, 29] constructed the best optimal algorithm to
solve the p-center problem. They optimally solved problems with up
to 1,323 demand points. Earlier solution algorithms were proposed by
[32, 34, 36, 35].

9.4.3.3 Multiple Obnoxious Facilities Solution Methods

The Voronoi points (hilltops in Fig. 9.3) are found. The heuristic algorithm
proposed in Drezner et al. [96] is to select p hilltops so that the distance
between any two hilltops is at least D, and the lowest hilltop is as high as
possible. This is done by solving the following Binary Linear Program (BLP).

Let K be the number of hilltops, and di be the shortest distance between
hilltop i and all demand points (the height of the hilltop). The hilltops are
sorted so that d1 ≥ d2 ≥ . . . dK . The distance between hilltops i and j is
Di j , and we select only hilltops that are at least a given distance D from
one another. The proposed binary linear program is (For complete details see
Drezner et al. [96]):

Maximize {L}
subject to:
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K∑

i=1

xi = p

xi + x j ≤ 1 when Di j < D

L + xi (d1 − di ) ≤ d1 for i = 1, . . . , K

xi ∈ {0, 1} (9.8)

9.5 Summary and Suggestions for Future
Research

Location models involve locating one or more facilities among a given set of
demand points to achieve a certain objective. For example: locating a ware-
house that serves a set of stores; locating a landfill to serve communities but
should not be close to them; locating cell-phone towers with a certain range
to cover the population in an area. In discrete location models, a finite set
of potential locations for facilities is given. In continuous location models,
facilities can be located anywhere in the plane, or in a finite region with an
infinite number of possible locations.

Such problems are modeled as optimization problems, such as nonlinear
programming. Some models are convex and can be easily solved to optimality.
Single facility location problems can be optimally solved by the algorithms
detailed in Sect. 9.4.2.3. However, most multiple facility problems are non-
convex and optimal algorithms are difficult to construct. Therefore, specially
designed heuristic algorithms, meta-heuristic approaches such as genetic algo-
rithms [134, 128], variable neighborhood search [169, 131], tabu search
[127] and others, are applied for their solution.
There are many models that were proposed in discrete space but yet to be

investigated in continuous space. In discrete space such problems are combi-
natorial in nature: selecting p locations for facilities out of the list of potential
locations. Well-designed branch and bound algorithms may be able to solve
them to optimality. In continuous space, optimal algorithms are difficult to
construct, and heuristic algorithms are usually constructed for solving them.
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10
Data Envelopment Analysis: Recent

Developments and Challenges

Ali Emrouznejad, Guo-liang Yang, Mohammad Khoveyni,
and Maria Michali

10.1 Introduction

Hitherto many developments have been made by researchers in the field
of Data Envelopment Analysis. These studies are in the context of perfor-
mance evaluation, finding suitable benchmarks for efficient and inefficient
decision-making units (DMUs), detecting the congestion status of DMUs,
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estimating the returns to scale (RTS), deciding about the optimal budget allo-
cation, measuring the efficiency of multi-stage DMUs with series and parallel
network structures, etc.

One of the most important problems in operations management is to
measure the productive efficiency of firms from both the theoretical and
economic viewpoints. From the economic point of view, it is significant to
know how much a firm can increase its outputs so that its efficiency score
increases without reducing any inputs. Besides, from a theoretical viewpoint,
a production function concept illustrates the basis of the relationship between
the inputs and the outputs of a firm. In principle, the maximum amount of
outputs that can be produced without any reduction of the inputs, and the
minimum amount of inputs that can be consumed without deterioration of
outputs can be explained by the production function.

In the literature, there exist two main methods to estimate efficient fron-
tiers from an economics viewpoint. These methods are denoted as parametric
and non-parametric, with the non-parametric method being more common.
The focus of this chapter is on the non-parametric method which extends
the concept of measuring efficiency scores of DMUs from a single-input and
single-output case to a multi-input and multi-output case. This method was
proposed by Charnes, Cooper, and Rhodes [5] and was named Data Envel-
opment Analysis (DEA). DEA has rapidly grown with over 20,000 papers
published in the last four decades and applications of DEA appeared in
many fields including operational research, economics, accounting, informa-
tion management, and engineering to measure efficiency scores DMUs, e.g.,
firms, hospital, banks, airports, etc.

In complex organizations, the production process involves several stages.
The standard DEA is a black box model which is not capable to measure the
efficiency of the multi-stage production process. Hence, has been introduced
to the literature by considering the intermediate products of multi-stage
DMUs. It is necessary to mention that the structures of these multi-stage
DMUs consist of series and/or parallel network structures.
This chapter reviews some of the recent developments and challenges of

DEA and the rest of this chapter is structured as follows. Section 10.2 explains
the background of DEA including some related models under the assump-
tions of constant and variable returns to scale (RTS). Section 10.3 describes a
short literature survey of publications. In Sect. 10.4, some recent theoretical
developments are provided. This is followed by a review of some applications
of DEA. Section 10.5 provides direction for future developments and the
conclusion is given in Sect. 10.6.
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10.2 Background

In this section, we intend to explain the standard DEA-based models under
the constant returns to scale (CRS) and variable returns to scale (VRS) speci-
fications to measure the efficiency scores of DMUs with multiple inputs and
multiple outputs.

Here, consider a set of n homogeneous DMUs, where each DMU j , ( j =
1, 2, .., n) uses an input vector X j = (x1 j , ..., xr j , ..., xmj ) ≥ 0 to produce
an output vector Y j = (y1 j , ..., yr j , ..., ys j ) ≥ 0, such that X j �= 0 and
Y j �= 0. Further, we define the production possibility set (PPS) as PPS =
{(X, Y )|Y ≥ 0 can be produced by X ≥ 0}.

Definition 10.1 DMUp =
(
X p

Yp

)
is dominated by DMUq =

(
Xq

Yq

)
if

and only if

(−X p

Yp

)
≤
(−Xq

Yq

)
, and

(−X p

Yp

)
�=
(−Xq

Yq

)
.

10.2.1 The CCR Model in the Envelopment
and Multiplier Forms

The production possibility set (PPS), denoted by TC , under the CRS
assumption is as follows:

TC = {(X, Y )|
n∑
j=1

λ j X j ≤ X,

n∑
j=1

λ j Y j ≥ Y, λ j ≥ 0; j = 1, 2, ..., n}

(10.1)

Hereafter, in this study, “*” is used to indicate the optimal solution values.
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The input efficiency scores of a target DMU (DMUp; p ∈ {1, 2..., n})
can be assessed by the following input-oriented envelopment model ([5]):

Min θ − ε

( m∑
i=1

s−
i +

s∑
r=1

s+
r

)

s.t.
n∑
j=1

λ j xi j + s−
i = θxip, i = 1, ...,m,

n∑
j=1

λ j yr j − s+
r = yrp, r = 1, ..., s,

λ j ≥ 0, j = 1, ..., n,

s−
i ≥ 0, i = 1, ...,m, s+

r ≥ 0, r = 1, ..., s,

(10.2)

where xip and yrp represent the amount of the i th input and the r th

output for DMUp, respectively. Here, ε is a non-Archimedean small posi-
tive number. Moreover, the input and output slacks are denoted by s−

i
(i = 1, 2, ...,m) and s+

r (r = 1, 2, ..., s), respectively.

Definition 10.2 DMUp is called CCR-efficient in TC if and only if there is
no DMU j ( j = 1, 2, ..., n) which can dominate DMUp, in other words,
an optimal solution (θ∗, λ∗, s−∗, s+∗) obtained from model (10.2) satisfies
θ∗ = 1 and has no slack (s−∗ = 0, s+∗ = 0). Otherwise, DMUp is CCR-
inefficient.

The dual version of model (10.2), the multiplier model, is as follows:

Max UtYp

s.t. UtY j − V t X j ≤ 0, j = 1, ..., n,

V t X p = 1, U ≥ 0, V ≥ 0,

(10.3)

where the vectors V and U denote the decision variables corresponding to
the inputs and outputs, respectively.

Definition 10.3 (CCR-efficient) DMUp is called CCR-efficient in TC if
and only if an obtained optimal solution (U∗, V ∗) from model (10.3)
satisfies Ut∗Yp = 1, U∗ > 0, and V ∗ > 0. Otherwise, DMUp is
CCR-inefficient.



10 Data Envelopment Analysis ... 311

10.2.2 The BCC Model in Envelopment and Multiplier
Forms

Now, we consider the PPS under the VRS assumption, denoted by TV , that
is as below:

TV =
⎧⎨
⎩(X, Y )

∣∣∣∣
n∑
j=1

λ j X j ≤ X,

n∑
j=1

λ j Y j ≥ Y,

n∑
j=1

λ j = 1, λ j ≥ 0; j = 1, 2, ..., n

⎫⎬
⎭.

(10.4)

The input efficiency scores of the DMUp under evaluation can be calculated
by the following input-oriented envelopment model [3]:

Min θ − ε

( m∑
i=1

s−
i +

s∑
r=1

s+
r

)

s.t.
n∑
j=1

λ j xi j + s−
i = θxip, i = 1, ...,m,

n∑
j=1

λ j yr j − s+
r = yrp, r = 1, ..., s,

n∑
j=1

λ j = 1, λ j ≥ 0, j = 1, ..., n,

s−
i ≥ 0, i = 1, ...,m, s+

r ≥ 0, r = 1, ..., s,

(10.5)

where xip, yrp, ε, s
−
i (i = 1, 2, ...,m), and s+

r (r = 1, 2, ..., s) are defined
as before.

Definition 10.4 (BCC-efficient)
DMUp is called BCC-efficient in TV if and only if there is no DMU j

( j = 1, 2, ..., n) which can dominate DMUp, in other words, an optimal
solution (θ∗, λ∗, s−∗, s+∗) obtained from model (10.5) satisfies θ∗ = 1 and
has no slack (s−∗ = 0, s+∗ = 0). Otherwise, DMUp is BCC-inefficient.
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The dual version of model (10.5), i.e., the multiplier model, is as below:

Max UtYp + u p

s.t. UtY j − V t X j + u p ≤ 0, j = 1, ..., n,

V t X p = 1, U ≥ 0, V ≥ 0, u p free in sign,

(10.6)

where the vectors V and U are defined as before.

Definition 10.5 (BCC-efficient) DMUp is called BCC-efficient in TV if
and only if an obtained optimal solution (U∗, V ∗, u∗

p) from model (10.6)
satisfies Ut∗Yp + u∗

p = 1, U∗ > 0, and V ∗ > 0. Otherwise, DMUp is
BCC-inefficient.

10.2.3 The Additive Model

The additive model is a non-radial DEA model given as follows:

Max
m∑
i=1

s−
i +

s∑
r=1

s+
r

s.t.
n∑
j=1

λ j xi j + s−
i = xip, i = 1, ...,m,

n∑
j=1

λ j yr j − s+
r = yrp, r = 1, ..., s,

n∑
j=1

λ j = 1, λ j ≥ 0, j = 1, ..., n,

s−
i ≥ 0, i = 1, ...,m, s+

r ≥ 0, r = 1, ..., s,

(10.7)

where xip, yrp, ε, s
−
i (i = 1, 2, ...,m), and s+

r (r = 1, 2, ..., s) are defined
as before.

Definition 10.6 DMUp is called efficient in TV if and only if an optimal
solution (λ∗, s−∗, s+∗) obtained from model (10.7) satisfies s−∗ = 0 and
s+∗ = 0. Otherwise, DMUp is inefficient.
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Fig. 10.1 Annual statistics of the number of DEA articles published (1978–2021)

10.3 A Short Literature Survey and Trend
of Publications on DEA

10.3.1 Statistics Based on Publication Years

The histogram of the DEA-related articles given in Fig. 10.1 reveals a contin-
uous and rapid growth in the number of DEA-related articles published
annually since the first publication of Charnes et al. [5]. Four obvious conclu-
sions can be extracted from Fig. 10.1. Firstly, during the early years of the
DEA methodology, i.e., before 1994, less than 100 articles related to DEA
were published per year, which reveals that the DEA theory had a relatively
narrow scope of innovation. Secondly, articles in the DEA field entered a
steadily growing stage during the period from 1994 to 2004, even though
the number of DEA-related articles published remained below 200 per year.
Thirdly, from 2004 to 2011 is the stage of rapid growth and development
of the DEA theory and its applications. The annual average publications are
increased substantially. Fourthly, the most obvious growth of the number of
articles occurred in the last years, with over 1000 publications per year since
2011.

10.3.2 Statistics Based on Journals

Table 10.1 displays the top 25 journals that have published the largest
number of articles concerning DEA and its application from 1978. 3576
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Table 10.1 The 25 journals that have published the largest number of DEA-related
articles

No. Journals Numbers

1 European Journal of Operational Research 731
2 Journal of the Operational Research Society 313
3 Journal of Productivity Analysis 272
4 Annals of Operations Research 213
5 Expert Systems with Applications 196
6 Applied Economics 143
7 Omega 130
8 Journal of Cleaner Production 127
9 Socio-Economic Planning Sciences 125
10 Omega (United Kingdom) 124
11 Computers and Industrial Engineering 112
12 Energy Policy 106
13 Sustainability (Switzerland) 100
14 Applied Mathematics and Computation 95
15 International Journal of Production Economics 92
16 Benchmarking 86
17 Energy Economics 79
18 Computers and Operations Research 78
19 International Journal of Production Research 72
20 Energy 68
21 Health Care Management Science 66
22 Applied Economics Letters 64
23 Journal of Air Transport Management 62
24 Applied Mathematical Sciences 61
25 Applied Mathematical Modeling 61

Sum 3576

DEA-related articles were published in these 25 journals, which accounts
for 30.89% of the total 11554 journal articles. Since DEA theory and most
of the applications belong to the field of management science and opera-
tions research (MS/OR), the most commonly used periodicals were related to
MS/OR, such as European Journal of Operational Research, Journal of the Oper-
ational Research Society, Journal of Productivity Analysis, Annals of Operations
Research, and so on.

10.3.3 Statistics Based on Authors

According to the statistical data, over 20,000 distinct authors are identified
in the DEA-related publications. The largest number of DEA-related articles
were written by two authors, accounting for about 33% of the total. Almost
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Fig. 10.2 Distribution by number of authors of DEA-related articles

16% of the total investigated articles were written by a single author. Besides,
an article was written by 30 distinct authors1, which is the article with the
largest number of authors. More details of the distribution of DEA-related
articles by a number of authors are presented in the following Fig. 10.2.

10.3.4 Statistics Based on Keywords

We analyzed the keywords in DEA-related articles, and the top-50 most
frequently used keywords are listed in Table 10.2. Undoubtedly, DEA-
related terms, e.g., Data Envelopment Analysis, DEA, and DEA models,
were the most widely used. In addition, some words referring to efficiency
measurement, and decision-making analysis, i.e., efficiency, decision-making,
technical efficiency, and so on, were also commonly used keywords.

10.3.5 Statistics Based on Page Numbers (Size)

During the recent 40 years, DEA-related articles have been published in
various journals and cover over 140,000 pages, with an average of 13.4 pages
per article. Statistics show that three-quarters of the DEA-related articles have
6 to 18 pages, and the DEA-related articles with 10 pages in length are the
most frequent, accounting for about 8%. A DEA-related article, with 74
pages, ranked first as the longest one among all the surveyed articles. More

1 Di Giorgio et al. (2016). The potential to expand antiretroviral therapy by improving health
facility efficiency: evidence from Kenya, Uganda, and Zambia, BMC Medicine 14, 108. DOI
10.1186/s12916-016-0653-z.
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Table 10.2 The 50 most commonly used keywords in DEA-related articles

No. Keywords

1 Data Envelopment Analysis, Data Envelopment Analysis (DEA), DEA, or
DEA models

2 Efficiency
3 Decision-making
4 Technical efficiency
5 Productivity
6 Linear programming
7 Mathematical models
8 Decision-making unit, Decision-making units, Decision-Making units
9 Benchmarking
10 Data reduction
11 Human, Humans
12 Article
13 Efficiency measurement
14 Malmquist index, Malmquist productivity index
15 Optimization
16 China
17 Operations research
18 Performance
19 Data handling
20 Energy efficiency
21 Bootstrap, bootstrapping
22 Performance assessment
23 Regression analysis
24 Efficiency, Organizational
25 Economics
26 Returns to scale
27 data analysis
28 United States
29 Performance evaluation
30 Eurasia
31 Ranking
32 Relative efficiency
33 Banking
34 Industry
35 Resource allocation
36 Efficiency analysis
37 Performance measurement
38 Data envelopment

(continued)
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Table 10.2 (continued)

No. Keywords

39 Problem solving
40 Costs
41 Total factor productivity
42 Europe
43 Sustainable development
44 Decision theory
45 Competition
46 Mathematical programming
47 methodology
48 Organization and management
49 Profitability
50 Efficiency evaluation

Fig. 10.3 Distribution by page number of DEA articles

details of the number of pages of the DEA-related articles are illustrated in
Fig. 10.3.

10.4 Recent Theoretical Developments in DEA

10.4.1 Network DEA

In this section, we intend to clarify the recent contributions presented by
researchers in the field. Färe and Grosskopf [9] were those who initially
proposed this term to describe multi-stage processes and set the base for its
future study.
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Consider a set of n DMUs, denoted by DMU j ( j = 1, 2, .., n), oper-
ating on a two-stage production process with a series network structure (see
Fig. 10.4). Note that each DMU j has at least one positive input, one positive
intermediate product, and one positive output.

Guo et al. [11] proposed the following multiplier model (model (10.8)) to
estimate the efficiency of a two-stage DMU0, and then converted this model
into the parametric linear model (10.9) given below:

e0 = max

(
a

D∑
d=1

ηd zd0

m∑
i=1

vi xi0

+ (1 − a)

s∑
r=1

ur yr0

D∑
d=1

ηd zd0 +
H∑

h=1
Qhx2h0

)

s.t.

D∑
d=1

ηd zd j

m∑
i=1

vi xi j

≤ 1 (∀ j),

s∑
r=1

ur yr j

D∑
d=1

ηd zd j +
H∑

h=1
Qhx2h0

≤ 1 (∀ j),

vi , ur , ηd , Qh ≥ 0 (∀d, i, r, h),

0 ≤ a ≤ 1,

(10.8)

Fig. 10.4 Two-stage series network structure
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and

e0 = max

(
a

D∑
d=1

ηd zd0 + (1 − a)

s∑
r=1

ur yr0

)

s.t.
D∑

d=1

ηd zd j −
m∑
i=1

vi xi j ≤ 0 (∀ j),

s∑
r=1

ur yr j − ρ

D∑
d=1

ηd zd j −
H∑

h=1

Qhx
2
hj ≤ 0 (∀ j),

m∑
i=1

vi xi0 = 1,

ρ

D∑
d=1

ηd zd0 +
H∑

h=1

Qhx
2
h0 = 1,

vi , ur , ηd , Qh ≥ 0 (∀d, i, r, h),

0 ≤ a ≤ 1, ρ > 0.

(10.9)

Also, Wang et al. [36] introduced a DEA-based model (model (10.10)) to
measure the overall efficiency score of the two-stage DMU0 under evaluation,
in the presence of shared inputs, as shown in Fig. 10.5. They also converted
this model into a linear model, (model (10.11)).

Fig. 10.5 Two-stage series network structure
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e0 = max

(
a

D∑
d=1

ηd zd0

m3∑
i3=1

vi3βi30xi30 +
m1∑
i1=1

vi1xi10

+ (1 − a)

s∑
r=1

ur yr0

m3∑
i3=1

vi3(1 − βi30)xi30 +
m2∑
i2=1

vi2xi20 +
D∑

d=1
ηd zd0

)

s.t.

D∑
d=1

ηd zd j

m3∑
i3=1

vi3βi3 j xi3 j +
m∑
i=1

vi xi j

≤ 1 (∀ j),

s∑
r=1

ur yr j

m3∑
i3=1

vi3(1 − βi3 j )xi3 j +
m2∑
i2=1

vi2xi2 j +
D∑

d=1
ηd zd j

≤ 1 (∀ j),

vi1 , vi2 , vi3 , ur , ηd ≥ 0 (∀i1, i2, i3, r, d),

0 ≤ a ≤ 1, 0 ≤ βi3 j ≤ 1 (∀i3, j),

(10.10)

and
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e0 = max

(
a

D∑
d=1

ηd zd0 + (1 − a)

s∑
r=1

μr yr0

)

s.t.
D∑

d=1

πd zd j −
( m3∑

i3=1

wi3xi3 j −
m3∑
i3=1

σi3 j xi3 j +
m1∑
i1=1

wi1xi1 j

)
≤ 0 (∀ j),

s∑
r=1

μr yr j − e

( D∑
d=1

πd zd j +
m3∑
i3=1

σi3 j xi3 j +
m2∑
i2=1

wi2xi2 j

)
≤ 0 (∀ j),

m3∑
i3=1

wi3xi30 −
m3∑
i3=1

σi30xi30 +
m1∑
i1=1

wi1xi10 = 1,

e

( D∑
d=1

πd zd0 +
m3∑
i3=1

σi30xi30 +
m2∑
i2=1

wi2xi20

)
= 1,

0 ≤ σi3 j ≤ wi3 (∀i3, j),
0 ≤ a ≤ 1, πd , μr , wi1 , wi2 , wi3 ≥ 0 (∀i1, i2, i3, r, d).

(10.11)

where e < 1/

(
m3∑
i3=1

πd zdo +
m3∑
i3=1

σi3oxi3o +
m2∑
i2=1

wi2xi2o

)
is the efficiency

score of the first stage. Its upper bound can be obtained through the following
two steps: first, the efficiency score of the second stage is maximized. Then,
the efficiency score of the first stage is maximized while maintaining the
optimal efficiency level of the second stage. Further, Guo et al. [12] provided
the following DEA model (model (10.12)) to compute the efficiency of the
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system depicted in Fig. 10.4:

min (aθ10 + (1 − a)θ20 )

s.t.

n∑
j=1

λ j xi j ≤ θ10 xi0 (i = 1, ...,m),

n∑
j=1

λ j z1d j ≥ z1d0 + ρ′ z̃d0 (d = 1, ..., D),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(Stage 1)

n∑
j=1

μ j z2d j ≤ θ20 z
2
d0 + z̃d0 (d = 1, ..., D)

n∑
j=1

μ j x2hj ≤ θ20 x
2
h0 (h = 1, ..., H),

n∑
j=1

μ j yr j ≥ yr0 (r = 1, ..., s),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(Stage 2)

λ j , μ j ≥ 0 (∀ j), θ10 , θ20 free in sign.

(10.12)

Besides, Li et al. [16] presented the following model (10.13) to compute
the efficiency of the series network system shown in Fig. 10.6 and then,

Fig. 10.6 Two-stage series process
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converted this model into the linear model (10.14):

min θ0 = θ1∗0 × θ2∗0 = θ1∗0 ×

q∑
d=1

wd zd0 + μ2
0

s∑
r=1

ur yr0 +
l∑

t=1
at ft0

s.t.

m∑
i=1

vi xi j + μ1
0

q∑
d=1

wd zd j

≥ 1 (∀ j),

q∑
d=1

wd zd j + μ2
0

s∑
r=1

ur yr j +
l∑

t=1
at( ft j + δt j )

≥ 1 (∀ j),

m∑
i=1

vi xi j + μ1
0

q∑
d=1

wd zd j

= θ1∗0 ,

θ1∗0 ∈ [0, θ1CCR∗],
vi , ur , wd , ai ≥ 0, δt j , μ

1
0, μ

2
0 are free,

(10.13)

and
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min θ0 = θ1∗0 × θ2∗0 = θ1∗0 ×
( q∑

d=1

wd zd0 + μ2
0

)

s.t.
m∑
i=1

vi xi j −
q∑

d=1

wd zd j + μ1
0 ≥ 0 (∀ j),

q∑
d=1

wd zd j −
s∑

r=1

ur yr j −
l∑

t=1

at ( ft j + δt j ) + μ2
0 ≥ 0 (∀ j),

m∑
i=1

vi xi0 − θ1∗0
q∑

d=1

wd zd j + μ1
0 = 0,

s∑
r=1

ur yr0 +
l∑

t=1

at ft0 = 1,

θ1∗0 ∈ [0, θ1CCR∗],
vi , ur , wd , ai ≥ 0, δt j , μ

1
0, μ

2
0 are free.

(10.14)

10.4.2 Stochastic DEA

This section explains the recent contributions provided by researchers in
stochastic DEA.

As initially defined, DEA is based on deterministic inputs and outputs.
While, in the real world, input and output variables may be stochastic.
Hence, in the stochastic DEA field, the following DEA model was presented
to measure the efficiency of the evaluating DMU (see Olesen and Petersen
[19]):
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min θ

s.t. Pr

( n∑
j=1

λ j x̃i j ≤ θ x̃k j

)
≥ 1 − a, (i = 1, ...,m; ∀i ∈ Is),

n∑
j=1

λ j xi j ≤ θxik, (i = 1, ...,m; ∀i ∈ ID),

Pr

( n∑
j=1

λ j ỹr j ≥ ỹrk

)
≥ 1 − a, (r = 1, ..., s; ∀r ∈ Rs),

n∑
j=1

λ j yr j ≥ yrk, (r = 1, ..., s; ∀r ∈ Rs),

n∑
j=1

λ j = 1, λ j ≥ 0 (∀ j), θ :free,

(10.15)

where IS set of stochastic inputs, ID set of deterministic inputs, RS set of
stochastic outputs, and RD set of deterministic outputs. It is assumed that all
the stochastic inputs and outputs follow a (see Tavassoli et al. [35] for more
details).
Then, the stochastic model (10.15) can be rewritten as follows:
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min θ

s.t.
n∑
j=1

λ j xi j ≤ θxik, (∀i ∈ ID),

n∑
j=1

λ jμi j − θμik ≤ e

√√√√√
n∑
j=1
j �=k

λ2jσ
2
i j + (λ j − θ)2σ 2

ik + 2 cov(x̃i j , x̃ik),

(∀i ∈ Is),
n∑
j=1

λ j yr j ≥ yrk, (∀r ∈ RD),

n∑
j=1

λ jμr j − μrk ≥ e

√√√√√
n∑
j=1
j �=k

λ2jσ
2
r j + (λ j − θ)2σ 2

rk + 2 cov(ỹr j , ỹrk),

(∀r ∈ Rs),

n∑
j=1

λ j = 1, λ j ≥ 0 (∀ j), θ :free.

(10.16)

Now, suppose that there are n two-stage DMUs as shown in Fig. 10.7. For
DMU j ( j = 1, ..., n), X̃ j = (x̃1 j , ..., x̃m j ) depicts the random input vector
to the first stage and Z̃ j = (z̃1, ..., z̃t j ) shows the random output vector from
the first stage and also the input to the second stage, hence it is called inter-
mediate product. The random output vector Ỹ j = (ỹ1 j , ..., ỹs j ) indicates
the output from the second stage.

Zhou et al. [42] introduced the following fractional stochastic leader–
follower DEA model (10.17) to evaluate the efficiency of the second stage
when it is treated as a follower. To do this, the leader’s efficiency is calcu-
lated first, and then, the follower’s efficiency is maximized, while the leader’s
efficiency level is maintained at its optimum level. The follower’s efficiency

Fig. 10.7 Two-stage series process with stochastic data
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can be obtained as given below, where E (a)
SL1 is the efficiency of the first

stage-leader:

E (a)
SF2 = max

s∑
r=1

U 1
r (yr0 − F−1

ζ (a)br0) +
s∑

r=1
U 2
r (yr0 + F−1

ζ (a)br0)

Q
( t∑
k=1

w1
k (zk0 − F−1

η (a)ck0) +
t∑

k=1
w2
k (zk0 + F−1

η (a)ck0)
)

s.t.
t∑

k=1

w1
k (zk0 − F−1

η (a)ck0) +
t∑

k=1

w2
k (zk0 + F−1

η (a)ck0) = 1,

t∑
k=1

w1
k (zk0 − F−1

η (a)ck0) +
t∑

k=1

w2
k (zk0 + F−1

η (a)ck0)

= E (a)
SL1

( m∑
i=1

v1i (xi0 − F−1
ζ (a)ai0

)
+

m∑
i=1

v2i (xi0 + F−1
ζ (a)ai0)

)

t∑
k=1

w1
k (zk j − F−1

η (a)ck j ) +
t∑

k=1

w2
k (zk j + F−1

η (a)ck j )

≤
m∑
i=1

v1i (xi j − F−1
ζ (a)ai j

)
+

m∑
i=1

v2i (xi j + F−1
ζ (a)ai j ), ( j = 1, ..., n)

s∑
r=1

U 1
r (yr j − F−1

ζ (a)br j ) +
s∑

r=1
U 2
r (yr j + F−1

ζ (a)br j )

Q
( t∑
k=1

w1
k (zk j − F−1

η (a)ck j ) +
t∑

k=1
w2
k (zk j + F−1

η (a)ck j )
) ≤ 1,

( j = 1, ..., n)

Q ≥ 0, v1i , v
2
i ≥ 0, (i = 1, ...,m), U 1

r ,U 2
r ≥ 0, (r = 1, ..., s)

w1
k , w

2
k ≥ 0, (k = 1, ..., t).

(10.17)

Now, when the second stage is treated as a leader and first stage as a follower,
the efficiency of first stage-follower can be calculated using the following
linearized stochastic leader–follower DEA model (10.18):
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E (a)
SF1 = max

t∑
k=1

w1
k (zk0 − F−1

η (a)ck0) +
t∑

k=1

w2
k (zk0 + F−1

η (a)ck0)

s.t.
m∑
i=1

v1i (xi0 − F−1
ζ (a)ai0

)
+

m∑
i=1

v2i (xi0 + F−1
ζ (a)ai0) = 1,

s∑
r=1

u1r (yr0 − F−1
ζ (a)br0) +

s∑
r=1

u2r (yr0 + F−1
ζ (a)br0)

= E (a)
SL2

( t∑
k=1

w1
k (zk0 − F−1

η (a)ck0) +
t∑

k=1

w2
k (zk0 + F−1

η (a)ck0)
)
,

t∑
k=1

w1
k (zk j − F−1

η (a)ck j ) +
t∑

k=1

w2
k (zk j + F−1

η (a)ck j )

≤
m∑
i=1

v1i (xi j − F−1
ζ (a)ai j

)
+

m∑
i=1

v2i (xi j + F−1
ζ (a)ai j ), ( j = 1, ..., n)

s∑
r=1

u1r (yr j − F−1
ζ (a)br j ) +

s∑
r=1

u2r (yr j + F−1
ζ (a)br j )

≤
( t∑
k=1

w1
k (zk j − F−1

η (a)ck j ) +
t∑

k=1

w2
k (zk j + F−1

η (a)ck j )
)
,

( j = 1, ..., n)

v1i , v
2
i ≥ 0, (i = 1, ...,m), u1r , u

2
r ≥ 0, (r = 1, ..., s)

w1
k , w

2
k ≥ 0, (k = 1, ..., t).

(10.18)

10.4.3 Fuzzy DEA

In this section, we describe the recent contributions given by researchers
in (See Emrouznejad and Tavana [7]).

Consider a set of n homogenous DMUs so that each one uses m intu-
itionistic fuzzy inputs and s intuitionistic fuzzy outputs. Let DMUk denote
the DMU under evaluation. Singh [32] presented the following intuition-
istic fuzzy DEA/AR (Assurance Region) model (model (10.19)) to measure
the efficiency of DMUk :
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max Ẽ I
K =

s∑
r=1

ṽ I
r ⊗ ỹ Irk + v0

s.t.
m∑
i=1

ũ I
i ⊗ x̃ Ii j = 1̃,

s∑
r=1

ṽ I
r ⊗ ỹ Irk�

m∑
i=1

ũ I
i ⊗ x̃ Ii j + v0 ≤ 0̃, j = 1, 2, ..., n,

glpg ṽ
I
q�ṽ I

p ≤ 0̃, ṽ I
p�gupg ṽ

I
q ≤ 0̃, ∀p < q = 2, 3, ..., s,

hlpgũ
I
q�ũ I

p ≤ 0̃, ũ I
p�hupgũ

I
q ≤ 0, ∀p < q = 2, 3, ...,m,

ũ I
i ≥ ε > 0, i = 1, 2, ...,m

ṽ I
r ≥ ε > 0, r = 1, 2, ..., s,

v0is unrestricted in sign.

(10.19)

where x̃ Ii j = (x1i j , x
2
i j , x

3
i j ; x1

′
i j , x

2
i j , x

3′
i j ) and ỹ Ir j =

(y1r j , y
2
r j , y

3
r j ; y1

′
r j , y

1
r j , y

3′
r j ) represent the i th(i = 1, ...,m) and

r th(r = 1, ..., s) intuitionistic fuzzy input and output of DMU j

( j = 1, ..., n), respectively. Also, ũ I
i j = (u1i j , u

2
i j , u

3
i j ; u1

′
i j , u

2
i j , u

3′
i j )

and ṽ I
i j = (v1i j , v

2
i j , v

3
i j ; v1

′
i j , v

2
i j , v

3′
i j ) denote the intuitionistic fuzzy weights

of the i th intuitionistic fuzzy input and the r th intuitionistic fuzzy output,
respectively.

In this area, Peykani et al. [22] proposed a general two-stage series network
structure as shown in Fig. 10.8 and provided the novel models (models
(10.20) and (10.22)) to measure the overall efficiency of the DMUp under
evaluation, under fuzzy data, for a ≤ β and a > β, respectively:

Fig. 10.8 General two-stage series network structure
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Overall
p(a>β) = max �

s.t.
K∑

k=1

((
a

β

)
f 3k0 +

(
β − a

β

)
f 4k0

)
ωk +

D∑
d=1

((
a

β

)
z3d0 +

(
β − a

β

)
z4d0

)
γd

+
R∑

r=1

((
a

β

)
y3r0 +

(
β − a

β

)
y4r0

)
μr ≥ �,

I∑
i=1

((
β − a

β

)
x1i0 +

(
a

β

)
x2i0

)
τi +

D∑
d=1

((
β − a

β

)
z1d0 +

(
a

β

)
z2d0

)
γd

+
H∑

h=1

((
β − a

β

)
g1h0 +

(
a

β

)
g2h0

)
πh ≤ 1,

(10.20)
K∑

k=1

((
β − a

β

)
f 1k j +

(
a

β

)
f 2k j

)
ωk +

D∑
d=1

((
β − a

β

)
z1d j +

(
a

β

)
z2d j

)
γd

−
I∑

i=1

((
a

β

)
x3i j +

(
β − a

β

)
x4i j

)
τi ≤ 0, (∀ j),

R∑
r=1

((
β − a

β

)
y1r j +

(
a

β

)
y2r j

)
μr −

D∑
d=1

((
a

β

)
z3d j +

(
β − a

β

)
z4d j

)
γd

−
H∑

h=1

((
a

β

)
g3h j +

(
β − a

β

)
g4h j

)
πh ≤ 0, (∀ j)

τi , ωk, μr , πh, γd ≥ 0(∀i, k, r, h, d).

(10.21)

and

Overall
p(a≤β) = max �

s.t.
(10.22)
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K∑
k=1

((
a − β

1 − β

)
f 3k0 +

(
1 − a

1 − β

)
f 4k0

)
ωk +

D∑
d=1

((
a − β

1 − β

)
z1d0 +

(
1 − a

1 − β

)
z2d0

)
γd

+
R∑

r=1

((
a − β

1 − β

)
y1r0 +

(
1 − a

1 − β

)
y2r0

)
μr ≥ �,

I∑
i=1

((
1 − a

1 − β

)
x3i0 +

(
a − β

1 − β

)
x4i0

)
τi +

D∑
d=1

((
1 − a

1 − β

)
z3d0 +

(
a − β

1 − β

)
z4d0

)
γd

+
H∑

h=1

((
1 − a

1 − β

)
g3h0 +

(
a − β

1 − β

)
g4h0

)
πh ≤ 1,

K∑
k=1

((
1 − a

1 − β

)
f 3k j +

(
a − β

1 − β

)
f 4k j

)
ωk +

D∑
d=1

((
1 − a

1 − β

)
z3d j +

(
a − β

1 − β

)
z4d j

)
γd

−
I∑

i=1

((
a − β

1 − β

)
x1i j +

(
1 − a

1 − β

)
x2i j

)
τi ≤ 0, (∀ j),

R∑
r=1

((
1 − a

1 − β

)
y3r j +

(
a − β

1 − β

)
y4r j

)
μr −

D∑
d=1

((
a − β

1 − β

)
z1d j +

(
1 − a

1 − β

)
z2d j

)
γd

−
H∑

h=1

((
a − β

1 − β

)
g1h j +

(
1 − a

1 − β

)
g2h j

)
πh ≤ 0, (∀ j)

τi , ωk, μr , πh, γd ≥ 0(∀i, k, r, h, d).

(10.23)

where in models (10.20) and (10.22), all inputs and outputs are depicted by
fuzzy numbers x̃i j , f̃k j , z̃d j , g̃h j and ỹr j with trapezoidal membership func-
tions x̃i j (x1i j , x

2
i j , x

3
i j , x

4
i j ), f̃k j ( f 1k j , f 2k j , f 3k j , f 4k j ), z̃d j (z1d j , z

2
d j , z

3
d j , z

4
d j ),

g̃h j (g1hj , g
2
hj , g

3
hj , g

4
hj ) and ỹr j (y1r j , y

2
r j , y

3
r j , y

4
r j ) (see Peykani et al. [23]).

10.4.4 Bootstrapping

This section explains the recent contributions given by researchers on boot-
strapping in the DEA context.

In DEA, the efficiency score that a DMU is assigned depends on the differ-
ence between its operation compared to the operation of the best-performing
DMUs included in the observed set. Any changes in the composition of
the observed set, such as adding or removing DMUs, may impact the effi-
ciency scores. Therefore, the standard DEA approach suffers from the lack
of sampling noise consideration. This may result in overestimated efficiency



332 A. Emrouznejad et al.

scores and lead to the erroneous efficient characterization of some DMUs.
As developed by Simar and Wilson [29, 30], the bootstrap DEA deals with
this deficiency of DEA by providing a statistical framework for the efficiency
scores and allowing for estimations of the true efficiency of a DMU. In
what follows, we explain the differences between DEA and bootstrap DEA
methods.

In reality, the observed set of DMUs is only a sample drawn from a popula-
tion through an unknown data generating process. The DEA method, firstly
introduced by Simar and Wilson [29], simulates this unknown data gener-
ating process by repeatedly drawing random samples from the available set of
DMUs and treating them as they were drawn from the population itself. In
this way, the bootstrap DEA method allows for estimations of the efficiency
scores for each DMU, based on numerous samples. Thus, the bootstrap DEA
efficiency scores are more accurate than the DEA ones and have statistical
properties which the DEA efficiency scores lack (see Simar and Wilson [30]
and Moradi-Motlagh and Emrouznejad [18] for further details).

Some years later, the bootstrapping approach was also used in the literature
to make statistical inference in cases where undesirable outputs exist in the
production model. Consider a set of N DMUs such that each one uses k
positive inputs xxx∼ = (x1, ..., xk)t ∈ R

k+, to produce m positive desirable

(good) outputs, yyy
∼

= (y1, ..., ym)t ∈ R
m+ and r positive undesirable (bad)

outputs uuu∼ = (u1, ..., ur )t ∈ R
r+. Then, the production possibility set (PPS)

is defined as the following closed set:

� = {(xxx∼,uuu∼, yyy
∼
)
∣∣xxx∼ can produce uuu∼ and yyy

∼
} ⊂ R

k+r+m+ (10.24)

The PPS under the CRS (constant returns to scale) and the VRS (variable
returns to scale) specifications, respectively, is obtained as follows:

�CRS = {(xxx∼,uuu∼, yyy
∼
)
∣∣XXXλλλ∼ ≤ xxx∼,UUUλλλ∼ = uuu∼,YYYλλλ∼ ≥ yyy

∼
, λλλ∼ ≥ 000∼

}
, (10.25)

�V RS = {(xxx∼,uuu∼, yyy
∼
)
∣∣XXXλλλ∼ ≤ xxx∼,UUUλλλ∼ = uuu∼,YYYλλλ∼ ≥ yyy

∼
,111′λλλ∼ = 1, λλλ∼ ≥ 000∼

}
,

(10.26)

where XXX = [xxx1∼ , ..., xxxN∼
], YYY = [yyy1∼ , ..., yyyN∼

], UUU = [uuu1∼ , ...,uuuN∼
], λλλ =

[λλλ1∼ , ...,λλλN∼
] ∈ R

N+ and 000∼ = [0, ..., 0].
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The input-oriented technical efficiency of the CCR and BCC models
denoted by θCRS and θV RS, respectively, are measured as

θCRS = in f
θ,λλλ∼

{
θ
∣∣(θxxx∼,uuu∼, yyy

∼
) ∈ �CRS},

(10.27)

θV RS = in f
θ,λλλ∼

{
θ
∣∣(θxxx∼,uuu∼, yyy

∼
) ∈ �V RS}.

(10.28)

Li [15] extended the bootstrap algorithm presented by Simar and Wilson
[29] to account for the presence of undesirable outputs, and calculated the
bootstrap efficiencies using the following steps:

Step 1.Measure the input efficiency of all DMUs using (10.27) or (10.28)
to calculate δn = 1/θ .

Step 2. Provide {(2−δ1), ..., (2−δN ), δ1, ..., δN } that is a random sample
of size N to get {δ̃∗

1 , ..., δ̃
∗
N }.

Step 3. Compute ˜̃
δn = δ̃∗

n + τεn (for n = 1, ..., N ), in which
τ = 1.06min{S

∧

, R
∧

/1.34}N−1/5, R
∧

, and S
∧

denote the interquartile range
of {δ1, ..., δN } and the empirical standard deviation, respectively. Also, εn
represents a random draw from a standard normal distribution.

Step 4. Compute δ̃∗∗
n = ¯̃

δ∗ + (
˜̃
δ∗
n − ¯̃

δ∗)
/√

1 + (τ 2/S̃∗2) for (n =
1, .., N ), in which ¯̃

δ∗ and S̃∗2 are the empirical mean and variance of
{δ̃∗

1 , ..., δ̃
∗
N }.

Step 5. Define ˜̃
δ∗∗
n =

{
2 − δ̃∗∗

n , if δ̃∗∗
n < 1

˜̃
δ∗∗
n , if δ̃∗∗

n ≥ 1
(for n = 1, ..., N ).

Step 6. Consider xxxn∼
∗ = ˜̃

δ∗∗
n xxxn∼

/δn,uuun∼
∗ = uuun∼

, and yyyn∼
∗ = yyyn∼

(for n =
1, ..., N ).

Step 7. Compute the bootstrap estimate, denoted by θ∗
n (for n =

1, ..., N ), using a suitable DEA model with the technology characterized
by (XXX∼

∗,UUU∼
∗,YYY∼

∗), in which XXX∼
∗ = [xxx1∼

∗, ..., xxx∗
N∼
], YYY∼

∗ = [yyy1∼
∗, ..., yyy∗

N∼
],

UUU∼
∗ = [uuu1∼

∗, ...,uuu∗
N∼
].

Step 8. Repeat Steps 2 to 7 for B times to obtain bootstrap estimates
{θ∗

nb}Nn=1 for b = 1, ..., B.
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Also, in this context, the bias-corrected efficiency score is expressed as
follows:

θ̃k = θ
∧

k − bias(θ
∧

k) = 2θ
∧

k − B−1
K∑

k=1

θ
∧

∗k, (10.29)

where bias(θ
∧

k) = E(θ
∧

k)−θ
∧

k = B−1
K∑

k=1
θ
∧

∗k−θ
∧

k and θ
∧

k for (k = 1, ..., K )

is a scalar and indicates the input-oriented efficiency score of each DMUk (for
k = 1, ..., K ).

Another bootstrap approach commonly encountered in the DEA litera-
ture, is that of the second-stage double bootstrap, which is used to investigate
the impact of contextual variables on the efficiency of DMUs. For example,
Al-Mezeini wt al. [1] applied a second-stage double bootstrap in the inves-
tigation of greenhouse’s (GH) production performance. So, they considered
a set of K GH farms, such that the GHk (k = 1, ..., K ) uses N inputs,
xik(i = 1, ..., N ), to produce M outputs, y jk( j = 1, ..., M). To measure
the technical efficiency (TE) θg of GHg, the following input-oriented CCR
model can be used:

min θg

s.t.
K∑

k=1

λkxik ≤ θgxig, i = 1, 2, ..., N ,

K∑
k=1

λk y jk ≥ y jg, j = 1, 2, ..., M,

λk ≥ 0, k = 1, 2, ..., K ,

(10.30)

where under the VRS specification, the pure technical efficiency (PTE) of
GHg is estimated by adding the constraint

∑K
k=1 λk = 1 to model (10.30)

([4]). Using this model, a GHg is CCR-efficient (BCC-efficient) if T E = 1
(PT E = 1), otherwise it is inefficient.

Here, let tg = (t1g, t2g, ..., tpg) represent a vector of p contextual vari-
ables corresponding to GHg. Since θg ≤ 1, using a regression model θg =
βββtgtgtg + ε, it is implied that βββtgtgtg + ε ≤ 1 and so ε ≤ 1 − βββtgtgtg, in which
βββ = (β1, β2, ..., βp) indicates the model’s coefficients and also ε is the error
term with ε ∼ N (0, σε). To identify the contextual variables, with the speci-
fication level set at a%, the following algorithm of the procedure is used, with
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B1 and B2 being the number of the first and second bootstrap replications,
respectively ([20, 31]).

Step 1. Solve the BCC model for each GHg to obtain θg by considering
the original data.
Step 2. Calculate the estimates β

∧

and σ
∧

ε for β and σε, respectively, using
truncated maximum likelihood estimation.
Step 3. Repeat the next sub-steps for each GHg B1 times to produce a set
of B1 bootstrap estimates θ

∧

gb for b = 1, ..., B1.

Sub-step 3.1. Generate the residual error εg from the normal distribu-
tion N (0, σ

∧

ε) with right-truncation at 1 − β
∧

tg.
Sub-step 3.2. Calculate θ∗

g = β
∧

tg + εg.

Sub-step 3.3. Construct a pseudo data set (x∗
g , y

∗
g), in which x∗

g =
xgθg/θ∗

g and y∗
g = yg.

Sub-step 3.4. Use the BCC model with the pseudo data set (x∗
g , y

∗
g) to

obtain an estimate θ
∧∗
g of the real efficiency score.

Step 4. Compute the bias-corrected estimator θ
∧

g for each GHg using the
bootstrap estimator of the bias b

∧

g, in which θ
∧

g = θg − b
∧

g and b
∧

g =
1
B

B1∑
b=1

θ
∧∗
gb − θg.

Step 5. Use the truncated maximum likelihood estimation and provide an
estimate β

∧∗
for β and an estimate σ

∧∗ for σε.
Step 6. Repeat the following sub-steps B2 times to obtain a set of B2 pairs
of bootstrap estimates (β

∧∗∗
b , σ

∧∗∗
b ) for b = 1, ..., B2.

Sub-step 6.1. Generate εg from the normal distribution N (0, σ
∧∗) with

right-truncation at 1 − β
∧∗

tg for each GHg (g = 1, ..., K ).

Sub-step 6.2. Compute θ
∧∗∗
g for each GHg (g = 1, ..., K ) such that

θ
∧∗∗
g = β

∧∗
tg + εg.

Sub-step 6.3. Use the truncated maximum likelihood estimation and
provide an estimate β

∧∗∗
for β and an estimate σ

∧∗∗ for σε.

Step 7. Construct the estimated (1 − a)% confidence interval of the j th

element β j of the vector β as
[
Lowera j ,Uppera j

] = [
β
∧∗
j + a

∧

a, β
∧∗
j +

(−b
∧

a)
]
, where

(− b
∧

a ≤ β
∧∗∗
j − β

∧∗
j ≤ −a

∧

a
) ≈ 1 − a.
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10.4.5 Directional Measure and Negative Data

In this section, we describe the recent contributions presented by researchers
in the context of the directional measure/directional distance function.

Directional measure has been initially proposed by Färe and Grosskopf
[8]. Since negative values might exist in the input and output data of DMUs,
Lin and Chen [17] proposed the following VRS radial super-efficiency model
(model (10.31)) using a data-independent direction vector:

max β0

s.t.
n∑
j=1
j �=0

λ j xi j ≤ (1 − β0)xi0 − aiβ0, (i = 1, ...,m),

n∑
j=1
j �=0

λ j yr j ≥ (1 + β0)yr0 − brβ0, (r = 1, ..., s),

n∑
j=1
j �=0

λ j = 1, λ j ≥ 0 ( j = 1, ..., n; j �= 0),

(10.31)

where ai = k max
j=1,...,n

{∣∣xi j ∣∣} (for i = 1, ...,m) and br = min
j=1,...,n

{
yr j
}
(for

r = 1, ..., s), in which k is a constant satisfying k ≥ 3.
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Zhou et al. [41] also presented the following non-radial DDF model
(model (10.32)) based on second-order cone programming:

min ψ0

s.t.
n∑
j=1

λ j xi j − δ0xi0 + dix = 0, (i = 1, ...,m),

n∑
j=1

λ j y
b
t j − ybt0 + dtb = 0, (t = 1, ..., w),

ψ0 + dψ
0 = 1,

δ0 − dδ
0 = 1,

n∑
j=1

λ j − δ0 = 0,

∣∣∣∣∣∣∣∣∣

n∑
j=1

λ j yr j − ψ0

2

∣∣∣∣∣∣∣∣∣
2

≤

n∑
j=1

λ j yr j − ψ0

2
√
yr0,

λ j , dtb, dix , d
ψ
0 , dδ

0 ≥ 0,

(10.32)

where ybt j (for t = 1, ..., w) denote the undesirable (bad) outputs of DMU j

and ψ∗
0 represents the environmental efficiency of DMU0. DMU0 is VRS-

efficient if and only if ψ∗
0 = 1. Also, under the CRS specification, the

constraint
n∑
j=1

λ j − δ0 = 0 is removed from model (10.32). In this case,

DMU0 is CRS-efficient if and only if ψ∗
0 = 1.

Also, Portela et al. [27] introduced the following (DDF) model (model
(10.33)) to improve performance of the DMU under evaluation (DMUo), in
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the presence of both positive and negative input and output data:

max β

s.t.
n∑
j=1

λ j xi j ≤ xio − βR−
io, (i = 1, ...,m),

n∑
j=1

λ j yr j ≥ yro + βR+
ro, (r = 1, ..., s),

n∑
j=1

λ j = 1, β, λ j ≥ 0 ( j = 1, ..., n).

(10.33)

Model (10.33) has the following two drawbacks: (1) this model cannot guar-
antee that the obtained projections are on the Pareto efficient frontier ([2])
and (2) this model is not capable of distinguishing between strongly and
weakly efficient DMUs ([6]).
Tavana et al. [34] provided the following non-radial DDF model (model

(10.34)) to tackle these two drawbacks stated above:

min 1 − 1

m + s

(
m∑
i=1

θi

θio
+

s∑
r=1

ϕr

ϕro

)

s.t.
n∑
j=1

λ j xi j = xio − θi g
−
io, (∀i),

n∑
j=1

λ j yr j = yro + ϕr g
+
ro, (∀r),

n∑
j=1

λ j = 1, θi , ϕr , λ j ≥ 0 (∀i,∀r, ∀ j),

(10.34)

where θ̄io = xio−min
{
xi j :∀ j

}
g−
io

and ϕ̄ro = max
{
yr j :∀ j

}
−yro

g+
ro

.

Moreover, in the presence of negative inputs and outputs, Tavana et al.
[34] modified model (10.34) and presented the following non-radial model
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(10.35) using the ideal point concept:

min 1 − 1

m + s

⎛
⎜⎜⎜⎝

m∑
i=1
R−
io>0

θi +
s∑

r=1
R+
ro>0

ϕr

⎞
⎟⎟⎟⎠

s.t.
n∑
j=1

λ j xi j = xio − θi R
−
io, (∀i),

n∑
j=1

λ j yr j = yro + ϕr R
+
ro, (∀r),

n∑
j=1

λ j = 1, θi , ϕr , λ j ≥ 0 (∀i, ∀r,∀ j),

(10.35)

where g−
io = R−

io = xio−min
j

{
xi j
}
, (∀i) and g+

ro = R+
ro = yro−max

j

{
yr j
}
,

(∀r) denote the lower-sided range for inputs and the upper-sided range for
output, respectively.
Tavana et al. [34] explained that model (10.35) is capable of correctly

recognizing all kinds of inefficiencies, and also it helps managers to find a
suitable benchmark for inefficient DMUs.
They also introduced a pair of pessimistic and optimistic mixed binary

non-linear programming (MBNLP) models (models (10.36) and (10.37))
for extending the DDF-based model (10.35) to accommodate the L flex-
ible measures represented by zzz j = (z1 j , ..., zi j ). These models not only
handle but also consider the flexible measures.
The pessimistic MBNLP model:
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ξo−
∗ =min 1 − 1

m + s + l

⎛
⎜⎜⎜⎝

m∑
i=1
R−
io>0

θi +
s∑

r=1
R+
ro>0

ϕr +
L∑

l=1
R−
lo,R+

lo>0

(�l + �l)

⎞
⎟⎟⎟⎠

s.t.
n∑
j=1

λ j xi j ≤ xio − θi R
−
io, (∀i),

n∑
j=1

λ j yr j ≥ yro + ϕr R
+
ro, (∀r),

n∑
j=1

λ j zl j ≤ zlo − θ̄l R̄
−
lo + Mdl , (∀l),

n∑
j=1

λ j zl j ≥ zlo + ϕ̄l R̄
+
lo − M(1 − dl), (∀l),

0 ≤ �l ≤ M(1 − dl), (∀l),
θ̄l − Mdl ≤ �l ≤ θ̄l , (∀l),
0 ≤ �l ≤ Mdl , (∀l),
ϕ̄l − M(1 − dl) ≤ �l ≤ ϕ̄l , (∀l),
n∑
j=1

λ j = 1, λ j ≥ 0 (∀ j),

dl ∈ {0, 1} (∀l),

(10.36)

where R̄−
lo = zlo − min

j

{
zl j
}
, (∀l) and R̄+

lo = max
j

{
zl j
}− zlo, (∀l).

The optimistic MBNLP model:
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ξ̄∗
o =max 1 +

s∑
r=1

ur yro +
L∑

l=1

ϕout
l zlo −

m∑
i=1

vi xio −
L∑

l=1

ϕin
l zlo + u0

− M

(
s∑

r=1

hr R
+
ro +

L∑
l=1

χout
l R̄+

lo +
m∑
i=1

wi R
−
io +

L∑
l=1

χ in
l R̄−

io

)

s.t.
s∑

r=1

ur yr j +
L∑

l=1

ϕout
l zl j −

m∑
i=1

vi xi j −
L∑

l=1

ϕin
l zl j + u0 ≤ 0, (∀ j),

ur R
+
ro + hr ≥ 1

m + s + L
, (∀r),

wout
l R̄+

lo + qoutl ≥ dl
m + s + L

, (∀l),

vi R
−
io + wi ≥ 1

m + s + L
, (∀i),

win
l R̄−

lo + qinl ≥ 1 − dl
m + s + L

, (∀l),
0 ≤ ϕout

l ≤ Mdl , (∀l),
ϕout
l ≤ wout

l ≤ ϕout
l + M(1 − dl), (∀l),

0 ≤ ϕin
l ≤ M(1 − dl), (∀l),

ϕin
l ≤ wout

l ≤ ϕin
l + Mdl , (∀l),

0 ≤ χout
l ≤ Mdl , (∀l),

χout
l ≤ qoutl ≤ χout

l + M(1 − dl), (∀l),
0 ≤ χ in

l ≤ M(1 − dl), (∀l),
χ in
l ≤ qinl ≤ χ in

l + Mdl , (∀l),
dl ∈ {0, 1}, (∀l),
ur , vi , hr , wi , , (∀r,∀i),
wout
l , win

l , qoutl , qinl , (∀l).
(10.37)
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10.4.6 Undesirable Factors

This section explains the recent contributions provided by researchers in
handling the presence of undesirable factors.

Undesirable factors were introduced in the DEA models over 30 years ago,
but many extensions and applications appeared in the last few years. For
example, Izadikhah and Saen [13] considered the two-stage series network
structure with undesirable factors shown in Fig. 10.9, and introduced the
following linear cooperative model (model (10.38)) to measure the overall
efficiency score of a DMUo under evaluation:

Fig. 10.9 A visual description of the two-stage series network structure
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θ∗ =max

(
S∑

s=1

q̃2Ds y2Dso +
K∑

k=1

ϕ̃1D
k z1Dko +

E∑
e=1

ϕ̃2U
e z2Ue0 +

L∑
l=1

ṽ2Ul x2Ulo

)
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S∑
s=1
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ϕ̃1D
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d , (∀d),
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θ L
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q̃1Dh , q̃2Ds , w̃1D
k , w̃2D

d , w̃1U
r , w̃2U

e , ṽ2Ul , q̃1Ug , q̃2Ub , ṽ2Df , ṽ1Di , ṽ1Ut ,

ϕ̃1D
k , ϕ̃2D

d , ϕ̃1U
r , ϕ̃2U

e ≥ 0, (∀h, s, k, d, r, e, l, g, b, f, i, t).

(10.38)

Khodadadipour et al. [14] extended the above concept to stochastic data
and provided the following input-output stochastic model (model (10.39))
to estimate the efficiency score of a DMUo, as:
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E∗∞ =max
s∑

r=1

μro ȳro +
k∑

p=1

ϕpoz̄
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ud free,

A j , Bj ≥ 0, j = 1, ..., n,

(10.39)

where ϕ(a) represents the standard normal distribution function and ϕ−1(a)

denotes the inverse standard normal distribution function for a value.
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10.4.7 Directional Returns to Scale in DEA

Panzar and Willig [21] proposed a method to determine the (RTS) of
decision-making units (DMUs) based on the production function. The esti-
mation of the RTS of DMUs using the (DEA) method was investigated first
by Banker [3] and Banker et al. [4]. Banker [3] introduced the definition of
the RTS from classical economics into the framework of the DEA method,
and he used the CCR-DEA model with a radial measure to estimate the RTS
of the evaluated DMUs. Soon after that, Banker et al. [4] proposed the BCC-
DEA model under the assumption of variable RTS and investigated how to
apply the BCC-DEA model to estimate the RTS of DMUs. Thus far, in addi-
tion to the cost-based measurement of the RTS of DMUs (e.g., [8, 10, 28,
33]), DEA-based studies of DMUs’ RTS can be roughly divided into four
categories: (1) RTS measurement using CCR-DEA models, (2) RTS measure-
ment using BCC-DEA models, (3) RTS measurement using the FGL-DEA
model and quantitative measurement of the scale elasticity (SE) and (4) RTS
measurement using non-radial DEA models.
The existing studies on the RTS measurement in DEA models are all

based on the definition of RTS proposed in Banker [3]. The RTS is a classic
economic concept describing the relationship between changes in the scale
of production and output. The traditional definition of RTS in economics is
based on the idea of measuring radial changes in outputs caused by all inputs.
Following this concept, Banker [3] defined RTS in the DEA framework using
the radial changes in outputs caused by all inputs.

In real production practices (e.g., research organizations), it can be seen
that the inputs normally do not change proportionally. Podinovski [24, 25]
and Podinovski et al. [26] noted the possible non-proportional changes of
inputs or outputs in research organizations. It should be noted that the
changes over time and RTS are different concepts. However, the observa-
tions above do indicate possible change patterns of the inputs; we observed
that they may be non-proportional. This motivates us to consider (directional
RTS) with non-proportional changes in inputs (or outputs). Of course, the
introduction of directional RTS does not mean that the standard RTS is not
meaningful, but enables us to consider more increment patterns for inputs
and outputs as illustrated in our case studies. Thus, the directional RTS
is a generalization of traditional RTS by considering the non-proportional
changes of inputs and outputs. Yang [38, 39] and Yang et al. [37] extended
the classic definition of RTS in economics to directional RTS and introduced
the definition into the DEA framework. They extended the classic definitions
of SE or RTS in the DEA, initially proposed by Banker [3], and redefined
the left- and right-hand direction SE and the directional RTS based on the
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PPS. It should be noted that the directional RTS is still based on the Pareto
preference. Yang et al. [40] also investigated directional congestion.

10.5 Recent Applications and Future
Developments

To explore the hotspots of the latest DEA research and grasp the develop-
ment trend of the DEA theory and its applications, we further analyzed the
keywords of DEA-related articles published in the recent two years. In Table
10.3, the six types of the most used keywords within DEA-related articles in
the recent two years are listed.
Table 10.4 shows the 10 most actively implemented fields of DEA

methods in the past two years, i.e., energy, banking, education, environ-
ment, hospital, public policy, supply chain, transportation, agriculture, and

Table 10.3 The six most commonly used types of keywords

No. Keywords

1 Sustainability, Eco-efficiency, Undesirable outputs, Directional distance
function (DDF), Environmental efficiency, Sustainable development,
Environmental protection, Energy efficiency, CO2 emissions

2 Efficiency evaluation, Efficiency analysis, Cost efficiency, Technical
efficiency, Performance evaluation, Performance assessment, Ranking,
Benchmarking

3 Malmquist, Malmquist index, Malmquist productivity Index,
DEA-Malmquist index, Total factor productivity

4 Network DEA, Two-stage, Efficiency decomposition
5 Bootstrap, Bootstrapping
6 Returns to scale, Scale efficiency, Congestion

Table 10.4 Top 10 most implemented fields of the DEA method

No. Keywords

1 Energy
2 Banking
3 Education
4 Environment
5 Hospital
6 Public policy
7 Supply chain
8 Transportation
9 Agriculture
10 Sociology
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sociology. Compared with the previous DEA reviews (see references in
Sect. 10.2), it is obvious that the application of DEA in the field of energy,
education, and environment has increased significantly.

10.6 Conclusions

This chapter reviewed some recent developments and challenges in the
context of DEA and its applications. Since the seminal work of Charnes,
Cooper and Rhodes [5] in DEA, there has been an “exponential” growth
in the number of journal articles in the recent four decades. Until the
end of 2021, the total number of journal articles reaches over 20,000.
We found that the European Journal of Operational Research, Journal of the
Operational Research Society, Journal of Productivity Analysis, Omega, and
Annals of Operations Research are the most utilized journals in this field,
while the journal of Socio-Economic Planning Sciences has been recognized
as the first choice journal for DEA papers with applications in the public
sector. In respect to modeling and applications, environmental efficiency
and DDF (including eco-efficiency, undesirable outputs, directional distance
function (DDF), carbon dioxide emissions, pollution, sustainable develop-
ment, sustainability, environmental protection), network DEA (including
two-stage DEA, efficiency decomposition), bootstrap or bootstrapping and
fuzzy DEA, as well as returns to scale (including scale efficiency) are the
main fields of current studies. Moreover, we detect eco-efficiency, agricul-
ture, banking, supply chain, transportation, as well as public policy within
the application fields of DEA with the greatest numbers of journal articles.
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11
An Overview of Heuristics

and Metaheuristics

Saïd Salhi and Jonathan Thompson

11.1 Introduction

We live in a world of limited resources, including food, water and energy.
As society becomes more advanced, the need to make efficient use of these
limited resources becomes more pressing. The study of optimisation enables
many real-life problems to be solved and leads to many positive outcomes.
For example scheduling the shift patterns of nurses can lead to optimal use
of resources and shift patterns that are conducive to good staff wellbeing.
The optimal routing of delivery trucks can lead to reduced carbon dioxide
emissions. Optimal scheduling of jobs leads to efficient use of resources and
increased profits for manufacturers.
There are many real-life applications that can be solved optimally by one

of the exact optimisation techniques known to the Operational Research
community such as linear programming, integer programming, non-linear
programming and dynamic programming among others. However, there are
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many applications where the combinatorial effect of the problem makes the
determination of the optimal solution intractable, and hence, these standard
techniques become unsuitable. This is because the computer time needed
to find the optimal solution becomes too large to be practical for real-
life situations, or specialist software is required that is not easily usable by
many companies and organisations. To overcome this drawback, heuristic
methods were introduced with the aim of providing the user with reasonably
good solutions in a reasonable time. Heuristics can be likened to algorithms
which are step-by-step procedures for producing solutions to a class of prob-
lems. In many practical situations they seem to be the only way to produce
concrete results in a reasonable time. To date, heuristic search methods have
been widely used in a large number of different areas including business,
economics, sports, statistics, medicine and engineering.
The word ‘heuristic’ originates from the Greek word ‘heuriskein’ that

means discover and explore. Heuristics are also sometimes referred to as rules
of thumb. They have been used throughout history as humans are natural
problem solvers and can naturally construct heuristic methods. An example
given by Sorenson [101] is that when deciding the trajectory of a spear to
throw at a wild animal, it is more important that the trajectory is selected
quickly rather than optimally. The time spent to calculate the optimal trajec-
tory will almost certainly mean the creature has disappeared long before
the spear is thrown. Therefore a quick but not precise trajectory is supe-
rior. However the scientific study of heuristics began more recently and still
continues to this day, with numerous academic papers each year proposing
new heuristic methods for a wide variety of problems. Figure 11.1 shows the
number of publications listed in Scopus with ‘heuristic’ as a keyword over the
last 10 years and shows an increasing trend throughout the decade showing
that advancements in computer software and hardware have not removed the
need for heuristic solution methods.
The main goal in heuristic search is to construct a model that can be

easily understood and that provides good solutions in a reasonable amount of
computing time. A good insight into the problem that needs to be addressed
is essential. Slight changes to the problem description can lead to major
changes to the model being applied, for example a slight change to a problem
that was easy to solve exactly may change the complexity of the problem and
necessitate the use of a heuristic.

In this chapter we will provide a short introduction to optimisation and
state the need for heuristics. Heuristics can be classified into various categories
and we will consider improvement-only heuristics in Sect. 11.2, heuristics
that accept worsening moves in Sect. 11.3, and population-based heuristics
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Fig. 11.1 The number of mentions of ‘heuristics’ on SCOPUS over the last 10 years

in Sect. 11.4. Some examples of applications will be provided in Sect. 11.5
and the chapter concludes with some suggestions for future research.

11.1.1 Optimisation Problems

An optimisation problem for the case of minimisation can be defined in the
following form:

P = Minimise F (X )
s.t.
X ∈ S
Here, F (X ) defines the cost or value of each solution X . When the set S

is discrete, (P ) falls into the category of discrete optimisation problems (also
known as combinatorial optimisation), whereas if it is a continuous set, (P )
is referred to as a continuous optimisation problem (also known as global
optimisation).

11.1.1.1 Local vs Global Optimality

Consider X ∈ S and let N (X) ⊂ S be a given neighbourhood of X . N (X )
could be defined as being a set of solutions that are similar to X in some
way. The decision of which neighbourhood to use in different applications is
a vital one when applying an improvement heuristic.



356 S. Salhi and J. Thompson

X
∧

is a local minimum (maximum) with respect to neighbourhood N (X )
if F(X

∧

) ≤ (≥)F(X)∀X ∈ N (X). X∗ is a global minimum (maximum)
if F(X∗) ≤ (≥)F(X)∀X ∈ S. For instance, if � represents all the possible
neighbourhoods and � the set of all local minima (maxima), X∗ can also be
defined as X∗ =Arg Min{F(X); X ∈ �(X)} or X∗ =Arg Min {F(X

∧

); X
∧

∈
�}.

In brief, the global minimum (maximum) X∗ is the local minimum
(maximum) that yields the best solution value of the objective function F
with respect to all neighbourhoods.

Local search is the mechanism (i.e. operator or transformation) by which
X
∧

is obtained from X in a given neighbourhood N (X ). In other words,
X
∧

=Arg Min{F(X); X ∈ N (X)} denotes choosing the best member of the
neighbourhood.

11.1.1.2 Modelling Approach

When approaching complex real-life problems, a possible modelling approach
is to follow the following four steps. Note that this ordered list is not
exhaustive as other possibilities do exist.
The aim is to apply:

1. an exact method to the exact (true) problem, if not possible go to (2)
2. a heuristic method to the exact problem, if not possible go to (3)
3. an exact method to a modified (approximated) problem, if not possible go

to (4)
4. a heuristic method to the approximated problem.

Though these rules are presented in the above ranking, the complexity in
the design of the heuristic in step (2) which aims to retain the true character-
istics of the problem, and the degree of modification of the problem in step
(3) are both crucial points when dealing with practical problems. It may be
argued that steps (2) and (3) could swap places. The idea is to keep the char-
acteristics of the problem as close as possible to the true problem and then
try to implement (1) or (2). Another related approach would be to start with
a simplified or a relaxed version of (P ), find a solution and check whether the
solution satisfies the constraints to the original problem. If it is the case, there
is no need to worry about the original problem as the solution is optimal.
If some constraints are violated, which is likely to happen especially at the
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beginning of the search, additional characteristics are then introduced grad-
ually. The process is repeated until the problem becomes impractical to solve
and hence, the feasible solution found at the previous stage can then be used
as the final solution of the problem. The choice of whether to use a heuristic
method or to modify the problem into one that can be solved exactly is
crucial. It appears that applying a heuristic is a straightforward approach and
this concept is highlighted by the following observation that it is better to
have a good and acceptable solution to a true problem rather than an optimal
solution to a problem that has very little resemblance to the original problem.

11.1.2 The Need for Heuristics

Heuristics are usually used only when exact methods, which guarantee
optimal solutions, are impractical because the computational effort required
is excessive. They are often used to produce solutions to problems in the class
NP-complete, a set of problems for which there are no known efficient ways
to find optimal solutions to large problems. However solutions to problems
in this category can be verified efficiently. The most well-known example is
the Travelling Salesman Problem (TSP) which consists of finding the shortest
route to visit a set of cities and return to the starting point. The TSP is a
computationally difficult problem and an optimal solution to even a rela-
tively small problem can be difficult to find, leading to the widespread use of
heuristics. The decision of whether to use exact or heuristic solution methods
also depends on the context of the problem and how much time is available to
find a solution. Heuristics may also be used where the problem is ill-defined,
or a solution of reasonable quality is all that is required. Salhi [87], [92], [93]
provides further reasons for accepting and using heuristics.

11.1.3 Some Characteristics of Heuristics

The following characteristics are worth considering in the design of a given
heuristic. Some are by-products of the attributes that make heuristic necessary
as mentioned in the previous section, whereas others are added for generalisa-
tion purposes. For simplicity these characteristics are only summarised below
while more details can be found in [63], [87], [92], [93], [48] among others.

Heuristics should be:

i. Simple and coherent—the method should follow well defined steps which
are not ambiguous in any way.
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ii. Effective and robust—the method should be reliable enough to provide
good or near optimal solutions irrespective of the instances solved.

iii. Efficient—the run time needs to be acceptable. The solution time will
depend to some extent on how the method is implemented.

iv. Flexible—so they can be easily adjusted to solve variants of the problem
with minimum changes while retaining the strengths of the heuristic.
This may include the flexibility to allow interaction with the user so they
can take some control over the algorithm.

11.1.4 Performance of Heuristics

One difficulty with heuristics is measuring the quality of their performance,
given they are typically used on problems for which the exact solution is
unknown. The main criteria for evaluating the performance of a heuristic are
the quality of the solutions provided and the computational effort, measured
in terms of CPU time, the number of iterations or the number of func-
tion evaluations. Other criteria such as simplicity, flexibility, ease of control,
interaction and friendliness can also be of interest, but are more difficult to
measure precisely.

Solution Quality There are various ways in which the solution quality of
a heuristic may be measured. These include:

• Comparison with lower or upper bounds, which is most useful when
bounds are tight

• Benchmarking against optimal results for smaller problems where the
optimal solutions are known

• A theoretical understanding of worst-case behaviour
• Comparison with other heuristic techniques

Many papers merely use the latter method for evaluating solution quality
and this is fraught with danger, particularly where the authors of a particular
heuristic have also implemented the other heuristic methods for the compar-
ison. One positive step is that an increasing number of authors are making
their code and results available for evaluation by others.

11.1.4.1 Computational Effort

Heuristics are also evaluated in terms of their computational effort. Compu-
tational effort is usually measured by how long a heuristic takes, and how
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much memory it uses. The former describes the computing time the method
requires for a given instance whereas the latter measures the storage capacity
needed when solving a given instance. Unfortunately, the latter is seldom
discussed in the literature. It should be noted that the concept of large or
small computer time should be relative to both the nature of the problem
(whether it is strategic, tactical or operational) and the availability and quality
of the computing resources. The time for interfaces is usually ignored in
research though it can constitute an important part of the total computing
time in practice. The importance of computing effort is directly related to the
importance of the problem. So if the problem relates to short-term planning
and needs to be solved several times a day, it is essential that the algorithm
is quick, whereas if the problem is solved at a medium or at a strategic level
(so once every month or year), the cpu time is less important, and more
consideration can be given to the quality of the solution. So for example a
supermarket routing delivery vehicles need a quicker solution than a univer-
sity scheduling its examinations twice per year. It should be noted that for
some strategic problems, users may require the need to investigate different
options and scenarios in which case the heuristic would need to be run several
times and therefore should not be too slow.

11.1.5 Heuristic Classification and Categorisation

There are several ways to classify heuristics. Heuristics can be greedy where
solutions are constructed from scratch or improvement where an existing
solution is improved over time. Other classifications take into account
whether the heuristic is deterministic or stochastic, uses memory or is
memory-less, and whether it considers one solution at a time or a popula-
tion of solutions. Salhi [93] categorises heuristics into four groups, namely,
(a) improving solutions only, (b) not necessarily improving solutions, (c)
population-based and (d) hybridisation. The first two groups are completely
disjoint, whereas the last two could interrelate with each other as well as with
the first two. We discuss the first three of these in the next three sections.
Hybridisation is discussed in the following chapter.

11.2 Improvement-Only Heuristics

In this section, we briefly discuss approaches that only allow improving
moves. The simplest such method is a descent or hill-climbing method
but more sophisticated improvement-only methods commonly used include
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GRASP (Greedy Randomised Adaptive Search Procedure), multi-level, vari-
able neighbourhood search, perturbation schemes, adaptive large neighbour-
hood search, iterated local search and guided local search. Some of these will
be described below

11.2.1 Hill-Climbing Methods

The basic hill-climbing or descent method has two main components, the
generation of an initial solution and the means of improving this solu-
tion. The initial solution is typically generated either randomly or using a
simple constructive type heuristic that builds the solution piece by piece
until the final solution is constructed. For example for the Travelling Sales-
person Problem (TSP), the starting solution may be constructed by selecting
the nearest unvisited city at each step. Different heuristics may be used
instead, which may be more computationally expensive but could result in
better quality starting solutions. For example for the TSP, the heuristic could
insert an unvisited city into the partial tour in the position which causes
the minimum increase in the tour distance. Typically these rules are myopic
(short-sighted) so can lead to large increases in cost towards the end of the
construction.
The initial solution is then subject to improvement. The process of

improvement requires a cost function F (s) which attributes a cost or value to
each solution s, and a neighbourhood N (s) that defines a set of solutions that
can be reached from the current solution via a small change. For the TSP, the
cost is the total length of the tour and the neighbourhood could be defined as
the set of solutions constructed by deleting 2 edges from the current solution
and then forming a new tour, or swapping the positions of two cities in the
tour, etc. A selection mechanism also needs to be defined that determines
which neighbouring solutions are sampled. The neighbourhood structures
and the selection mechanism adopted are crucial elements that contribute
considerably to the success of improving heuristics. The most commonly used
selection strategies are (i) the best improving move where we evaluate all or
a part of the neighbourhood and select the feasible move that yields the best
cost, or (ii) the first improving move where we select the first feasible solution
that is better than the current solution. Note that (i) may take longer as all
moves have to be evaluated at each stage but do mean the heuristic ends in a
locally optimal solution and the search can terminate as soon as none of the
neighbouring solutions provides an improvement. In (ii) neighbouring solu-
tions are sampled at random so the selection is much quicker and at first, it
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is often straightforward to find improving moves. However as the number of
iterations increases, fewer moves result in improvements and the search can
only estimate that a locally optimal solution has been reached. Such heuristics
normally terminate when there have been a certain number of iterations Nend
without improvement, and the value of this parameter Nend depends on the
size of the problem/neighbourhood and is problem and instance dependent.
In this case, the search may need to be repeated several times as different
solutions may be produced depending on the random number stream used.

Algorithm 1 summarises the main features of (a) the best improving move
and (b) the first improving move.

It is also possible to employ a compromise strategy that sits between the
best improvement and first improvement methods. This could be achieved in
several ways, for example by selecting the best improving move found after a
certain time has elapsed since the previous improvement.
These methods typically search a very small part of the solution space,

and solution quality depends on the starting solution. Therefore they are
of limited use but can provide quick improvements to solutions produced
heuristically that may not be local optima.

11.2.2 Classical Multi-Start

The local search procedure is efficient when the objective function is unimod-
ular (i.e. has one local minimum only). However, when there are several
minima, it is impossible to get out of the neighbourhood of a local minimum
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Fig. 11.2 Local optimality

using the same neighbourhood as shown in Fig. 11.2. In the second diagram
representing a multi-modular function, if the search begins at position A or
B, it converges to a poor quality local optimum whereas if it starts from
position C or D, it converges to the global optimum. In practice for many
combinatorial optimisation problems there are numerous local optima and
the likelihood of finding a high-quality solution using a descent only strategy
is quite small.

One way of improving the likelihood of finding a high-quality local
optimum is to use a multi-start method where the search is repeated from
different starting solutions to ensure a broader section of the solution space
is searched. An example is Braysy et al. [8] who apply a multi-start local
search method to the vehicle routing problem with time windows. They use
a randomised constructive heuristic to generate a set of starting solutions
and then apply local search to each. The best solution found is then subject
to a further improvement process. In practice they construct 420 starting
solutions but only apply the descent phase to solutions consisting of the
minimum number of routes.
The basic multi-start method is summarised in Algorithm 2.
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If starting solutions are created randomly, then multi-start methods are
well suited to parallelisation which can improve solution quality. However
the search can be considered to be blind as it may re-visit local optima
that have already been considered. Therefore methods that deliberately create
starting solutions that differ to previously visited solutions are more popular.
For example for the TSP, a list of the frequency of edges being included in
solutions can be maintained, and future starting solutions can be weighted
towards selecting edges that have not been frequently selected previously.

11.2.3 Greedy Randomised Adaptive Search Procedure
(GRASP)

GRASP is an extension of multi-start methods and was introduced by
Feo and Resende [39]. A more formal description is given in Feo and
Resende [40]. It is a multi-start heuristic which consists of two phases, the
construction phase that constructs an initial solution and a local search phase
that improves the initial solution. This is repeated several times. GRASP can
be considered as a memory-less multi-start heuristic. GRASP differs from
multi-start in the way the initial solution is generated as it combines random-
ness with greediness. The idea is that at each step of the construction phase
a selection rule is used that is less rigid and allows flexibility in choosing not
necessarily the best option but to choose any options that are close in some
way to the best. Typically a restricted candidate list (RCL) is used made up
of either the top k best options or those options that are within a certain
deviation from the best. For instance, for the case of minimisation: RCL=
{set of attributes e such that gmin ≤ g(e) ≤ gmin + α(gmax − gmin)} where
0 ≤ α ≤ 1 and ge is the cost of incorporating element e into the solution.
The element to be added to the partial solution e∗ is then randomly chosen
from the RCL. Note that if α = 0 this reduces to a greedy method whereas
if α = 1 the search becomes the classical random multi-start approach. The
basic GRASP is described in Algorithm 3.
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There are several possible variations to GRASP. For instance the choice of
α does not need to be fixed beforehand but can be adjusted from one cycle
to another depending on the solution quality found in previous solutions
(this is known as reactive grasp). The definition of α can also be defined as a
function of the gain/loss at a given iteration, or as a convex or a concave func-
tion dependent on the number of iterations. Path-relinking can be introduced
which involves exploring the path between different locally optimal solutions
to search for better solutions. Learning can also be introduced, either to guide
the search towards new unexplored areas of the solution space or to maintain
in future solutions attributes that appear to commonly occur in high-quality
solutions. For examples see [46], [70] and [94].

11.2.4 Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search (VNS) requires the definition of several
neighbourhoods for the given problem. VNS attempts to escape local optima
by moving to a new, usually larger, neighbourhood whenever there is no
possible improvement through a local search in a given neighbourhood, and
then reverts back to the first one, usually the smallest, if a better solution
is found. VNS was originally developed by Mladenović and Hansen [75]
for solving combinatorial and global optimisation problems. VNS contains
mainly three phases, namely, a shaking phase (given a set of neighbourhood
structures, a neighbouring solution is generated), an improvement phase (a
local search or a local search engine is deployed to improve the currently
perturbed solution) and finally a neighbourhood change phase (move or not
move). VNS takes advantage of the fact that a local minimum with respect
to a given neighbourhood may not be a local minimum for other neigh-
bourhoods, but local optima for several different neighbourhoods are often
close to each other. However, a global minimum is a local minimum for all
neighbourhoods.

VNS starts from some starting solution x and local search is applied using
an initial neighbourhood N1(x). The locally optimal solution found under
the initial neighbourhood is then used as the starting solution for a local
search under neighbourhood N2(x). If an improving move is identified, the
search reverts to the first neighbourhood; otherwise the search moves onto
neighbourhood N3(x) and so on. See Algorithm 4 for a description.
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Compared to other powerful heuristics, VNS has the advantage of being
simple and easy to implement as it requires only the definition of the neigh-
bourhoods and the local search and there are no parameters to consider. A
number of variants have been applied to different combinatorial problems
with success. These include:

• Reduced VNS is useful for large problems where local search is too time-
consuming and hence omitted from the search. In other words, this is
mainly a VNS without the local search (i.e. the use of the shaking proce-
dure and the move or not step) but allows to be used either in a systematic
manner (reverting to the first neighbourhood, or to the next one, or a
combination).

• VND, short for variable neighbourhood descent, is focused on the local
search phase and the move or not move phase. Here the way the local
search phase is implemented is critical. Usually there are a number of local
searches used either in series or in a VNS type format like the multi-level
heuristic described earlier.

• General VNS is a VNS where the local search phase is a VND.
• Skewed VNS explores areas of the solution space which can be far from the

current solution by accepting non-improving solutions based on a certain
threshold. In other words the move or not move phase is made slightly
relaxed.

Note that in the improvement phase within the local search either a first
improvement or a best improvement is adopted which can lead to several
other variants. The move or not move step can also have several options
such as sequential, cyclical or in a pruning way as defined in [49]. For more
description on these and other variants, see [48], [49] and [93].
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11.2.5 Iterated Local Search (ILS)

This consists of two main phases known as the construction/diversification
phase and the local search phase. At each iteration the current solution is
diversified, and then is subject to local search. These are performed repeatedly
while an acceptance step is embedded to retain the best solution found so far.
The aim is to ideally keep using the same local search as a black box while
providing interesting solutions to it through diversification. This approach is
simple and efficient and has shown to be powerful in obtaining interesting
results in several combinatorial problems. One possible implementation of a
strong ILS could be the combination of LNS (diversification/construction)
with a VND or randomised VND (local search). For more details and
possible applications of this heuristic, see [67].

11.2.6 A Multi-Level Composite Heuristic

Multi-level composite heuristics are similar to variable neighbourhood
descent and involve improving the solution using a small number of local
searches, known as refinement procedures in sequence, with the method stop-
ping when there is no further improvement possible. The resulting solution
should be a high-quality solution as it is a local minimum with respect to
the selected procedures. The heuristic starts by finding a locally optimal solu-
tion using the first refinement procedure, and then this solution becomes a
starting solution for a second refinement procedure, etc. In addition, once a
new better solution is found, it can be used as an initial solution for any of the
other refinements, not necessarily the next one in the list. For simplicity, we
can restart the process using the first one which is the simplest refinement in
our list of available refinements. This is the backbone of multi-level heuristics
initially proposed in Salhi and Sari [90] for the multi-depot routing problem
with a heterogeneous vehicle fleet. This approach has now been successfully
applied to many other combinatorial and global optimisation problems. The
choice of the refinement procedures, the sequence in which these are used
and the choice of the refinement to go back to, once a new better solution
is found, can be critical. Note that once a solution is found at a given level,
it is appropriate to go to any of the other refinements of the earlier levels. A
standard approach is to revert back to the first level where computations are
relatively fast. More details on this approach can be found in [90], [96].
The way the levels are organised can have a significant effect on the solu-

tion quality and this requires careful consideration. The choice of successive
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refinements may be critical as one may wish to consider the next local search
to be drastically different in structure to the previous one so as to provide
diversity. The search does not necessarily have to return to the initial refine-
ment once a solution is determined and the choice of the refinement to return
to does not need to remain constant throughout the run. It may be that
the obtained solution would be better suited to another refinement chosen
randomly or based on certain rules that consider the structure of the current
solution. It can be a challenging task to match the structure of a given solu-
tion with the characteristics of the set of refinements used. The integration
of learning within the search could render this approach more adaptive and
hence more powerful as demonstrated in [103], [104].

11.2.7 Problem Perturbation Heuristics

The idea of problem perturbation heuristics is to perturb the original problem
to obtain a series of gradually perturbed problems. Local search is applied
to the initial problem and a locally optimal solution is then obtained. The
problem is then perturbed in some way and local search is applied again
to this new problem leading to a different solution. It can be considered
whether this new solution is a better solution to the original problem than
the previously found local optimum.
The perturbed problem may be found by adding a violation that means

the current local optimum is infeasible. As there is a well-defined perturba-
tion built up between successive perturbed problems, the successive solutions
may have the tendency of retaining some of the important attributes in their
respective configurations. After a set of perturbed problems are found, the
search may proceed by gradually relaxing the problem by removing the viola-
tions again, one by one. This continues until the problem returns to the initial
problem again. At this stage a local search to improve the solution can be used
again and then either the process starts adding violations again or making the
original problem even less restricted by removing some of the constraints.
This process can be repeated several times.

For instance, consider the p-median problem where the objective is to
identify the optimal location of a fixed number of facilities (say p) with
the aim of minimising the total transportation cost. A local search can be
performed and a local optimum identified. Then, the solution is allowed
purposely to become infeasible in terms of the number of facilities by
accepting solutions with more than or less than p (say p ± q where q ∈
[p/4, p/3]). By solving the modified problems, infeasible solutions can be
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generated that when transformed into feasible ones may yield a cost improve-
ment. Initially a feasible solution with p facilities is found, then one facility
is added at a time and after each, a simple local search is activated. Once we
reach p+ q facilities, we then start removing one facility at a time till we get
to a feasible solution with p facilities where a more powerful local search is
applied for intensification purposes to try to obtain a better local minimum.
At this stage we also allow the solution to be infeasible by removing one
facility at a time until we reach say p − q, from where we start adding facili-
ties again until we reach a new feasible solution. This up and down trajectory
makes up one full cycle. The process is then repeated until there is either no
improvement after a certain number of cycles or the overall computing time is
met. When this process is repeated several times going through several cycles,
it acts as a filtering process where the most attractive depots will have the
tendency to remain in the best configuration, which is a form of survival of
the fittest. Such an approach was developed by Salhi [90] and it performed
well when tested on a class of large facility location problems with known
and unknown values of p. Zainuddin and Salhi [120] adapted this approach
to solve the capacitated multisource Weber problem and Elshaikh et al. [38]
modified it for the continuous p-centre problem.

A similar strategy is Strategic Oscillation where the search moves between
the feasible and infeasible regions. Consider Fig. 11.3 which illustrates a solu-
tion space with a disconnected solution space. A search is performed in a

Fig. 11.3 Strategic oscillation to search a disconnected solution space
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feasible region, ending in say point A but the constraints are then relaxed,
enabling the search to move into the infeasible region (say point B). At this
stage, the constraints are re-imposed and the local search is used to guide the
search back towards a feasible region, point C in this case. In this way the
search investigates a broader area of the solution space and is able to navigate
between different parts of a disconnected solution space.
The amount of infeasibility allowed is dealt with by attaching penalties to

broken constraints. These penalties are dynamically updated. This concept
is useful particularly when the solution space is disconnected or non-convex
as it is impossible to cross the infeasible region using only feasible solutions.
The only difference with problem perturbation heuristics is that the latter is
designed purposely to explore these infeasible solutions in a guided manner
without any penalty attached so that some useful and promising attributes
could then be identified.

11.2.8 Some Other Improving Only Methods

Large Neighbourhood Search (LNS): The idea is to use not necessarily small
neighbourhoods but larger ones as well. The need for these large neighbour-
hoods is sometimes crucial to get out of local optimality as pointed out by
Ahuja et al. [1]. This was proposed by Shaw [100] and can be seen to be
similar to the ‘ruin and recreate’ procedure of Schrimpf et al. [98]. The idea
is to perturb the solution configuration in an intelligent way by deleting
some of the attributes of the solution using some removal strategies and
then reintroducing them using some insertion strategies. This has similari-
ties with perturbation methods described earlier except here the removal of
many attributes is performed at the same time. Some of the considerations
when implementing this method include the number of attributes to remove,
the removal strategies adopted and the insertion or repair strategies used. The
way these strategies are implemented and developed is critical to the success
of the search. As the method is repeated several times some form of learning
is worth exploring to efficiently guide the search. For instance [103], [104]
introduced interesting new operators and successfully integrated LNS with
VNS in an adaptive way. LNS is now becoming a useful tool to solve many
complex combinatorial problems.

Random Noise: A related method that perturbs the problem space by intro-
ducing random noises to the data is the noising method developed by Charon
and Hudry [13]. The idea is to solve the problem with the perturbed objec-
tive function values via a local search where at each iteration, or after a fixed
number of iterations, the level of perturbation is reduced until it reaches zero
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and the problem reverts to the original one. The way the noise is introduced
and how randomness is gradually reduced as the search progresses are two key
factors that are critical to the success of the method. Relatively recent work
by Charon and Hudry [14] explored the self-tuning of the parameters of such
a method.

Guided Local Search: This is an adaptive local search which attempts to
avoid local optimality and guide the search by using a modified objective
function. This objective function contains the original objective and a penalty
term which relates to the less attractive features of the configuration of a given
local optimum. The local search used can be a simple improvement procedure
or a powerful heuristic. In other words, at every locally optimal solution the
feature which has a large utility value receives an increase in its unit penalty.
For instance, in the case of the TSP, the edges can represent features of the
tour and the largest edge of the obtained tour will have its penalty increased.
Note that this type of penalty is related to the so-called ‘bad’ features and not
to the amount of infeasibility as usually carried out in constrained optimisa-
tion. The way the features are selected and penalised plays an important part
in the success of this approach. Voudouris and Tsang [112] provide an inter-
esting review with an emphasis on how to implement this approach when
addressing several combinatorial problems.

11.3 Not Necessarily Improving Heuristics

In this section, we discuss those popular heuristics that improve the solution
by not necessarily restricting the next move to be an improving move. This
enables the search to escape from local optima. However note that allowing
such inferior solutions to be chosen needs to be controlled as the search may
diverge to even worse solutions. Some of the well-established techniques that
are based on this concept are covered here, and include simulated annealing,
threshold accepting and tabu search. These methods have been around for
many years and are still extremely popular, being used to solve both real-life
and academic problems.

11.3.1 Simulated Annealing

The concept of simulated annealing (SA) is derived from statistical mechanics
which investigates the behaviour of very large systems of interacting compo-
nents such as atoms in a fluid in thermal equilibrium, at a finite temperature.
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Metropolis et al. [74] studied the simulation of the annealing of solids.
This work was built on by Kirkpatrick et al. [59] and later by Cerny [12]
who considered how to apply a method based on simulated annealing to
large combinatorial optimisation problems. In the context of an optimisation
problem, the process of a body cooling is an analogy for a search algorithm
seeking a good solution with the aim of approaching the global optimum.
The energy function in our case will represent the objective function of the
problem. The configuration of the system’s particles becomes the solution
configuration of the problem. The temperature acts as the control parameter.
Cooling too fast resulting in defective crystal is analogous to a neighbour-
hood search that yields a poor local optimum. Kirkpatrick et al. adopted these
analogies for the context of combinatorial optimisation, to explicitly formu-
late the algorithm that is now widely known as Simulated Annealing (SA).
The way in which the temperature decreases is called the cooling schedule
and the probability function used is that of Boltzmann’s Law (see [74]) which
is a negative exponential function. The reasoning behind this choice is that it
has the tendency to choose more non-improving solutions initially but as the
search progresses this random-based technique will have a smaller probability
of selecting inferior solutions meaning the search converges to a high-quality
local optimum. For more details see [37], [78], [34] and [33]. A simple
implementation of SA is shown in Algorithm 5.

A disadvantage of simulated annealing is that it is heavily dependent on
parameters. These relate to the start and end value of the temperature, the
means for reducing the temperature and the number of iterations at each
temperature.
There are various methods for reducing the temperature (cooling). The

most common is Tk+1 = βTk, 0 < β < 1 where the closer β is to 1, the
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better the solution quality will normally be but the run time will increase
also. Other possible cooling methods include:

Tk+1 = Tk − t (t = constant) or Tk+1 = Tk − tk where tk is randomly
chosen at each iteration k or Tk+1 = 1/t (1 + βt) [69], etc. Typical stop-
ping criteria are a maximum number of iterations is reached, a time limit is
attained or the temperature becomes sufficiently small that the likelihood of
accepting any worsening moves is likely to be extremely small, so at this stage
it is likely that a local optimum has been reached.
The value of the initial temperature (T0) should be large enough to accept a

large number of moves. Therefore an initial phase may be used where random
moves are sampled and an appropriate value of the temperature parameter
can be calculated to ensure that a given percentage of these moves would
be accepted. However, if the value of T0 is too large, most solutions will
be initially accepted which can be a waste of time as the search is in effect
performing a random walk. On the other hand, if the value is too small, too
many non-improving solutions will be rejected and the method becomes a
simple local search method. See [62] for details of some possible implemen-
tations, and see [93] for more details. The temperature Tk theoretically needs
to be a non-increasing function of iteration k (e.g. Tk+1 = g(Tk) ≤ Tk).
However it is possible to allow the temperature to remain constant or to
increase marginally at a given iteration. One idea is to reset the temperature
at higher values after getting stuck in a flat region, say if no improvement
is found after a certain number of iterations (i.e. consecutive uphill rejec-
tions). The current solution is locally optimal and since the temperature
is low, the SA algorithm becomes self-destructive as it restricts the accep-
tance of less attractive solutions. These non-improving moves are rejected
with a probability of almost one. The following resets are commonly used
based on the temperature when the best solution was found, say Tbest and
the last temperature reset TR : Tk+1 = Tbest, or αTbest + (1 − α)Tk or
βTbest + (1 − β)TR (initially TR = Tbest ), with α, β ∈ [0, 1] repre-
senting the corresponding weight factors. Some of these resetting schemes
are initially given by Connolly [16], [17] and successfully applied by Osman
and Christofide [76] to solve the VRP.

One may argue that the update function using such a reset scheme violates
the property of g(Tk) as it should be theoretically a non-increasing func-
tion of k. This is true if g(Tk) was optimally defined but not heuristically
as derived here. Such a statement needs therefore to be relaxed and allowing
such flexibility is appropriate. Another way of relaxing such an update would
be to incorporate flexibility by allowing the temperature to increase relatively
according to the change in the cost function, see [30] and [31]. If a number of
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worsening moves are accepted the temperature should be reduced whereas if
few worsening moves are being accepted and it appears the search has become
trapped in a specific part of the solution space, the temperature should be
increased. For more information on SA, see [33].

11.3.2 Threshold-Accepting Heuristics

This heuristic is a simplified version of simulated annealing. It generally
involves accepting all moves that fall below some threshold value which varies
as the search progresses. This avoids the probabilistic effect of simulated
annealing when selecting a non-improving move, as the acceptance decision is
entirely deterministic. When implementing threshold acceptance, one again
needs to define a starting solution, cost function and neighbourhood. Addi-
tionally, the value of the threshold needs to be selected as well as the method
for updating it. If the threshold is too high, almost all moves will be accepted
and the search will just perform a random walk. If the threshold is too low,
no moves will be accepted. Dueck and Scheurer [35] were the first to propose
the Threshold Acceptance heuristic formally and they presented empirical
studies comparing the results against simulated annealing when solving the
TSP. The results were encouraging and Threshold Acceptance has the advan-
tage of requiring fewer parameters and being a simpler method. The method
is shown in Algorithm 6.

An alternative is to record a list of the top non-improving solutions which
can then be used to guide the threshold target (the size of such a list can be
made constant or dynamically changing). This is similar to SA except that
there is flexibility in accepting a non-improving solution deterministically
through thresholding instead.
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Threshold Acceptance has proved to be computationally efficient when
tackling hard combinatorial problems especially routing-based problems
(see [107] and [66]). For further references on TA and its implementation,
see [52] and [64].
The following two simple but successful variants of TA have proved to be

promising and hence are worth mentioning.
Record to record heuristic: This is developed by Dueck [36] where the

threshold is based on the relative deviation from the best solution instead
of the absolute deviation from the current solution. Therefore moves are
accepted if they improve the current move or if the difference between the
two costs is below some threshold value. This takes into account the fact that
different problems may have very different magnitudes of costs which can be
misleading if the classical TA is blindly implemented. Li et al. [66] adopted
this approach for solving the heterogeneous vehicle routing problem.

List-based threshold accepting: This approach is developed by Tarantilis
et al. [107] where instead of having a threshold value based on the objective
function only, a list containing a number of the top solutions is used with its
cardinality being the only parameter (M ) that needs to be controlled which
makes the search easier to implement. During the search, the list is reduced
gradually by decreasing the value of M . The authors produced competi-
tive results when testing this scheme on a class of routing problem with a
heterogeneous vehicle fleet.

11.3.3 Tabu Search

This approach was proposed by Glover [43] and independently discussed
by Hansen [47] as a meta-heuristic optimisation method. Tabu Search (TS)
concepts are derived from artificial intelligence where the intelligent use
of memory helps to exploit useful historical information. Tabu Search is a
best acceptance method that escapes from local optima by accepting non-
improving moves. However merely accepting worsening moves will lead to
the search cycling between a small number of solutions. To avoid this, a tabu
status is allocated to those attributes involved in recent moves. The search
is not permitted to return to solutions with these attributes for a certain
number of moves. Tabu Search (TS) shares with SA and TA the ability to
accept non-improving moves and to escape from local optima.

An attribute of a solution is recorded rather than the entire solution as it is
more efficient, but it can lead to solutions being classed as tabu even if they
have not been visited before. Therefore an aspiration criterion is normally
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used which means that a tabu solution can still be accepted if its cost is better
than the best solution found so far.
Tabu search can be considered as an aggressive method as it selects the

next best move in a deterministic manner. It will converge quickly to a
local optimum before starting to accept worsening moves unlike simulated
annealing and threshold methods that may only find locally optimal solutions
towards the end of the run. TS also takes into account past information of
already found solutions to construct short and/or long-term memories. These
memories are useful in guiding the search via diversification to explore other
regions of the solution space, and intensification to intensify the search within
the same vicinity of the current solution. TS, as other metaheuristics, has also
the power of searching over non-feasible regions which, in some situations,
can provide an efficient way for crossing the boundaries of feasibility. The
general method is shown in Algorithm 7.

A key question is how to define the right restriction or tabu status. For
instance in routing, if the best move was to exchange customer i from route
Rk with customer j from route Rs , a very restrictive approach would be to
say that both customers cannot be allowed to go back to their original routes,
respectively, for a certain number of iterations, a tight restriction would be
that either customer i or j is not allowed to go back to its original route but
one could return, and a less tight restriction would be that both customers are
able to go back to their original routes but cannot be allowed to be inserted
between their original predecessors and successors.
The time that a solution remains tabu must also be selected. Small values

may increase the risk of cycling whereas large values, on the other hand, may
overconstrain the search. Additionally a larger tabu list (size |Ts|) can be more
computationally demanding. The ideal value may be difficult to decide, and
will vary from problem to problem and even instance to instance. It can be
defined dynamically so that it updates according to observations made as the
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search progresses. It can periodically change between a set of values gener-
ated randomly within a fixed range at each iteration. This is known as robust
tabu as it provides a more flexible approach. Another scheme is to have a rule
that the size of the tabu list switches between the two extreme values. This
implementation was found to be successful when adopted by Drezner and
Salhi [34] for the one-way network design problem. Finally |Ts| can be depen-
dent on the change in the cost function for that selected move. For instance
for the p-median problem, a functional setting was successfully adopted by
Salhi [88].
The construction of such functions is seldom attempted in the literature as

it is challenging but it is an interesting idea as it incorporates both learning
and problem characteristics in an integrated way.
The size of the tabu list can also be updated dynamically by increasing

or decreasing its value as the search progresses. For example, |Ts | could be
increased according to (|Ts | = (1 + β|Ts |) with β = 0.1 or decreased
by setting β = −0.1 depending on the number of repetitions, their risk
of collision, etc. Collision is usually identified through hashing functions
or other forms of identification. This is originally proposed by Battiti and
Tecchiolli [4] who named this variant as reactive TS (RTS). This approach
is adopted by several researchers including Wassan [115] who successfully
addressed a class of routing problems, namely, the vehicle routing with
backhauls problem.
The level for which the aspiration level overrides the tabu status is crucial

in the search as it defines the degree of flexibility of the method. The most
common method as mentioned above is to relax the tabu restriction if a solu-
tion produces a better result than the currently best-known solution. This
is obviously correct as the search would be missing out on the opportunity
to identify a new best solution. Another consideration that arises in some
circumstances is what will happen if all of the solutions are either tabu or
non-improving solutions. Is it appropriate to look for the first non-tabu solu-
tion down the list or to choose one from those tabu top solutions? The
elements which will constitute the decision need to include the tabu status
of the attribute for that solution, the objective function value (or the change
in the objective function) and other factors such as frequency of occurrence
during a certain number of iterations and so on. One possible attempt is to
use the scheme developed by Salhi [88] who introduced a softer aspiration
level which is based on the concept of criticality in the tabu status.

Most tabu search implementations include a Diversification step with
the aim of guiding the search to new, different parts of the solution space.
Diversification moves use some form of perturbation (jumps) to explore new
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regions. It uses long-term memory to guide the search out of regions which
appears to be either less promising according to the results provided from the
short-term memory, or have not been explored previously. The use of diver-
sification is nowadays embedded into most metaheuristics either as a post
optimisation step or as a perturbation step as in large neighbourhood search.

Alternatively intensification can be used which stimulates moves to go to
a nearby state (neighbourhood) that looks myopically good. This uses short-
term memory as it observes the attributes of all performed moves. This is
usually achieved by a local search or a series of local searches where the
focus of the search is on promising regions of the solution space. In brief,
intensification is aimed at detecting good solutions and performing a deeper
exploration.

An important question is how to decide when it is better to carry out
an intensification and when it is time to perturb the solution and activate
diversification. What is the right balance between intensification and diver-
sification? None of these questions are straightforward as these are related to
the problem characteristics, the power of the local search used and the type
of perturbation the overall search is adopting.

11.4 Population-Based Heuristics

In this section, we present those methods that generate a set of solutions
from one iteration to the next instead of only one solution at a time. We
give an overview of the most commonly used approaches in this class which
include genetic algorithms, ant systems, bees algorithm and particle swarms.
For completeness, we also briefly mention other ones such as path relinking,
scatter search, harmony search, heuristic cross-entropy, artificial immune
systems and the psycho-clonal algorithm.

11.4.1 Genetic Algorithms

Genetic algorithms (GAs) were initiated to mimic some of the processes
observed in natural and biological evolution. This approach was initially
developed by John Holland and his associates at the University of Michigan
in the 1970s. The method was formally introduced for the context of solving
general optimisation problems by Holland [50] and Goldberg [45].
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In brief, GA is an adaptive heuristic search method based on population
genetics. A GA consists of a population of chromosomes (set of solutions)
that evolve over a number of generations (iterations) and are subject to genetic
operators (transformations) at each generation. The initial population is typi-
cally generated at random and a fitness function is defined to measure the
quality of each solution. Parent solutions are chosen from the population,
typically with a bias towards selecting high-quality solutions. A crossover
operator is defined to combine attributes of the parent solutions to create
offspring, and then mutations are used to add random variation to the child
solutions. The population is updated according to some rules which usually
ensures that better solutions have more chance of surviving into the next
generation. The process continues for many generations.

A key decision is the chromosome representation of a solution which may
involve a binary, permutation, integer or continuous encoding depending on
the nature of the problem. For example for the p-median problem where
there are n possible sites for p facilities, a binary representation of length n
can be used where position i = 1 means the site is used and i = 0 means it
is not. A permutation representation is more suitable for the TSP where the
chromosome can consist of a string of integers listing the cities in the order
in which they should be visited. An integer representation may be suited to
scheduling problems where the value in position i represents the time job i
should start. Thought needs to be given to select the right representation as
this can either facilitate or hinder the chromosomes’ transformation that will
be generated via the crossover and mutation operators.

Crossover operators should ensure that children inherit characteristics of
the parent solutions. For binary and integer representations possible crossover
operators include 1-point, 2-point and uniform which are illustrated in
Fig. 11.4. For 1-point crossover, a random cut point is chosen and the
child solutions are made up of the elements before the cut point from one
parent, and the elements after the cut point from the other parent. For 2-
point crossover, 2 random cut points are selected. The child solutions are
made up of the elements before the first cut point and after the second cut
point from one parent and the elements between the two cut points from
the other parent. Uniform crossover selects each element of the child solu-
tions randomly from either parent. For permutation representations, 1-point
crossover is not appropriate as it causes infeasible children due to repeated and
missing values. Alternatives for permutation representations include partially
mapped crossover and order crossover, which are illustrated in Fig. 11.5. For
partially mapped crossover, two random cut points are chosen and mapping
systems relate the elements between the cut points. In the example shown the
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Fig. 11.4 Crossover for binary and integer representations

Fig. 11.5 Crossover for permutation representations

mapping systems are [3, 1], [4, 2], [5, 5]. These values are swapped and the
remaining values are added if they do not cause any conflict. So for Child 1
for example, 6 and 7 can be added in their positions in Parent 1 but 2 and
1 cannot as they are already present in the child solution. Therefore 2 and 1
are replaced according to the mapping systems by 4 and 3, respectively. For
the order crossover, two random cut points are chosen. The child solution is
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made up of the values between the two cut points in the first parent, and the
remaining values are added in the order they appear in the second parent.

Mutation operators may flip a binary value (0− > 1 or 1− > 0),
replace the value in an integer representation or swap values in a permuta-
tion representation. A mutation rate λ is typically defined, normally in the
range [0.01, 0.1] and then a value is subject to mutation if a random value
between 0 and 1 is less than λ.

Other decisions that must be made when using a genetic algorithm include
which solutions should be chosen as parents. A commonly used selection
scheme is the tournament selection where a subset of the population is chosen
randomly and the best of these are selected as parents based on their fitness
values (i.e, f (.) ). There are several other ways to select a chromosome k
from population P . Roulette wheel selection is commonly used, where the
probability of selecting chromosome k is Prob(k)= f (k)/

∑
r∈P f (r). This

simple rule seems to suffer where the population contains some outstanding
individuals as these tend to be chosen with a high probability and can lead to
premature convergence. However if the population contains solutions that are
equally fit, then there is insufficient selection pressure. Other selection rules
are based on linear ranking, power and exponential ranking, among others.
One interesting approach would be to sort the chromosomes according to
their fitness, then construct in addition to the top chromosome, three groups
consisting of good, not so good and mediocre or bad chromosomes with
respective sizes n1, n2 and n3, respectively. The weights of the three respective
groups at generation t say α1(t) > α2(t) > α3(t) > 0 with

∑3
j=1 α j (t) = 1

can be defined. We can also assume that the first weight α1(t) is a non-
decreasing function of t with limt→∞ α(t) → 1 while the other weights
converge towards zero. Using the roulette wheel, the group will be selected
based on these weights and then a chromosome within that group is chosen
randomly for crossover or mutation, etc.

It is also important to provide diversity and hence an opportunity for
improvement is possible through some form of migration. In a GA, a
small number of completely new chromosomes which are generated either
randomly or constructed can be injected into the population to provide diver-
sity from time to time. The number of injected chromosomes and when the
injection takes place are issues that deserve careful investigation. Usually the
injection starts being active once the GA shows some form of stagnation and
then from that point onward injection is activated periodically or adaptively
depending on the behaviour of the overall results.

Figure 11.6 illustrates the new combined generation scheme which
includes both the flexible reproduction and the effect of immigration which
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Fig. 11.6 Injection of chromosomes and new generation composition (adapted from
[93])

was successfully explored by Salhi and Gama [91], and Salhi and Petch [86]
for a class of location and routing problems, respectively. More details can
also be found in the recent book on heuristic search in [93].

GAs are powerful at exploring the wider space by identifying promising
regions, but lack the fine mechanisms to pinpoint the exact local minima
(maxima) that may be required. Therefore many Genetic Algorithms in liter-
ature are actually Memetic Algorithms, which are hybrids of GAs and local
search. The initial population is produced but is then subject to local search
so the population consists of a set of local optima. The algorithm continues as
normal but each child that is produced is also subject to descent. In this way,
better solutions may be produced but at a cost of additional computational
time.

11.4.2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a meta-heuristic inspired by the observa-
tion of the behaviour of real-life ant colonies, in particular the way in which
real ants find the shortest path between food sources and their nest. Ants
create paths from the nest to their food and leave pheromone trails which
influence the decisions of other ants as to which path to take. The effect of
this is the pheromone trail will build up at a faster rate on the shorter paths.
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This will influence more ants to follow the shorter paths due to the fact that
the ants prefer to follow a path with a higher pheromone concentration. As a
greater number of ants choose the shorter path, this in turn causes a greater
level of pheromone and hence encourages more ants to follow the shorter
path. In time, all ants will have the tendency to choose the shorter path. In
other words, the greater the concentration of the pheromone on the ground,
the higher the probability that an ant will choose that path. Good quality
solutions are developed as a result of this collective behaviour of the ants. For
more information see [21].
This real-life behaviour of ants has been adapted to solve combinatorial

optimisation problems, as initially proposed by Dorigo et al. [29]. Ant system
algorithms employ a set of agents, known as ants, who search in parallel
for good solutions using a form of indirect communication. The artificial
ants co-operate via the artificial pheromone level deposited on arcs which is
calculated as a function of the quality of the solution found. The amount
of pheromone an ant deposits is proportional to the quality of the solution
generated by that ant helping direct the search towards good solutions. The
artificial ants construct solutions iteratively by adding a new node to a partial
solution exploiting information gained from past performance using both
pheromone levels and a greedy heuristic. A local search could also be intro-
duced to improve the solutions. Once that is completed, a global updating
of the pheromone trail levels is activated to reinforce the best solutions by
adding an extra amount of pheromone to those arcs of the best solutions.
This amount can be based on the length of the best tour as well as the number
of ants that produced that best tour.

A variant of ACO named Ant System (AS) was initially proposed by
Colorni et al. [15] to solve the travelling salesman problem. The algorithm
is illustrated in Algorithm 8. Assume the TSP contains n cities and distance
matrix d (i, j ) defines the distance between each pair of cities (i, j ).
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Colorni et al. also evaluated a trail update rule which add a constant value
to the trail which is independent of the total distance of the tour. This made
little difference to solution quality. They also showed that it was better to
update the trail matrix after the entire tour had been produced rather than
after each construction step.

In addition, an elitism strategy that provides a strong reinforcement to the
tour corresponding to the global best solution may be used. Arcs belonging to
the global best tour have their pheromone increased by a quantity that favour
the number of ants that produce the best tour and the length of the global
best tour. The consequence of the global updating rule is that arcs belonging
to short tours and arcs which have been used frequently are favoured by
receiving a greater amount of pheromone. Dorigo and Gambardella [27]
proposed updating the pheromone based only on the global best-found solu-
tion. Stutzle and Hoos [102] introduced other variants such as the Max-Min
ant system, known as MMAS. Their method is similar to AS using the same
state transition rule in the selection process with some modifications, the
main one is to restrict the pheromone trail values to be in a certain interval
[τmin, τmax]. The aim is to reduce the risk of stagnation and make sure
that certain choices do not become either dominant with high trail values,
or have such small trail values that the probability of them being selected
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is approximately zero. It should be noted that although the idea of intro-
ducing restrictions on the trail values is interesting as it avoids stagnation
and provides a chance for less visited solutions to exist, the choice of these
additional parameters τmin and τmax need to be made appropriately. ACO
already has many parameters including the parameters α and β that balance
the emphasis on trail and visibility, the number of ants, the number of cycles
and the evaporation rate.

Bullnheimer et al. [9] introduced another modification to AS by ranking
the ants according to their tour length, and using the ranking to weight the
amount of pheromone each ant contributes. Wade and Salhi [113] investi-
gated the use of ACO in a class of VRP by incorporating a visibility factor
based on the remaining load in the selection rule, the frequency of occur-
rence of a given arc in the local updating rule and both elitism and ranking
are combined to yield a compromise global updating rule. For more informa-
tion, references and applications on ant systems in general, the review paper
[28] and the book [93] can be useful references.

11.4.3 The Bee Algorithm

This optimisation algorithm is inspired by the behaviour of swarms of honey
bees when searching for their food. It shares some similarities with the way
the ants behave. The best example of individual insects to resolve complex
tasks is by the collection and processing of nectar. Each bee finds sources of
the nectar by following another bee which has already discovered a patch of
flowers. Once the bee returns to the hive with some food, the bee can either
abandon the food source and then becomes again an uncommitted follower,
continue to forage at the food source without recruiting new bees, or recruit
more bees and return to the food source.
The basic bee algorithm, originally developed for continuous optimisation

problems, can be found in [81]. In brief, the bees are first assigned to some
chosen sites with the idea that those sites that attract more bees are considered
more promising. This is repeated several times till a certain stopping criterion
is met. The way a site is considered attractive is the most important point.
This is measured by the fitness function of each bee at that site where the top
sites will receive more bees either in an equal number or proportionally to
their fitness.

Another popular and related bee algorithm is the Artificial Bee Colony
(ABC) algorithm proposed by Karaboga [56]. The ABC algorithm is inspired
by the intelligent foraging behaviour of a swarm of honeybees. The foraging
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bees are classified into three categories: employed, onlookers and scouts. All
bees that are currently exploiting a food source are classified as employed
and they provide information to the waiting bees (onlooker bees) in the hive
about the quality of the food source sites which they are exploiting. Onlooker
bees wait in the hive and decide on a food source to further exploit based on
the information shared by the employed bees. Scouts search the neighbouring
areas to find a new food source. Scout bees can be visualised as performing
the job of exploration or diversification, whereas employed and onlooker bees
can be considered as performing the job of exploitation or intensification.
The ABC algorithm is an iterative algorithm that starts by assigning all

employed bees to randomly generated food sources (solutions). At each iter-
ation, every employed bee determines a food source in the neighbourhood of
its currently associated food source and evaluates its nectar amount (fitness).
If the new fitness value is better than the previous one then that employed
bee moves to this new food source, otherwise it retains its old food source.
When all employed bees have finished this process, the bees share the nectar
information of the food sources with the onlookers, each of whom selects
a food source according to the food quality. This scheme means that good
food sources will attract more onlookers than those of poorer quality. After
all onlookers have selected their food sources, each of them determines a food
source in its neighbourhood and computes its fitness. If an onlooker finds a
better fitness value, it changed the employed food source with this new infor-
mation. However, if a solution represented by a particular food source does
not improve for a predetermined number of iterations then that food source
is abandoned by its associated employed bee which becomes a scout (i.e. it
will search for a new food source randomly). The whole process is repeated
until the termination condition is met. The method is shown in Algorithm 9.
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The main steps of the ABC algorithm can be found in Szeto et al. [105]
where efficient implementations are presented for solving the vehicle routing
problem.

11.4.4 Particle Swarm Optimisation (PSO)

This is a further meta-heuristic method based on the social behaviour of
animals, in this case birds or fish. This evolutionary stochastic heuristic is
introduced by Kennedy and Eberhat [58] where a population of individuals
which searches a region of solutions that is recognised as promising is called a
swarm and individual solutions are referred to as particles. It is interesting to
stress the similarities which exist in the classical non-linear numerical optimi-
sation techniques where the next point is based on the previous point and the
displacement. In other words, the new point at iteration (k + 1) lies along
the direction Sk from the previous point Xk with an optimal step size λk
(i.e. Xk+1 = Xk + λk Sk). In these numerical optimisation methods the aim
is to design a suitable direction and then to derive optimally or numerically
the value of the step size. See for instance the classical textbook in numerical
optimisation by Fletcher [41] for further information. Here, a particle i (at
position pi ) is flown with a velocity Vi through the search space, but retains
in memory its best position (−→pi ). In the global PSO each particle, through
communication, is aware of the best position of the particles of the swarm
(−→pg ). At a given iteration k, the position of the i th particle (i = 1, ..., n) is
updated as follows Xik = Xi (k − 1) + V k

i . The velocity (or displacement)
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is defined as a linear combination of three velocities, namely, (i) the velocity
at the previous iteration, (ii) the velocity with respect to the best position of
this particle up to this iteration and (iii) the velocity with respect to the global
best position of all particles up to this iteration.

PSO has been found to be suitable for solving combinatorial optimisation
and especially unconstrained global optimisation problems. As the swarm
may become stagnated (early convergence) after a certain number of itera-
tions, a form of diversification or perturbation is often recommended. One
way would be to introduce a simple chaotic perturbation that adds diversity
to the system and avoids the search from getting stuck.

11.4.5 A Brief Summary of Other Population-Based
Approaches

In this subsection, other population-based metaheuristics are briefly described
in turn.

Cross-Entropy Based Algorithms (CE): This is an iterative population-based
method made up of two steps that are applied in sequence until a stopping
criterion is met. These steps are (i) the generation of feasible solutions pseudo-
randomly based on a probability distribution representing the frequency of
the occurrence of the attributes of a given solution, and (ii) the distribu-
tion is then updated. The idea is that this adaptive technique will have the
tendency to estimate and learn better probabilities and hence generate better
solutions. CE was initially presented by Rubinstein [84] for estimating rare
events (financial risk, false alarms, etc) and then Rubinstein and Kroese [85]
gave a formal description of this approach and presented its uses in solving
combinatorial optimisation problems.

Scatter Search (SS): This is proposed by Glover et al. [44] with the aim
of constructing new solutions by combining parts of existing solutions. This
method can be considered as one of the earliest steps towards deep learning
which is discussed in the next chapter. The idea is to generate a large number
of diverse trial solutions which are then improved. The set of these solutions
needs to be of high quality while being diverse. A subset of these solutions
are classed as the reference solutions; these are typically the best ones but
some additional solutions may be included to increase the diversity of the
reference set. It could for example consist of 10% of the entire solution set.
New solutions are constructed from the solutions in the reference set and
these are then improved. Any new solutions that outperform solutions in the
reference set are added to it. The process continues until the reference set no
longer improves. The main steps of the SS can be found in Marti et al. [72].
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Harmony Search (HS): This was originally proposed by Geem et al. [42] to
imitate the success of music players in their improvisation when searching for
a music harmony that is pleasing to the ear. Such a harmony is made up of a
combination of sounds at certain pitches played by different instruments. The
aim of the musician is to identify the best pitch for each sound so that when
combined they make an excellent harmonious noise. The analogy with opti-
misation can be seen as follows: A given harmony relates to a given solution
configuration, the sounds of the instruments represent the decision variables,
their respective pitches are the values of the decision variables, and the quality
of the harmony is the objective function value. Each practice by the musi-
cian(s) represents the iteration or the generation number. At each practice
the musician tries to identify new pitches based on the ones he/she remem-
bers to be of good quality, known as the HS memory, while introducing some
extra changes to create a new harmony. This process is repeated until the best
harmony already discovered can no longer be improved. HS is a population-
based approach where the memory contains the pool of harmonies, similar
to the population of chromosomes in GA. However the way the attributes
of a new harmony (new solution) are constructed does not depend on two
parents only as in GA but on all previously found harmonies. The obtained
solution (harmony) is then adjusted for possible improvement with a certain
probability. HS relies on its parameter values that are set at the outset. The
first attempt to enhance HS was made by Mahdavi et al. [71] followed by a
further enhancement by Pan et al. [80].

Artificial Immune Systems (AIS): The immune system’s aim is to defend
us against diseases and infections. It recognises antigens using immune cells
which are known as B-cells whose jobs are to circulate through the blood
continuously watching and waiting to encounter antigens (foreign molecules
of the pathogens). Each antigen has a particular shape that can be recog-
nised by the receptor of the B cell. AIS is a fast emerging method in some
applied areas of computer science such as data analysis and data mining,
pattern recognition and has now been adapted to the area of optimisation.
In other words, when a pathogen invades the organism it was observed that a
number of immune cells which recognise the pathogen will reproduce in large
numbers, known as clones. This process is known as reinforcement learning.
The clones are then diversified using two methods: (i) a high mutation
rate (known as hyper-mutation) which is performed by introducing random
changes, and (ii) receptor editing which aims to remove the less attractive
antibodies (poor solutions) and replaced them with new ones. In this way,
those cells that bind with their antigens are multiplied whereas the others
are eliminated following the survival of the fittest. In addition, some of the



11 An Overview of Heuristics and Metaheuristics 389

successful ones are also kept in memory to face future similar invaders. This
concept is similar to the intensification of the search in promising regions
whereas the hyper-mutation acts as a diversification strategy. In brief, AIS
shares some similarities with GA with the exception that there is no crossover
but just a hyper-mutation.

Psycho-Clonal Algorithm: This meta-heuristic was initially developed by
Tiwari et al. [110] and it is based on the artificial immune system (AIS)
as discussed earlier (mainly based on the clonal selection) and the theory of
the hierarchy of social needs as proposed by Maslow [73]. This hierarchy
is composed of five levels where the lowest level A refers to the physiolog-
ical needs (each antibody represents a solution), level B refers to safety needs
(the evaluation of the objective function), level C refers to the social needs
(the best solutions are selected and cloned proportionally to their objective
function value), level D refers to the growth needs (diversification used to
generate new solutions via hyper-mutation) and finally the highest level E
refers to the self-actualisation needs (the best solutions are chosen to be part
of the new population including the injection of new ones). This approach
can be considered as a mixture of AIS and guided GA where the manage-
ment of the population is maintained in a guided way based on the quality
of cloning whereas diversity is controlled through the hyper-mutation.
There are numerous examples of heuristics being hybridised with other

heuristics. Researchers are only limited by their imaginations as to what is
possible. These are discussed in detail in the following chapter. Some hybrids
have become extremely common. For example memetic algorithms combine
a genetic algorithm with a hill climber meaning all members of the popula-
tion are local optima according to the neighbourhood definition used. This
helps the genetic algorithm identify high-quality solutions but adds consid-
erably to the run time. Similarly a hill climber is often added to Ant Colony
Optimisation.

11.5 Some Applications

In this section we present some real-life applications that are addressed by
meta-heuristic approaches. There are numerous applications of heuristic and
metaheuristic so we can only provide a small overview of a few problems.
However we hope this gives an idea of the wide range and variety of problems
that are solved in practice.
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11.5.1 Radio-Therapy

One of the techniques adopted in treating cancerous tumours is the intensity
modulated radiotherapy treatment (short for IMRT). This consists of sending
a dose of radiation to the cancerous region with the aim to sterilise the
tumour while avoiding damage to the surrounding healthy organs and tissues.
This is performed by defining the number of angles, their respective angles
and the intensity chosen for the radiation beams at each of these angles. For
instance, Bertsimas et al. [5] present a hybridisation of a gradient descent and
an adaptive Simulated Annealing method. The initial solution is generated
by solving an LP based on using equi-spaced angle beams. Their approach is
tested on real-life pancreatic cases (kidneys, liver, stomach, skin and pancreas)
at the Massachusetts general hospital of Boston, USA. A case study dealing
with patients with head-and-neck tumours at the Portuguese Institute of
Oncology in Coimbra is conducted by Dias et al. [24] who adopted a
hybrid Genetic Algorithm with a Neural Network. Here, each chromosome
is binary and represented by 360 genes, one for each possible angle, with the
angles selected represented by 1. Also, Dias et al. [25] proposed Simulated
Annealing, with a dynamically adjusted neighbourhood (in terms of angles),
and successfully tested it on the same case study in Coimbra. Their results
suggest that a reduced number of angles (and hence less technical adjust-
ment) is required and an improvement in organ sparing and coverage of the
tumours is observed.

11.5.2 Sport Management

A variety of metaheuristics have been used to schedule fixtures across many
different sporting activities. Wright [117] uses Tabu Search to schedule the
English county cricket fixtures, Willis and Terrill [116] opt for Simulated
Annealing to schedule Australian state cricket, Costa [19] adopts an evolu-
tionary Tabu Search to schedule National Hockey League matches in North
America while Thompson [109] also uses Tabu Search to schedule the 1999
RugbyWorld Cup. Wright [119] produces schedules for New Zealand cricket
matches using Simulated Annealing whereas Kendall [57] uses a form of local
search to schedule English football fixtures over the Christmas period.
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11.5.3 Educational Timetabling

Constructing timetables including examination timetables at schools, colleges
and universities can be a hugely time-consuming and difficult task if
performed manually. Computer systems that incorporate some form of
heuristics are nowadays used frequently and reduce the time required to
produce solutions considerably. For instance, Wright [118] constructs a
tool that incorporates Tabu Search for a large comprehensive school of
over 1400 pupils and 80 teachers in Lancashire, England. Dowsland and
Thompson [31] construct an examination timetable for the University of
Swansea using Simulated Annealing. The examination timetabling problem is
also solved by Di Gaspero and Schaerf [26] using Tabu Search and by Pillay
et al. [82] using a Genetic Algorithm. The problem of optimising lecture
timetables is considered by, amongst others Borchani et al. [6] using Variable
Neighbourhood Descent, Corne et al. [18] using evolutionary algorithms
and Basir et al. [3] using Simulated Annealing. For more information and
references therein on educational timetabling, see [65].

11.5.4 Nurse Rostering

This problem plays an important part in efficiently managing the personnel
at a hospital. The aim is to balance the workforce workload while providing
flexibility and satisfying preferences whenever possible leading to a reduction
in stress, an increase in staff satisfaction and a happier working environment.
Dowsland and Thompson [32] integrate ideas from knapsack problems,
network flow models and Tabu Search to construct an efficient computer
software tool to solve the nurse rostering problem in a large UK hospital
in Wales. Aickelin and Dowsland [2] use an indirect Genetic Algorithm to
produce nurse rosters. Burke et al. [11] used Variable Neighbourhood Search
to solve the same problem. For more information on this area see the review
papers by [10] and [111].

11.5.5 Distribution Management (Routing)

Planning routes by efficiently scheduling the sequence of the customers as
they are served and in some cases determining strategically the right vehicle
fleet constitutes a huge component of logistic costs (in the range of 30%) and
therefore any improvement gained will provide the company with a compet-
itive edge over its competitors. For instance, Semet and Taillard [99] used
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Tabu Search to solve a real-life distribution problem in Switzerland leading
to a 15% reduction in cost. Rochat and Semet [83] developed a Tabu Search
approach for a pet food company having 100 farms and stores leading to
about 16% a cost saving. Brandao and Mercier [7] also used Tabu Search for
the multi-trip problem at a British biscuit company in the UK. Threshold
Acceptance was adopted by Tarantilis and Kiranoudis [107] to schedule
the fresh meat distribution with heterogeneous fleet in a densely populated
area of Athens. Tarantilis and Kiranoudis [108] used a two-phase approach
based on Large Neighbourhood Search for both a dairy and a construction
company in Greece. The delivery of blood products to Austrian hospitals for
the blood bank of the Austrian Red Cross for Eastern Austria was conducted
by Hemmelmayr et al. [51] using a combination of integer programming and
Variable Neighbourhood Search.

11.5.6 Location Problems

There is always a challenge in deciding where to locate something which
may require a massive investment such as plants and warehouses, consoli-
dation points and in some cases less expensive equipment that are required
in large numbers. For instance, when it comes to locating emergency facili-
ties such as police stations, fire stations etc, the aim is to locate the facilities
in such a way that the longest time to reach the customer is minimised.
This type of problem is known as the p-centre problem where the param-
eter can be changed for scenario analysis purposes. Pacheto and Casado [79]
adopted Scatter Search to locate a number of geriatric and diabetic health
care clinics in the rural area of Burgos in Spain. Lu [68] implemented Simu-
lated Annealing to locate urgent relief centres in Taiwan to respond to a major
earthquake. Cunha and Silva [20] presented an efficient configuration of such
a hub and spoke network for one of the top ten trucking companies in Brazil
using a Genetic Algorithm. Also, electricity providers seek to locate their large
number of protection devices (costing approximately £10K each) on their tree
network to protect the users from having an electricity cut in the case of big
storms, etc. James and Salhi [53], [54] explored this unusual network location
problem for the UK Midland Electricity Board using a constructive heuristic
and Tabu Search.
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11.5.7 Chemical Engineering

In several industries such as pharmaceutical, wastewater treatment, biotech-
nology, the control and the regulation of the pH value, which needs to be
around 7, is critical. The modelling of pH control is an important issue which
turns out to be an operational decision problem that fits into the class of
global optimisation. There is a good amount of research into advanced non-
linear control techniques but in practice linear control techniques are usually
adopted due to their simplicity and robustness. Research on how to monitor
some of the parameters that control the pH is carried out for instance by
Mwenbeshi et al. [77] who adopted a powerful GA implementation to intel-
ligently control and model pH in reactors using a lab-scale pH reactor. In
this study, a strong base, namely sodium hydroxide is used to neutralise the
process made up of four acids whose levels need to be determined in real
time as the change in the pH in the reservoir keeps changing all the time.
Interesting studies along this area can also be found in their references therein.

11.5.8 Civil Engineering Applications

The design of water distribution networks is very important and costly in
the area of civil engineering. This can be seen as a hydraulic infrastruc-
ture composed of several pipes of different diameters, hydraulic devices with
various powers and different reservoirs. The aim of the problem is to deter-
mine the minimal diameter for each pipe in such a way that the total cost is
minimised and appropriate water pressure is reached at each of the nodes of
the network. HS was tested on this complex non-linear problem based on the
water distribution network of Hanoi in Vietnam by Geem et al. [42]. A real
coding GA that incorporates neighbourhood reduction with several crossover
and mutation operators was proposed by Kadu et al. [55] for the same case
study. Reservoir management is also one of the key aspects in water resource
planning. Each reservoir has several conflicting objectives as well as different
operating rules and operating policies due to the land or the cities around it.
The aim is to determine the right policy among a large set of possible ones at
a given period. For instance two basic conflicting objectives are the minimi-
sation of the lack of irrigation against the maximisation of the generation
of electricity (e.g. hydropower generation). The problem is transformed into
a weighted multi-objective approach and solved efficiently using an adapta-
tion of Particle Swarm Optimisation by Kumar and Reddy [61]. The same
authors a year earlier in 2006 [60] put forward an approach based on Ant
Colony Optimisation to solve the multi-purpose reservoir problem.
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There are many applications in other areas of engineering such as electrical,
chemical, mechanical, environmental and civil engineering where evolu-
tionary methods including GA are commonly used. See for instance the
edited book by Dasgupta [22] which can be a useful and informative addition
to the reader.

11.6 Conclusion and Research Issues

In this final section we summarise our findings and provide some research
avenues that could be worth pursuing.

11.6.1 Conclusion

In this chapter several heuristic-based techniques that are used in solving
difficult combinatorial and global optimisation are described and their pros
and cons are highlighted. The methods range from those that only accept
improving solutions such as hill-climbing, Variable Neighbourhood Search
and GRASP, to those that accept non-improving ones while incorporating
some form of guidance to avoid the risk of diverging and cycling like Simu-
lated Annealing, Threshold Acceptance and Tabu Search. Those techniques
that use simultaneously more than one solution at a time, also known
as population or evolutionary methods, are also discussed include Genetic
Algorithms, Ant Colony Optimisation and Bee Colony Optimisation. As
strengths and weaknesses can be found in any heuristic, many modern imple-
mentations hybridise a number of these methods, leading to better results
overall. Of particular interest is metaheuristics, where exact and heuristic
methods are combined.
The efficiency of heuristics depends on several aspects and one key element

is the quality of the implementation. Each meta-heuristic can be applied in
different ways and reviewing the academic literature to understand which
sorts of methods have worked well on particular problems is crucial. Also key
is parameter optimisation and here methods that require fewer parameters e.g.
tabu search, threshold acceptance may be considered superior to methods that
require many parameters such as simulated annealing and ant colony opti-
misation. Methods that automatically set parameters or dynamically adjust
them as the search proceeds may remove this advantage. The coding is crucial
also—much time can be saved by using efficient data structures, reducing
neighbourhoods, etc.
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Heuristic search has made huge advances in the last 25 years and this is
likely to continue as problem complexity and size also increase. Advances
in computer technology and commercial optimisation software are enabling
larger problems to be solved exactly than previous, however there is still a
huge need for high-quality heuristic solution methods.

Heuristics have arisen from a variety of applications, from different people’s
expertise and sometimes just as a by-product of curiosity of some researchers
whose original aim was to disprove their usefulness. We believe this less struc-
tured area, known by some as a grey research area, will remain for many years
to come and will become even greyer and open to more challenges. Heuris-
tics remain the most appropriate and attractive optimisation approaches for
tackling many complex combinatorial and global optimisation problems.

11.6.2 Potential Research Issues

An exciting future topic is hybridisation, be it between purely heuristic
methods or heuristic and exact methods. This suggestion will be discussed
in another chapter in this book [97].
The understanding of how a given method works and then the design

of a data structure that incorporates interesting information found during
the search so as to avoid re-computing unnecessary calculations is vital. This
process though may increase some level of memory and may require an initial
fixed cost in terms of development and computation time, but it does often
lead to a massive time saving without affecting the solution quality at all.
This aspect can also be enhanced further by the construction of effective
neighbourhood reduction schemes that helps the search to avoid checking
combinations and operations that are unlikely to result in improving the solu-
tion. A note of caution here is that the latter schemes will have a considerable
saving in computational time and are usually simple to construct, but could
affect the solution quality if they happen to be too restrictive. The compro-
mise in the design between a neighbourhood reduction method which is
powerful enough (removing as many as possible irrelevant checks) while not
excluding promising moves is exciting and hence worth exploring.

Evolutionary heuristics are relatively easy to be parallelised and hence can
be used for larger instances and in a practical setting if the computing facilities
are available.
The design of adaptive search that dynamically learns and makes use of the

obtained information is crucial. This learning mechanism which ought to be
continuously or at least periodically updated is then used to pseudo-randomly
select at regular intervals the decision rules to be used. These can include
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a subset of neighbourhoods to choose from, a number of local searches to
be used for intensification purposes, or even the powerful heuristics or exact
methods to select from. This kind of search is self-adaptive and also efficient
as it uses only what it needs with the expectation that a good solution may
be found. This research issue though challenging and practically useful will
probably be one of the most popular research areas in the near future as it
has the additional benefits of being applicable in several areas ranging from
engineering to medicine.

In a related but different aspect, it is well known that most exciting
powerful heuristics seem to suffer from parameter tuning. It is therefore
worthwhile concentrating on schemes that incorporate ways of reducing the
number of parameters or adjusting the parameters’ values dynamically and
adaptively. This is very welcome and in our view is also one of the ways
forward. Results from such studies will provide us with tools that avoid
requiring excessive time for fine tuning of the parameters, besides making
the heuristic less sensitive to parameter values and hence reliable to use.
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12
Formulation Space Search Metaheuristic

Nenad Mladenović , Jack Brimberg, and Dragan Urošević

12.1 Introduction

Many methods for solving discrete and continuous global optimization prob-
lems are based on changing one formulation to another, which is either
equivalent or very close to it, so that by solving the reformulated problem
we can easily get the solution of the original one. These types of methods
include

i. dual methods,
ii. primal-dual methods,
iii. Lagrange methods,
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iv. linearization methods,
v. convexification methods,
vi. (nonlinear) coordinate system change methods (e.g., polar, Cartesian,
projective transformations, etc.),
vii. discrete/continuous reformulation methods,
viii. augmented methods,

to mention a few. However, in all those classes, the set of formulations of one
problem are not considered as a set having some structure provided with some
order relation among formulations. The usual conclusion in papers oriented
to a new formulation is that a given formulation is better than another or
the best among several. The criteria for making such conclusions are typically
the duality or integrality gap provided (difference between upper and lower
bounds), precision, efficiency (the CPU times spent by the various methods
applied to different formulations of the same instances), and so on.

Formulation space search (FSS) is a metaheuristic first proposed in 2005
by Mladenović et al. [37]. Since then, many algorithms for solving various
optimization problems have been proposed that apply this framework. The
main idea is to provide the set of formulations used for solving a given class or
type of problem with some metric or quasi-metric. In that way, the distance
between formulations can be induced from those (quasi) metric functions,
and thus, the search space is extended to the set of formulations as well.
Therefore, the search space becomes a pair (F ,S), consisting of formulation
space F and solution space S . Most importantly, in all of the above mentioned
method classes (i)–(viii), the discrete metric function between any two formu-
lations can easily be defined. For example, in Lagrange methods, the distance
between any two formulations can be defined as the difference between their
relaxed constraints (the number of multipliers used); in coordinate change
methods the distance between formulations could be the difference between
the number of entities (points) presented in the same coordinate system, etc.
The work of Mladenović et al. [37] is also motivated by the following

important observation: when solving continuous nonlinear programs (NLPs)
with the aid of a solver that uses first-order information, the solution obtained
may be a stationary point that is not a local optimum. Stationary points
may be induced by the objective function (F ) or the constraints. In the
first case, they are found at points in the solution space where the first-
order partial derivatives of F are all equal to zero. In the second case, they
may occur at points on the boundary of one or more constraints where the
derivatives of F are not all zero, but no feasible and improving direction
of search can be found because of the imposed constraints. Unfortunately,
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these stationary points are often neither local minima nor local maxima.
Checking the second-order conditions may help to identify these artificial
local optima and escape them, but may also be computationally expensive,
since the number of stationary points can be huge. Alternatively, different
formulations of the same problem may have different characteristics that can
be exploited in order to move in an efficient manner from these stationary
points to better solutions. That is, while the improving search is stuck at a
stationary point in one formulation, this solution may not be a stationary
point in another formulation.
To illustrate the fact that a local solution in one formulation may behave

differently in another, consider the following simple problem in the plane
(R2):

min F(x, y) = x + y, (12.1)

subject to

x2 + y2 ≥ 1,

x ≥ 0, y ≥ 0.

The objective function is linear, and therefore convex, but the feasible region
is not a convex set, resulting in a nonconvex program. This problem may
be reformulated from Cartesian coordinates in (12.1) to Polar coordinates to
obtain an equivalent model:

minG(r, θ) = r(cos θ + sin θ), (12.2)

subject to

r ≥ 1, 0 ≤ θ ≤ π/2.

Interestingly, in (12.2), the objective function is nonconvex, while the
constraints are linear, and therefore define a convex feasible set. Referring
to Fig. 12.1(a) for model (12.1) with (x, y) coordinates, we see that a local
solution occurs at the point (1/

√
2, 1/

√
2). This is because no feasible move

direction exists at this point that will improve the solution (i.e., there is
an immediate increase in the objective function or no improvement at all).
Hence, any (local) improving search would be stuck at this point, even
though the iso-contours of F show that this solution is not a local minimum.
Referring to Fig. 12.1(b) for model (12.2), we find that the situation is not
the same at the corresponding point in (r, θ) space, (r, θ) = (1, π/4).
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Fig. 12.1 Illustrative example

Moving down (or up) along the vertical line r = 1 is a feasible direction
that immediately improves the solution. Continuing down (or up) along
this vertical line eventually leads to an optimal solution at (r, θ) = (1, 0)
(or (r, θ) = (1, π/2)). This is equivalent to moving clockwise (or counter
clockwise) along the circumference of the circle in Fig. 12.1(a) from the local
solution at (x, y) = (1/

√
2, 1/

√
2) to the optimal solution at (x, y) =

(1, 0) (or (0, 1)). Thus, this small example illustrates that a local solution in
one coordinate system may not be one in another coordinate system.
The FSS approach was first applied to the circle packing problem (Mlade-

nović et al. [37]), which is a highly nonconvex NLP due to the imposed
constraints, and as a result, contains a large number of stationary points. Here
the authors used the nonlinear transformation demonstrated in the example
above, where the mathematical formulation of the problem switches back and
forth between Cartesian and Polar coordinate systems when convergence to
a stationary point is detected, and proceeds in this manner until no further
improvement is possible in either coordinate system. This simple application
of FSS produced excellent results, and several successful applications of FSS
have appeared since. The rest of this chapter is organized as follows. In the
next section, we do a brief literature review of several papers that examine
a range of optimization problems, continuous and discrete, and that have
applied FSS in different ways. This is followed in Sect. 12.3 by a discussion
of the general procedure or methodology at the base of FSS. Section 12.4
examines in detail how the steps of FSS have been incorporated in solution
methods used to solve the circle packing problem, and the graph coloring
problem (Hertz et al. [23]). We also examine in this section the reformulation
local search methodology proposed in Brimberg et al. [6], which is closely
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related to FSS and was developed to solve continuous location problems.
Section 12.5 provides some conclusions.

12.2 Literature Review

A sample of papers using FSS and related ideas is presented here, and briefly
discussed.

Circle Packing - Reformulation Descent (Mladenović et al. [37]).
Several years ago, classical Euclidean geometry problems of densest packing
of circles in the plane were formulated as nonconvex optimization prob-
lems, allowing to find heuristic solutions by using any available NLP solver.
The faster NLP solvers use first-order information only, and so may stop at
stationary points which are not local optima. A simple switch from Carte-
sian coordinates to polar, or vice versa, can destroy this stationarity, and
thus allow the solver to move further to better solutions. Such formulation
switches may of course be iterated. For densest packing of equal circles
into a unit circle, this simple feature turns out to yield results close to the
best known, while beating second-order methods by a time-factor well over
100. This technique is formalized as a general reformulation descent (RD)
procedure, which iterates among several formulations of the same problem
until the applied local searches obtain no further improvement.
Circle Packing (Mladenović et al. [38]). This paper extends the RD idea
by using several formulations instead of only two. This is formalized as a
general search in formulation space. The distance between two formula-
tions is defined as the number of centers whose coordinates are expressed
in different systems in each formulation. Therefore, the search is performed
through the formulation space as well. Results with up to 100 circles
compare favorably with the RD method.
Packing Unequal Circles Using Formulation Space Search (López and
Beasley [30]). This paper presents a heuristic algorithm for the problem
of packing unequal circles in a fixed size container such as the unit circle,
the unit square or a rectangle. The problem is viewed as scaling the radii
of the unequal circles so that they can all be packed into the container.
The presented algorithm has an optimization phase and an improvement
phase. The optimization phase is based on the formulation space search
method, while the improvement phase creates a perturbation of the current
solution by swapping two circles. The instances considered are categorized
into two groups: instances with large variations in radii, and instances
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with small variations. Six different containers: circle, square, rectangle,
right-angled isosceles triangle, semicircle, and circular quadrant are inves-
tigated. Computational results show improvements over previous work in
the literature.
Packing Unequal Circles in a Fixed Size Circular Container (López and
Beasley [32]). This paper considers the problem of packing unequal circles
in a fixed size circular container, where the objective is to maximize the
value of the circles packed. Two different objectives are examined: maxi-
mize the number of circles packed; maximize the area of the circles packed.
For the particular case where the objective is to maximize the number of
circles packed, the authors prove that the optimal solution has a partic-
ular form. A heuristic is developed for the general problem based upon
formulation space search. Computational results are given for a number of
publicly available test problems involving the packing of up to 40 circles.
Computational results are also provided for test problems taken from the
literature, relating to packing both equal and unequal circles.
Mixed Integer Nonlinear Programming Problem (López and Beasley
[31]). An approach based on FSS to solve mixed-integer nonlinear (zero-
one) programming problems is presented. Zero-one variables are presented
by a well-known single nonlinear constraint, and an iterative method
which adds a single nonlinear inequality constraint of increasing tight-
ness to the original problem, is proposed. Computational results are
presented on 51 standard benchmark problems taken fromMINLPLib and
compared against the Minotaur and minlp_bb nonlinear solvers, as well as
against the RECIPE algorithms [28].
Timetabling Problem (Kochetov et al. [26]). This paper examines a well-
known NP-hard teacher/class timetabling problem. Variable neighborhood
search and tabu search heuristics are developed based on the idea of formu-
lation space search. Two types of solution representation are used in the
heuristics. Each representation considers two families of neighborhoods.
The first uses swapping of time periods for the teacher (class) timetable.
The second is based on the idea of large Kernighan-Lin neighborhoods.
Computational results for difficult random test instances show that the
proposed approach is highly efficient.
Multi-item Capacitated Lot-Sizing Problem (Erromdhani et al. [16]).
This paper proposes a new variant of Variable neighborhood search (VNS)
designed for solving Mixed integer programming problems. The proce-
dure is called Variable neighborhood formulation search (VNFS), since
the neighborhoods and formulations are both changed during the search.
The VNS part is responsible for the integer variables, while an available
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(commercial) solver is responsible for the continuous variables and the
objective function value. The procedure is applied to the multi-item capac-
itated lot-sizing problem with production time windows and setup times,
under the non-customer specific case. This problem is known to be NP-
hard and can be formulated as a mixed 0-1 program. Neighborhoods are
induced from the Hamming distance in 0-1 variables, while the objective
function values in the corresponding neighborhoods are evaluated using
different mathematical programming formulations of the problem. The
computational experiments show that the new approach is superior to
existing methods from the literature.
Graph Coloring (Hertz et al. [23]). This paper studies the k-coloring
problem. Given a graph G = (V, E) with vertex set V , and edge set
E , the aim is to assign a color (a number chosen in {1, . . . , k}) to each
vertex of G so that no edge has both endpoints with the same color. A
new local search methodology, called Variable Space Search is proposed and
then applied to this problem. The main idea is to consider several search
spaces, with various neighborhoods and objective functions, and to move
from one to another when the search is blocked at a local optimum in a
given search space. The k-coloring problem is thus solved by combining
different formulations of the problem which are not equivalent, in the
sense that some constraints are possibly relaxed in one search space and
always satisfied in another. The authors show that the proposed heuristic is
superior to each local search used independently (i.e., with a unique search
space). It was also found to be competitive with state-of-the-art coloring
methods, which consisted of complex hybrid evolutionary algorithms at
the time.
Cutwidth Minimization Problem (Pardo et al. [41]). This paper proposes
different parallel designs for the VNS schema. The performance of these
general strategies is examined by parallelizing a new VNS variant called
variable formulation search (VFS). Six different variants are proposed,
which differ in the VNS stages to be parallelized as well as in the communi-
cation mechanisms among processes. These variants are grouped into three
different templates. The first one parallelizes the whole VNS method; the
second parallelizes the shake and the local search procedures; the third
parallelizes the set of predefined neighborhoods. The resulting designs
are tested on the cutwidth minimization problem (CMP). Experimental
results show that the parallel implementation of the VFS outperforms
previous state-of-the-art methods for the CMP.
Maximum Min-Sum Dispersion Problem (Amirgaliyeva et al. [1]). The
maximum min-sum dispersion problem aims to maximize the minimum
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accumulative dispersion among the chosen elements. It is known to be a
strongly NP-hard problem. In Amirgaliyeva et al. [1], the objective func-
tions of two different problems are shifted. Though this heuristic can be
seen as an extension of the variable formulation search approach (Pardo
et al. [41]) that takes into account alternative formulations of one problem,
the important difference is that it allows using alternative formulations
of more than one optimization problem. Here it uses one alternative
formulation that is of a max-sum type of the originally max-min type,
maximum diversity problem. Computational experiments on benchmark
instances from the literature show that the suggested approach improves
the best-known results for most instances in a shorter computing time.
Continuous Location Problems (Brimberg et al. [6]). This paper presents
a new approach called Reformulation local search (RLS), which can be
used for solving continuous location problems. The main idea is to exploit
the relation between the continuous model and its discrete counterpart.
The RLS switches between a local search in the continuous model and a
separate improving search in a discrete relaxation in order to widen the
search. In each iteration new points obtained in the continuous phase are
added to the discrete formulation making the two formulations equiva-
lent in a limiting sense. Computational results on the multi-source Weber
problem (a.k.a. the continuous or planar p-median problem) show that
the RLS procedure significantly outperforms the continuous local search
by itself, and is even equivalent to state-of-the-art metaheuristic-based
methods.

12.3 Methodology

The general methodology of FSS and related ideas are presented here. We
first analyze two usual types of search methodologies, stochastic and deter-
ministic. Then we present FSS methods that combine both stochastic and
deterministic elements.

12.3.1 Stochastic FSS

Let us denote with (ϕ, x) an incumbent formulation-solution pair, and with
fopt = f (ϕ, x) the current objective function value. One can alternate
between formulation space F and solution space S in the following ways:

i. Monte-Carlo FSS. This is the simplest search heuristic through F :
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a. take formulation - solution pair (ϕ′, x ′) ∈ (F ,S) at random and
calculate the corresponding objective function value f ′;
b. keep the best solution and value;
c. repeat previous two steps p (a parameter) times.

ii. Random walk FSS. For a random walk procedure we need to introduce
neighborhoods of both, the formulation and the solution: (N (ϕ),N (x)),
ϕ ∈ F and x ∈ S . Then we simply walk through the formulation-solution
space by taking a random solution from such a defined neighborhood in
each iteration.
iii. Reduced FSS. This technique for searching through F has already been
successfully applied in [37]. It represents a combination of Monte-Carlo
and random walk stochastic search strategies. Here we take a formulation-
solution pair from a given neighborhood as in the random walk. However,
we do not move to that solution if it is not better than the current one. We
rather return, and take a two-step walk move (in other words, we jump to
a random point in the formulation-solution neighborhood of the current
solution, and then jump to a random point in the formulation-solution
neighborhood of that point (two jumps)). If a better solution is found,
we move there and restart the process; otherwise we return and perform a
three-step walk, etc. Once we unsuccessfully perform kmax (a parameter)
steps, we return to the one-step move again.

In all three FSS routines above, we choose (ϕ′, x ′) at random and then
simply calculate the objective function value. However, (ϕ′, x ′) could be used
as an initial point for any usual descent (ascent) optimization method through
(F ,S). Moreover, as an improvement method, one can use a Reformula-
tion descent procedure described below. The final results should be of better
quality in that case, but require much more computing time. Thus, some
problem specific strategy in balancing the number of calls to an optimization
routine is worth considering.

12.3.2 Deterministic FSS

i. Local FSS. One can perform local search through F as well. That is, find
local solution x ′ for any ϕ′ ∈ N (ϕ) (starting from x as an initial solution)
and keep the best; repeat this step until there is a formulation in the neigh-
borhood that gives an improvement. Local FSS is probably not as efficient
and effective as LS in the solution space, since it is not very likely that many
solutions will be different in the neighboring formulations. Moreover, local
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FSS is a very time-consuming procedure since for each neighboring formu-
lation, some optimization method is applied. Therefore, we do not give
detailed pseudo code for local FSS here.
ii. Reformulation Descent (RD). Up to now, we choose the next formula-
tion in the search at random. A procedure that changes the formulation
in a deterministic way is called Reformulation descent. The following
procedure describes in more detail how we propose to exploit the avail-
ability of several formulations of a problem. We assume that at least two
(�max ≥ 2) not linearly related formulations of the problem are constructed
(ϕ�, � = 1, . . . , �max), and that initial solution x and formulation (� = 1)
are found. Our RD performs the following steps:

a. Using Formulation ϕ� and an optimization code, find a stationary or
local optimum point x ′ starting from x;
b. If x ′ is better than x, move there (x ← x ′) and start again from
the first formulation (� ← 1); otherwise change the formulation (� ←
� + 1);
c. Repeat the steps above until � > �max .

This algorithm was used for solving the circle packing problem in Mlade-
nović et al. [37]. Results obtained were comparable with the best-known
values. Moreover, the RD was 150 times faster than a Newton type
method.
iii. Steepest Descent FSS. If objective functions fi of all formulations ϕi ,
i = 1, . . . , �max are smooth, then, after finding an initial solution x, the
Steepest descent FSS may be constructed as follows:

a. Find descent search directions −∇ fi (x).
b. Perform a line search along all directions (i.e., find λ∗

i > 0) to get a
set of new solutions

x (i) ← x (i) − λ∗
i ∇ fi (x).

c. Let fi ← fi (x (i)), and let i∗ be the index where fi is a minimum.
Set x ← x (i∗) and fopt ← fi∗ .
d. Repeat the previous three steps until fopt ≥ fi∗ .

For constrained optimization, replace ∇ fi (x) by feasible move direction
�i (x) in the formula in step (b), such that the inner product ∇ fi (x) ·
�i (x) ≥ 0.
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12.3.3 Variable Neighborhood FSS and Variants

i. Variable Neighborhood Formulation Space Search (VNFSS). As in Variable
neighborhood search (VNS), we can combine stochastic and determin-
istic searches, to get VNFSS. Traditional ways to tackle an optimization
problem consider a given formulation, and search in some way through
its feasible set X . The fact that the same problem may often be formu-
lated in different ways allows to extend search paradigms to include jumps
from one formulation to another. Each formulation should lend itself
to some traditional search method, its “local search” that works totally
within this formulation, and yields a final solution when started from some
initial solution. Any solution found in one formulation should be easily
transformed to its equivalent solution in any other formulation. We may
then move from one formulation to another using the solution resulting
from the former’s local search as the initial solution for the latter’s local
search. Such a strategy will of course only be useful when local searches in
different formulations behave differently. This idea was first investigated in
[37] while examining the circle packing problem. Only two formulations
of the circle packing problem (one with Cartesian coordinates, and the
other with polar coordinates) were used. The nonlinear solver used by the
authors alternates between these two formulations, each time starting from
the solution reached in the previous iteration (but transformed into the
corresponding solution (point) in the other formulation) until there is no
further improvement. This approach was named Reformulation Descent.
The same paper also introduced the idea of Formulation space search (FSS)
where more than two formulations could be used. In [38], the collection
of formulations is enlarged by presenting a subset of circles in Cartesian
coordinates, while the rest are presented in polar coordinates. Also, the
distance between any two formulations is introduced, and neighborhoods
are defined as collections of formulations based on this distance. So, neigh-
borhood Nk(ϕ) of formulation ϕ contains all formulations ϕ′ that are at
distance k from formulation ϕ. The basic idea behind FSS is to continue
the search in one of the given formulations ϕ until it gets trapped at
a stationary point, then choose a new formulation ϕ′ belonging to the
current neighborhood of ϕ, then transform the stationary point in ϕ to
the corresponding solution in ϕ′, and continue the search in ϕ′ from that
point. An improved version of FSS for solving the circle packing problem
is proposed in [29]. One methodology that uses the variable neighborhood
idea in searching through the formulation space is given in Algorithms 1
and 2. Here ϕ (ϕ′) denotes a formulation from given formulation space
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F , x (x ′) denotes a solution in the feasible set defined with that formu-
lation, and � ≤ �max is the formulation neighborhood index. Note that
Algorithm 2 uses a reduced VNS strategy [19] in F .

We can extend to the full VNFSS with the following changes:

a. the shake step involves only the random selection of formulation ϕ′ ∈
N�(ϕ); then set x ′ ∈ ϕ′ to the same solution as x ∈ ϕ;
b. in between the shake and formulation change steps, add a local search
to map x ′ onto a stationary point under formulation ϕ′: x ′ ← LSϕ′(x ′).

ii. Variable Objective Search (VOS). Butenko et al. [10] propose a variant
they call Variable Objective Search (VOS). Their idea uses the fact that
many combinatorial optimization problems have different formulations
(e.g. the maximum clique problem with more than twenty formulations,
traveling salesman with more than 40 formulations, quadratic assignment
problem, max-cut problem, etc). They assume that all formulations share
the same feasible region, but have different objective functions. Also, all
formulations have the same neighborhood structures. However,

• a stationary point for one formulation may not correspond to a
stationary point with respect to another formulation;
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• a global optimum of the considered combinatorial optimization problem
should correspond to a global optimum for any formulation of this
problem.

Based on the previous assumptions, Butenko et al. [10] propose the
following method (named Basic Variable Objective Search):

– Arrange formulations in prespecified order: ϕ1, ϕ2, ..., ϕn . Denote with
fi the objective function for formulation ϕi .

– Choose an initial feasible solution, and perform a local search in a
proposed neighborhood N , yielding local optimum x (1) with respect
to formulation ϕ1.

– Perform a local search starting from the previous local optimum x (1) in
neighborhood N , but with respect to formulation ϕ2. In other words
the neighbors of current local optimum x (1) are mapped into corre-
sponding points in formulation ϕ2, and checked to see if a better
solution can be obtained according to formulation ϕ2 (and according
to objective function f2). This local search produces a local optimum
with respect to formulation ϕ2, and this local optimum will be presented
(remembered) as a point in the solution space of formulation ϕ1.

– After performing local search with respect to formulation ϕi (i < n),
local search starting from the last obtained local optimum with respect
to formulation ϕi+1 is performed.

– After performing local search with respect to formulation ϕn , the
complete procedure repeats until there is no improvement with respect
to all formulations.

A Variable Objective Search is demonstrated on the Maximal Indepen-
dent Set Problem. A so-called Uniform Variable Objective Search is also
proposed in [10]. Instead of local search with respect to a single formu-
lation, this method performs simultaneous local search by exploring the
complete neighborhood N of the current solution, thereby determining
a collection of local optima with respect to all formulations. The move is
then made to the best of all obtained local optima.
iii. Variable Formulation Search (VFS). Many optimization problems in
the literature, for example, min–max types, present a flat landscape. This
means that, given a formulation of the problem, there are many neigh-
boring solutions with the same value of the objective function. When this
happens, it is difficult to determine which neighborhood solution is a more
promising one to continue the search. To address this drawback, the use of
alternative formulations of the problem within VNS is proposed in [36, 39,
41]. In [41] this approach is named Variable Formulation Search (VFS). It
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combines the change of neighborhood within the VNS framework, with
the use of alternative formulations. In particular, the alternative formula-
tions will be used to compare different solutions with the same value of the
objective function, when considering the original formulation.

Let us assume that, beside the original formulation and the corre-
sponding objective function f0(x), there are p other formulations denoted
as f1(x), . . . , f p(x), x ∈ X . Note that two formulations are equiva-
lent if the optimal solution of one is the optimal solution of the other,
and vice versa. Without loss of clarity, we will denote different formu-
lations as different objectives fi (x), i = 1, . . . , p. The idea of VFS
is to add the procedure Accept(x, x ′, p), given in Algorithm 3 in
all three steps of Basic VNS (BVNS): Shaking, LocalSearch and
NeighborhoodChange. Clearly, if a better solution is not obtained by
any formulation among the p pre-selected, the move is rejected. The next
iteration in the loop of Algorithm 3 will take place only if the objective
function values according to all previous formulations are equal.

If Accept (x, x ′, p) is included in the LocalSearch subroutine of
BVNS, then it will not stop the first time a non-improved solution is found.
In order to stop LocalSearch, and thus claim that x ′ is a local minimum,
x ′ should not be improved by any among the p different formulations. Thus,
for any particular problem, one needs to design different formulations of the
problem considered and decide the order they will be used in the Accept
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subroutine. Answers to those two questions are problem specific and some-
times not easy. The Accept (x, x ′, p) subroutine can obviously be added
to the NeighborhoodChange and Shaking steps of BVNS as well.

In Mladenović et al. [39], three evaluation functions, or acceptance
criteria, within the Neighborhood Change step are used in solving the
bandwidth minimization problem. This min-max problem consists in finding
permutations of rows and columns of a given square matrix such that the
maximal distance of a nonzero element from the main diagonal in the corre-
sponding row, is a minimum. Solution x may be presented as a labeling of a
graph and the move from x to x ′ as x ← x ′. The three criteria used are:

1. the simplest one which is based on the objective function value f0(x)
(bandwidth length);
2. the total number of critical vertices f1(x) (if f0(x ′) = f0(x) and
f1(x ′) < f1(x));
3. f3(x, x ′) = ρ(x, x ′) − α (if ( f0(x ′) = f0(x) and f1(x ′) = f1(x)),
but x and x ′ are relatively far from each other; that is, the distance between
solutions x and x ′, ρ(x, x ′) > α, where α is an additional parameter).

The idea for a move to a mildly worse solution if it is very far, is used
within Skewed VNS [19]. However, a move to a solution with the same value
is performed in [39] only if its Hamming distance from the incumbent is
greater than α.

In [36], a different mathematical programming formulation of the orig-
inal problem is used as a secondary objective within the Neighborhood
Change function of VNS. Two combinatorial optimization problems on
graphs are considered here: the Metric dimension problem and the Minimal
doubly resolving set problem.

iv. Variable Space Search (VSS). Hertz et al. [23] developed this variant of
FSS to solve the graph coloring problem (GCP). Their solution method
exploits the relation between the k-coloring problem and the GCP. Three
solution spaces are defined as follows: S1 containing all k-colorings of a
given graph G , S2 containing all partially legal k-colorings of G , and S3
containing all cycle-free orientations of the edges of G . The VSS procedure
cycles through these spaces in an empirically determined sequence. We will
examine their VSS procedure in more detail in a later section.
(v) Reformulation Local Search (RLS) was originally proposed for solving
continuous location problems (Brimberg et al. [6]). This approach differs
from FSS in that the different formulations used are not equivalent to
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each other. There is a base model, which is a single formulation of a given
continuous location problem, and a series of discrete formulations, which
are improving approximations of the continuous model.
The RLS switches between the continuous model (the original problem)

and a discrete approximation in order to expand the search. In each iter-
ation, new facility locations obtained by the improving search in the
continuous phase are added to the discrete formulation. Thus, the two
formulations become equivalent in a limiting sense. As in FSS, the solu-
tion found using the current formulation becomes the starting point for
the next formulation.
There are many ways to construct an RLS-based algorithm (e.g. choice

of: rules for inserting promising points or removing non-promising points
in the discrete phase, improving searches for both phases, the initial discrete
model, and so on). RLS can be applied not only to continuous location
problems, but also other types of problems having continuous and discrete
formulations. More details are given in the next section.

12.4 Some Applications

12.4.1 Circle Packing Problem

The circle packing problem can be stated in the following way. Given a
number n of circular disks of equal radius r, determine how to place them
within a unit circle without any overlap in order to maximize the radius r.

i. Circle Packing Problem Formulation in Cartesian Coordinates. The
circular container is the unit radius circle with center (0, 0). The circles to
be packed within it are given by their centers (xi , yi ) (i = 1, . . . , n), and
their common radius r, which is to be maximized. This may be formulated
as:

max r (12.3)

subject to

(xi − x j )
2 + (yi − y j )

2 − 4r2 ≥ 0, ∀ i, j (1 ≤ i < j ≤ n)

x2i + y2i ≤ (1 − r)2, ∀ i (1 ≤ i ≤ n)

r ≥ 0, xi , yi ∈ R, ∀ i (1 ≤ i ≤ n).
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The first set of inequalities expresses that any two disks should be disjoint:
the squared Euclidean distance between their centers must be at least (2r)2.
The second set states that the disks must fully lie within the unit circle. This
smoother quadratic form is preferred to the more standard constraint

√
x2i + y2i + r ≤ 1.

ii. Circle Packing Problem Formulation in Polar Coordinates. The circular
container is centered at the pole and has unit radius. The disks to be
packed within it are given by their centers at polar coordinates (ρi , θi )

(i = 1, 2, . . . , n), and their common radius r, which is to be maximized.
The equivalent problem may be formulated as:

max r (12.4)

subject to

ρ2
i + ρ2

j − 2ρiρ j cos(θi − θ j ) − 4r2 ≥ 0, ∀ i, j (1 ≤ i < j ≤ n)

ρi + r ≤ 1, ∀ i (1 ≤ i ≤ n)

r ≥ 0,
ρi ≥ 0, θi ∈ [0, 2π], ∀ i (1 ≤ i ≤ n).

Note that, unlike the Cartesian formulation, the second constraint set,
expressing inclusion of the disks inside the container, is now linear.

12.4.1.1 Reformulation Descent

These two formulations are used to solve the circle packing problem in [37],
using MINOS (an off-the-self nonlinear program solver). The starting solu-
tion is a set of randomly chosen points within the container acting as centers
of the circles. The radius of the circles is a maximal number r such that the
corresponding circles do not overlap and each circle is completely inside the
unit circle. The centers of the circles are first expressed in Cartesian coordi-
nates. As already noted, MINOS is applied to the current solution, in this
case, the selected initial solution. After MINOS finishes at some stationary
point, the coordinates of the obtained centers are converted to polar coordi-
nates, and MINOS is applied on the optimization problem written in polar
coordinates with the set of current centers and current value of r as the initial
solution. If MINOS is unable to increase the radius of the circles, the method
finishes, and the final solution is the corresponding solution. Otherwise, if
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MINOS is able to increase r, the centers of the obtained circles are converted
in Cartesian coordinates and a new iteration begins using the current solution
as the initial solution.
This procedure, referred to as Reformulation Descent (RD), is illustrated

in Fig. 12.2 for n = 35 equal circles. As can be seen, seven executions are
applied until the final (which is also optimal) solution is obtained.

Reformulation Descent (RD) is implemented in [37] on packing n (n =
10, 15, 20, . . . , 100) circles in the unit circle. For each value of n, RD is

Fig. 12.2 Illustration of reformulation descent applied on packing 35 circles in the
unit circle ([37])
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executed 50 times. The same problem is also executed 50 times using Carte-
sian coordinates only from the same set of initial solutions, and again in Polar
coordinates only from the same set of initial solutions. Initial solutions are
generated by choosing at random Polar coordinates ρ and θ and converting
them into Cartesian coordinates (if it is necessary). The value of radius ρ is
set to (1− 1/

√
n) · √rnd where rnd is uniformly distributed on [0, 1]. The

value of angle θ is uniformly distributed on [0, 2π].
Summary results are given in Table 12.1. The first column contains the

value of n (number of circles). Column 2 contains the best-known result
(radius of the circle) for the corresponding value of n. Columns 3–5 contain
the percentage deviation of best results obtained respectively by MINOS with
RD, MINOS with Cartesian coordinates only, and MINOS with Polar coor-
dinates only, from the best-known results (radius). Columns 6–8 contain
the percentage deviation of average results obtained by RD, Cartesian coor-
dinates, and Polar coordinates, respectively, from the best-known results
(radius). Columns 9–11 contain the average running time respectively for
RD, Cartesian coordinates, and Polar coordinates.

Table 12.1 Summary results of 50 executions of RD, Cartesian coordinates only, and
Polar coordinates only [37]

% dev. of best % dev. of avg. Running time

n Best MRD MC MP MRD MC MP MRD MC NP

10 0.262258899 0.00 0.00 0.00 1.03 2.01 0.88 0.00 0.02 0.01
15 0.221172537 0.00 0.13 0.13 0.49 0.65 0.77 0.01 0.03 0.02
20 0.195224535 0.00 0.00 0.00 1.15 2.80 2.49 0.04 0.11 0.08
25 0.173827671 0.00 0.00 0.00 0.62 5.07 3.21 0.08 0.37 0.19
30 0.161349111 0.00 0.00 0.00 0.97 2.49 1.40 0.16 0.52 0.29
35 0.149316779 0.00 0.01 0.02 0.73 12.27 2.17 0.90 1.84 1.73
40 0.140373593 0.00 0.00 0.00 0.97 9.36 4.21 1.11 2.92 1.91
45 0.132049600 0.10 0.11 0.04 0.69 3.75 2.31 1.47 3.08 2.19
50 0.125825494 0.06 0.03 0.00 0.79 6.90 4.26 3.19 5.16 4.41
55 0.121786333 0.00 1.13 1.57 2.09 4.80 2.40 3.37 6.73 5.15
60 0.115657478 0.03 0.10 0.57 1.40 1.58 1.78 4.71 7.54 6.00
65 0.110896748 0.00 0.47 0.44 1.33 5.86 2.79 16.24 12.94 10.43
70 0.106990091 0.10 0.55 0.32 0.99 7.83 2.15 19.56 17.61 14.54
75 0.103323461 0.10 0.22 0.44 0.77 4.56 1.69 26.46 22.67 17.16
80 0.100294988 0.10 0.41 0.29 0.93 3.38 1.69 39.15 30.99 23.62
85 0.098395059 0.72 1.43 1.10 1.75 3.31 1.90 38.79 29.85 24.04
90 0.094822061 0.02 0.02 0.45 1.27 10.59 4.32 96.82 47.19 47.70
95 0.092249178 0.18 0.26 0.48 0.93 11.55 6.87 147.35 59.51 41.84
100 0.090232120 0.30 0.52 0.38 1.01 8.39 3.39 180.32 64.96 45.02
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iii. Mixed formulation of Circle Packing Problem. There are many possible
formulations obtained by expressing the locations of some centers in Carte-
sian coordinates, and the remaining centers in Polar coordinates. Suppose
that centers of circles are numbered 1, 2, 3, . . . , n. Then the pair of disjoint
sets Cϕ and Pϕ , whose union is the set {1, 2, 3, . . . , n}, determines one
formulation (ϕ) as follows:

max r (12.5)

subject to

(xi − x j )2 + (yi − y j )2 − 4r2 ≥ 0, ∀ i, j ∈ Cϕ(i < j)
ρ2
i + ρ2

j − 2ρiρ j cos(θi − θ j ) − 4r2 ≥ 0, ∀ i, j ∈ Pϕ(i < j)

(xi − ρ j cos(θ j ))
2 + (yi − ρ j sin(θ j ))

2 − 4r2 ≥ 0, ∀ i ∈ Cϕ, ∀ j ∈ Pϕ

x2i + y2i ≤ (1 − r)2, ∀ i ∈ Cϕ

ρi + r ≤ 1, ∀ i ∈ Pϕ

r ≥ 0,
xi , yi ∈ R, ∀i ∈ Cϕ

ρi ≥ 0, θi ∈ [0, 2π], ∀ i ∈ Pϕ.

A general reformulation descent procedure could be constructed by replacing
the two pure formulations (Cartesian and polar) used above by a specified
sequence of mixed and pure formulations.

12.4.1.2 Formulation Space Search

We will call the set of all possible formulations Formulation Space F . Each
of these formulations can be used by MINOS (or any other NLP solver) for
solving the circle packing problem. In Mladenović et al. [38], a distance func-
tion in the formulation space is introduced as the cardinality of the symmetric
difference of sets representing the subsets of circles which are in Cartesian
coordinates:

d(ϕ1, ϕ2) = |Cϕ1�Cϕ2 | = |Pϕ1�Pϕ2 |.

The defined distance allows the definition of neighborhoods in the Formula-
tion space:

Nk(ϕ) = {ϕ′|d(ϕ, ϕ′) = k},
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and introduces Formulation Space Search for the circle packing problem. A
pseudo code for FSS is given in Algorithm 4 ([38]).

Execution of FSS for n = 50 circles is shown in Fig. 12.3. The starting
solution is not randomly selected, but is instead a solution obtained after
applying Reformulation Descent. Each picture shows an improved solution
obtained by execution of function MinosMix. Below each picture we see
the value of circle radius (r ) as well as the neighborhood in the Formulation
Space in which the improved solution is obtained.

In Mladenović et al. [38], kmin and kstep are both set to 3, and kmax is set
to n = 50. Note that the first improvement was obtained for kcurr = 12. This
implies that no improvement was found with kcurr = 3, 6 and 9. Since the
initial formulation is all Cartesian, this also means that a mixed formulation
with 12 polar and 38 Cartesian coordinates was used (|CF | = 38, |PF | =
12). In the next round, a formulation with 3 randomly chosen circle centers
(kcurr = 3), was unsuccessful, but a better solution was found with 6, and
so on. After 10 improvements, the algorithm ends up with a solution with
radius rmax = 0.125798.
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Fig. 12.3 Illustration of execution of formulation space search applied on packing
50 circles in the unit circle. Starting solution is a solution obtained by Reformulation
Descent ([38])
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Table 12.2 Comparison of reformulation descent and formulation space search on
circle packing problem [38]

RD FSS

n Best known Best Avg. Time Best Avg. Time

50 0.125825494 0.06 0.79 3.19 0.00 0.24 80.54
55 0.121786333 0.00 2.09 3.37 0.00 0.60 72.81
60 0.115657478 0.03 1.40 4.71 0.00 0.95 84.39
65 0.110896748 0.00 1.33 16.24 0.00 0.21 108.25
70 0.106990091 0.10 0.99 19.56 0.01 0.27 151.64
75 0.103323461 0.10 0.77 26.46 0.02 0.20 164.51
80 0.100294988 0.10 0.93 39.15 0.04 0.23 229.49
85 0.098395059 0.72 1.75 38.79 0.18 0.72 256.17
90 0.094822061 0.02 1.27 96.82 0.02 0.56 294.77
95 0.092249178 0.18 0.93 147.35 0.07 0.39 308.34
100 0.09023212 0.30 1.01 180.32 0.12 0.68 326.67

A comparison of results obtained by 50 executions of Reformulation
Descent and Formulation Space Search for the circle packing problem is given
in Table 12.2. The first column in Table 12.2 contains the number of circles
n. The second column contains the value of the best-known solution for the
corresponding value of n. Columns 3–5 contain results for Reformulation
Descent: percentage deviation of best solution from best-known solution,
percentage deviation of the average of solutions and average running time.
Columns 6–8 contain the corresponding values for solutions obtained by
Formulation Space Search.
The table shows that the average error of the FSS heuristic is smaller, i.e.,

solutions obtained by FSS are more stable than those obtained with RD.

12.4.2 Graph Coloring Problem

A graph G = (V, E) with vertex set V and edge set E , and an integer k are
given. A k-coloring of G is a mapping c : V → {1, . . . , k}. The value c (x ),
where x is a vertex is called the color of x. The vertices which have color i
(1 ≤ i ≤ k) represent a color class, denoted Vi . If two adjacent vertices x and
y have the same color i, vertices x and y, the edge (x, y) and color i are said to
be conflicting. A k-coloring without conflicting edges is a legal coloring and
its color classes are called stable sets.
The Graph Coloring Problem (GCP for short) requires that the smallest

integer k be determined, such that a legal k-coloring of G exists. Number k is
also called the chromatic number of G , and is denoted as χ(G). Given a fixed
integer k, the optimization problem k-GCP is to determine a k-coloring of
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G which has the minimal number of conflicting edges. If the optimal value
of the k-GCP is zero then graph G has a legal k-coloring. A local search
algorithm for the GCP can be used to solve the k-GCP by simply stopping
the search as soon as a legal k-coloring is found. Also, an algorithm that solves
the k-GCP can be used to solve the GCP, by starting with an upper bound k
on χ(G), and then decreasing k as long as a legal k-coloring can be found.

Hertz et al. [23] define three solution spaces for solving the GCP and
k-GCP problems. Note that a solution of the k-GCP should satisfy two
conditions if possible: there are no edges where both endpoints have the same
color, and all vertices must be colored. The first two solution spaces relax one
of these two conditions; the third search space satisfies both conditions.
The first proposed solution space S1 consists of all (not necessarily legal)

k-colorings of graph G . In solution space S1, objective function f1(s) (for
s ∈ S1) is defined as the number of conflicting edges in coloring s. In solu-
tion space S1, neighborhood N1(s) consists of all k-coloring s′ obtained by
changing the color of exactly one vertex. Based on the proposed neighbor-
hood, Hertz and deWerra [22] developed a Tabu search algorithm, also called
TabuCol, for solving the k-coloring problem.

The second solution space S2 consists of all partially legal k-colorings.
More precisely each solution is a partition of the set of vertices into k + 1
disjoint sets V1, V2, . . . , Vk, Vk+1, where sets V1, V2, . . . , Vk are stable sets,
while Vk+1 is a set of non-colored vertices. In solution space S2, the objec-
tive function f2 is defined, such that f2(s) is the cardinality of subset Vk+1.
Morgenstern [40] proposed the objective function f ′

2(s) = ∑
v∈Vk+1

d(v),
where d (v) denotes the number of edges incident to vertex v. Neighborhood
N2(s) consists of all solutions obtained by moving a vertex v ∈ Vk+1 in the
set (color class) Vi , and moving to Vk+1 all vertices u ∈ Vi adjacent to vertex
v. Bloechliger and Zufferey [2] obtained very good results by using reactive
tabu search and the number of non-colored vertices as the objective function.
Solution space S3 consists of the cycle-free orientations of the edges of graph
G . Gallai [18], Roy [43], and Vitaver [46] independently proved in the sixties
that the length of a longest path in an orientation of graph G is at least equal
to the chromatic number of G . As a corollary, the problem of orienting the

edges of a graph so that the resulting digraph
−→
G is cycle-free, and the length

λ(
−→
G ) of a longest path in

−→
G is minimum, is equivalent to the problem of

finding the chromatic number of G .
Indeed, given a χ(G)-coloring c of a graph G , one can easily construct a

cycle-free orientation
−→
G with λ(

−→
G ) ≤ χ(G) by simply orienting each edge

[u, v] from u to v if and only if c(u) < c(v). Conversely, given a cycle-free
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orientation
−→
G of G , one can build a λ(

−→
G )-coloring of G by assigning to

each vertex v a color c (v) equal to the length of a longest path ending at v in−→
G .
So, objective function f3 can be defined, such that f3(s) is the length of

the longest oriented path. Many local searches can be defined in S3. One of
them is removing all arcs (oriented edges) not contained in the longest path,
choosing vertex u and changing the orientation of all arcs ending at vertex u
or beginning at vertex u. It can be proved that the length of a longest path in
the so obtained graph is bigger by at most one than the length of the longest
path in the starting graph.
Translators can be constructed that translate the solution belonging to one

of the three solution spaces into the corresponding solution belonging to
another solution space. After some preliminary experiments, Hertz et al. [23]
found that the sequence S1 → S3 → S2 → S1 of search spaces, called a
cycle, appears to be a good choice, each translation from an Si to its successor
being easy to perform.

A variable space search (VSS) algorithm (Hertz et al. [23]) is executed on
16 graphs from the DIMACS Challenge. After a preliminary set of exper-
iments, the following graphs were selected as representative of the most
challenging ones.

• Six DSJCn.d graphs: the DSJCs are random graphs with n vertices and a
density of d

10 . It means that each pair of vertices has a probability of d
10 to

be adjacent. Hertz et al. [23] use the DSJC graphs with n ∈ {500, 1000}
and d ∈ {1, 5, 9}

• Two DSJRn.r graphs: the DSJRs are geometric random graphs. They are
constructed by choosing n random points in the unit square and two
vertices are connected if the distance between them is less than r

10 . Graphs
with an added end letter “c” are the complementary graphs. The authors
use two graphs with n = 500 and, respectively, r = 1 and r = 5.

• Four flatn_χ_0 graphs: the flat graphs are constructed graphs with n
vertices and a chromatic number χ . The end number “0” means that all
vertices are incident to the same number of vertices.

• Four len_χx graphs: the Leighton graphs are graphs with n vertices and
a chromatic number χ equal to the size of the largest clique (i.e., the
largest number of pairwise adjacent vertices). The end letter “x” stands for
different graphs with similar settings.

Detailed results of the VSS coloring algorithm are presented in Table
12.3. The first column contains the name of the graph. The second column
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Table 12.3 Detailed results of VSS coloring with a time limit of 1 hour ([23])

Instance χ UB k Succ./run 103 iter. Time

DSJC1000.1 * 20 20 03/10 285,624 2396
21 10/10 757 11

DSJC1000.5 * 83 88 08/10 55,971 2028
89 10/10 22,852 820

DSJC1000.9 * 224 224 01/10 48,348 3326
225 05/10 21,667 1484
226 10/10 27,429 1751

DSJC500.1 * 12 12 10/10 19,799 97
DSJC500.5 * 48 48 03/10 78,667 1331

49 10/10 10,524 162
DSJC500.9 * 126 126 08/10 76,927 1686

127 10/10 7754 169
DSJR500.1c * 85 85 09/10 48,530 736

86 10/10 20,020 291
DSJR500.5 * 122 126 09/10 61,849 1409

127 10/10 9066 183
flat1000_50_0 50 50 50 10/10 625 318
flat1000_60_0 60 60 60 10/10 1242 694
flat1000_76_0 76 82 87 04/06 48,609 1689

88 10/10 36,924 1155
flat300_28_0 28 28 29 01/10 45,611 867

30 02/10 217,647 2666
31 10/10 4173 39

le450_15c 15 15 15 10/10 497 6
le450_15d 15 15 15 10/10 4761 44
le450_25c 25 25 26 10/10 183 1
le450_25d 25 25 26 10/10 117 1

* Chromatic number was not known

contains the chromatic number (“*” when it is not known), and the third
column contains the best-known upper bound. The VSS algorithm was
run 10 times on each graph with different values of k. The fourth column
reports various values of k ranging from the smallest number for which they
had at least one successful run, to the smallest number for which they had
10 successful runs. The next columns respectively contain the number of
successful runs and the number of tries, the average number of iterations
in thousands (i.e., the total number of moves performed using the 3 neigh-
borhoods, divided by 1000) on successful runs, and the average CPU time
used (in seconds).
The VSS algorithm is compared with TabuCol [22], PartialCol [2] as well

as with three graph coloring algorithms which are among the most effective
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Table 12.4 Comparisons between VSS-Col and five other algorithms ([23])

Instance χ UB VSS-Col TabuCol PartialCol GH MMT MOR

DSJC1000.1 * 20 20 20 20 20 20 21
DSJC1000.5 * 83 88 89 89 83 83 88
DSJC1000.9 * 224 224 227 228 224 226 226
DSJC500.1 * 12 12 12 12 12 12 12
DSJC500.5 * 48 48 49 49 48 48 49
DSJC500.9 * 126 126 127 127 126 127 128
DSJR500.1c * 85 85 85 85 – 85 85
DSJR500.5 * 122 126 126 126 – 122 123
flat1000_50_0 50 50 50 50 50 50 50 50
flat1000_60_0 60 60 60 60 60 60 60 60
flat1000_76_0 76 82 87 88 88 83 82 89
flat300_28_0 28 28 29 31 28 31 31 31
le450_15c 15 15 15 16 15 15 15 15
le450_15d 15 15 15 15 15 15 15 15
le450_25c 25 25 26 26 27 26 25 25
le450_25d 25 25 26 26 27 26 25 25

* Chromatic number was not known

ones: the GH algorithm in [17], the MOR algorithm in [40], and the MMT
algorithm in [34]. A detailed comparison is given in Table 12.4.

12.4.3 Continuous Location Problems

12.4.3.1 Preliminaries

Location models in the literature typically determine where to place a given
number of new facilities in order to serve a given set of demand points (also
called existing facilities, fixed points, or customers) in the best way. Contin-
uous models, also known as site-generating models (Love et al. [33]), allow
the new facilities to be located anywhere in N -dimensional Euclidean space
(EN ) or a sub-region thereof. A specified distance function is required in
practical applications in order to measure the distances between new facilities
and the customers they will serve. Most applications in the literature occur
in the plane (N = 2), and use the Euclidean norm as the distance function.

Consider the unconstrained planar p-median problem with Euclidean
distances (also known as the multi-source Weber problem (MWP)), which
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may be written as:

(min) f (X1, X2, . . . , X p) =
∑
j∈[n]

w j min{d(Xi , A j ) : i ∈ [p]},

(12.6)

where n denotes the number of demand points; p denotes the number of
new facilities to be opened; [t] = {1, 2, . . . , t} for any positive integer t ; w j
is a positive weight equivalent to the demand at given point A j = (a j , b j ),
j ∈ [n]; Xi = (xi , yi ) denotes the unknown location of new facility i ∈ [p];
and d(Xi , A j ) is the Euclidean distance between Xi and A j , for all pairs
(Xi , A j ).
The objective function f in (12.6) is a weighted sum of distances between

the demand points and their closest facilities. Since the minimum of a set
of convex functions is nonconvex, the function f is itself nonconvex and
may contain several stationary points. This was recognized by Cooper [11,
12], who was also the first to propose this continuous location–allocation
problem. Among the methods proposed by Cooper to solve (12.6), one
became quite famous, and is referred in the literature as Cooper’s algorithm.
It is based on the following simple observation. When the facility locations
are fixed, the problem reduces to allocating each demand point to its closest
facility. Then when the resulting partition of the set of demand points is fixed,
the problem reduces to p independent and convex single facility location
problems, which are easily solved by gradient descent methods such as the
well-knownWeiszfeld procedure (Weiszfeld [47]). Cooper’s algorithm iterates
between location and allocation steps until a local minimum is reached.

Solving the planar p-median problem is equivalent to enumerating the
Voronoi partitions of the set of demand points, which is NP-hard (Megiddo
and Supowit [35]). The complexity of the problem has been demonstrated
in the literature. For example, Brimberg et al. [5] test the well-studied 50-
customer problem in Eilon et al. [14] by running Cooper’s algorithm from
10,000 randomly generated starting solutions for each p ∈ {5, 10, 15}. They
obtain 272, 3008, and 3363 different local minima, respectively. The worst
deviation from the best solution found (later shown to be optimal by Krau
[27]) was, respectively, 47%, 66% and 70%. The best-found solution was
obtained 690 times for p = 5, 34 times for p = 10, and only once for
p = 15. Considering that n = 50 is a small instance by today’s stan-
dard, these results demonstrate quite dramatically the complex topology of
the objective function. For further reading, see e.g., Brimberg and Salhi [9].
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12.4.3.2 Reformulation Local Search for Continuous Location

Any continuous location model can be formulated as a discrete problem by
restricting the potential sites of the new facilities to a finite set of given
points in the continuous space. The distance between any pair of points is
measured by the same distance function used in the continuous model. For
example, the continuous p-median problem in (12.6) becomes the classical
discrete p-median problem when the facility locations are restricted to the n
given demand points. Exploiting the relation between these two formulations
was suggested in the original work of Cooper [11, 12]. Hansen et al. [20]
proposed an effective heuristic that first solves the discrete p-median exactly
using a primal-dual algorithm by Erlenkotter [15], and then completes one
iteration of “continuous-space adjustment” by solving the p continuous single
facility minisum problems identified by the partition of the set of demand
points found in the discrete phase. The excessive computation time needed
to solve larger instances of the discrete model limits the size of instances that
can be considered (Brimberg et al. [4]). A similar approach is proposed in
Salhi and Gamal [44], but this time a heuristic is used to solve the discrete
p-median approximately. Kalczynski et al. [25] describe a greedy, random
approach to construct good discrete starting solutions. They go on to show
the rather counter-intuitive result that using good discrete starting solutions
can be more effective and efficient than the optimal discrete solution.

A general procedure known as reformulation local search (RLS) that
iterates between the continuous location problem under consideration and
discrete approximations of this problem was proposed in [6]. The RLS proce-
dure may be viewed as a special case of formulation space search (FSS),
i.e., its extended Reformulation descent variant. In the latter case, two or
more equivalent formulations of a given problem are combined in the search
process. Meanwhile, in RLS we have the original continuous location model
coupled with a series of discrete approximations. Each succeeding discrete
formulation presents a better approximation of the original (continuous)
problem until the algorithm terminates at a local optimum in both spaces. We
will also see later that the series of approximations can be made to converge
in an asymptotic sense to an equivalent formulation of the original problem.
The general steps of RLS are examined next (see [6] for further details).

Consider a continuous location problem of the following general form:

min (or max) f (X1, X2, . . . , X p), (12.7)
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requiring p new facility sites Xi ∈ R
N , i ∈ [p], to be found. The multi-

source Weber problem (MWP) given in (12.6) is an example. Another impor-
tant, but less-studied class of location problems is given by the continuous
p-centre problem,

min g(X1, X2, . . . , X p) = max{min{d(Xi , A j ) : i ∈ [p]} : j ∈ [n]},
(12.8)

where the objective is to minimize the furthest distance from a demand point
to its closest facility, and which is used when quality of service (e.g., emer-
gency response) is the main goal. (Note that the unweighted version of MWP,
where w j = 1, for all j, minimizes the average distance from a demand point
to its closest facility.) The continuous p-dispersion problem is used to locate
obnoxious facilities. Here we have a maxminmin objective:

max h(X1, X2, . . . , X p) = min{min{d(Xi , A j ) : i ∈ [p]} : j ∈ [n]}.
(12.9)

In this case, constraints are required to limit the locations of the new facilities
to a closed sub-region of RN . Constraints specifying a minimum separa-
tion distance between the new facilities may also be included. Other types
of constraints, such as limits on the capacities of the facilities, may be added
to the general model in (12.7) without affecting the discussion below. We will
refer to (12.7) (+ any required constraints) as (GLP ) for the general location
problem in continuous space.

Using the notation in Brimberg et al. [6], let (GLP)′ denote the current
discrete approximation of (GLP ), and S the finite set of potential sites spec-
ified in (GLP)′. The discrete approximation of the unconstrained (GLP ) in
(12.7) may be written as:

min (or max)X⊂S, |X |=p f (X). (12.10)

For the case of p homogeneous facilities, and where no constraints are

included in (GLP ), there are

(
M
p

)
possible solutions to (GLP)′. When

constraints are included in (GLP ), they must also be respected in (GLP)′,
and so to be effective, the constructed set S should contain several feasible
solutions. To complete the preliminaries, let LC and LD denote the selected
improving searches for (GLP ) and (GLP)′, respectively. These searches stop
at a current solution, if and only if, a better solution cannot be found in
the respective neighborhood of the search. The framework for reformulation
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local search (RLS) is now presented assuming that (GLP ) is a minimization
problem (see [6]).

Referring to Algorithm 5, we can note the following useful features of RLS:

• The initial set S is not restricted to the set of demand points as in other
methods that combine a discrete approximation of the original continuous
problem. For example, S can include some “attractive” demand points
combined with a sufficient number of “attractive” sites obtained by local
search from several random initial solutions. The choice of initial solu-
tion X0 is also left up to the analyst. It can be, for example, a randomly
generated solution or one obtained by a constructive method (e.g. [8]).

• The analyst also selects the algorithms, LC and LD for improving the solu-
tion in the continuous and discrete spaces, respectively. These can be the
simplest of local searches, metaheuristic based methods, and in the case of
LD , even an exact method. Thus, the RLS framework is very flexible.

• Step 3 (augmenting S ) is an important feature. It allows new, attractive
facility sites to be added to the discrete model. For example, referring to
the continuous p-median problem (12.6), new median points found by LC
in the continuous space allow new partitions of the set of demand points
to be investigated in the discrete phase by LD , which in turn may give
improved solutions of the original problem (12.6). We demonstrate this in
the following example. (Also see [6] for a different example.)

An Illustration

Consider the small example in Fig. 12.4 with five demand points arranged
to form two equilateral triangles, a small one with sides of length = 1, and a
large one with sides of length = 3. The two triangles share a common vertex
A3 located at the origin (0, 0), and the large one is symmetrically inverted
above the small one with the vertical axis bisecting the two triangles. The
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Fig. 12.4 Illustration of RLS

weights at the demand points are all equal to 1; w j = 1, j = 1, . . . , 5,
and three facilities are to be located (p = 3). The initial set S (step 1)
comprises the complete set of demand points. Suppose also that the initial
solution consists of p randomly selected demand points (a commonly used
procedure), and this time X0 = {A1, A2, A4}. Assigning demand points to
their nearest facilities, with ties broken arbitrarily, results in the following
partition:

{A1, A3}, {A2}, {A4, A5}

The objective value for this solution is f = d(A1, A3)+d(A4, A5) = 1+
3 = 4. Since the facilities are optimally located with respect to their assigned
demand points, the current solution is a local minimum, and LC (Cooper’s
algorithm is chosen) cannot improve it in step 2. As a result, no new points
are added to S in step 3. Using the common single vertex swap move for LD
in step 4 (where only one facility can move from its current vertex to any
unoccupied vertex) leads to an improved solution where X2 moves from A2
to A5, and a better partition of the demand points is achieved:

{A1, A2, A3}, {A5}, {A4}

The objective value is reduced to f = d(A1, A3)+d(A1, A2) = 1+1 = 2.
In the next iteration of the continuous phase, X1 moves from A1 to the
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median point of its assigned cluster {A1, A2, A3}, Xm = (0,−1/
√
3), with

new f = d(Xm, A1) + d(Xm, A2) + d(Xm, A3) = 3 × 1√
3

= √
3. The

new point Xm is added to S . The next iteration of the discrete phase cannot
improve this solution; so the algorithm terminates with final solution, X1 =
Xm , X2 = A5, and X3 = A4, which is also the optimal solution. The
summary of RLS moves is as follows:

X0 = {A1, A2, A4} LC−→X1 = X0 LD−→ X2 = {A1, A5, A4} LC−→
X3 = {Xm, A5, A4} LD−→ X4 = X3.

A Small Instance (n = 50) from the Literature

Brimberg et al. [6] carry out a detailed computational experiment on the
well-studied 50-customer problem from [14]. The aim of the experiment
is to compare RLS to Cooper’s classical algorithm, which is referred to as
MALT to signify multi-start alternating (locate–allocate), and which is used
as a basis of comparison to this day for heuristics developed to solve the
multi-source Weber problem (12.6). Note that MALT was originally devel-
oped for MWP, but can also be adapted to many other classes of location
problems, continuous or discrete, such as the p-centre problem, by simply
changing the objective function. Five different values of p are tested (p =
5, 10, 15, 20, 25). Each of these five instances is run 100 times from random
starting solutions generated within the smallest rectangle containing the set
of demand points, for both MALT and RLS. The most basic form of RLS
is used, where the improving search in the continuous phase (LC ) is the
same Cooper algorithm used in MALT, and the improving search in the
discrete phase (LD) is the standard single vertex exchange (Teitz and Bart
[45]) discussed above in the illustrative example. The number of distinct local
minima (LM), the number of occurrences of the 1st, 2nd, and 3rd best solu-
tions, and the number of solutions within given fractional deviations of the
optimal solution (from Krau [27]) are tabulated. Sample results are provided
here in Table 12.5.

Some interesting observations are noted.

• The number of distinct local minima is much smaller for RLS than MALT.
For p = 5, this number = 50 for MALT and only 4 for RLS. For p = 15,
all 100 runs in MALT produce different local minima, while RLS only
produces two different local minima. We may attribute the small number
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Table 12.5 Sample results comparing MALT and RLS on 50-customer problem
(Brimberg et al. [6])

p Local minima infos MALT RLS

5 # Distinct local minima (LM) 50 4
# 1st best 7 19
# 2nd best 3 32
# 3rd best 4 20
# LM with dev ≤ 0.0005 10 19
# LM with dev ≤ 0.005 19 51
# LM with dev ≤ 0.05 57 96

15 # Distinct local minima (LM) 100 2
# 1st best 1 70
# 2nd best 1 30
# 3rd best 1 0
# LM with dev ≤ 0.0005 0 70
# LM with dev ≤ 0.005 1 70
# LM with dev ≤ 0.05 4 100

of local minima found by RLS to the much larger search neighborhood
compared to MALT obtained by adding the discrete phase.

• The first best solution obtained by RLS turns out to be the optimal solu-
tion in all five instances tested. However, MALT finds the optimal solution
only for the smallest instance, p = 5.

• The quality of the few local minima obtained by RLS is very good. Consid-
ering the poor quality of the random starting solutions, this would indicate
that RLS is able to descend deep down along the surface (or landscape) of
the objective function, and certainly avoid many of the local optima traps
that MALT gets stuck in. As a result, the quality of the solutions found by
RLS is vastly superior to MALT. The improvement for the smallest instance
with p = 5 is not as dramatic as the larger instances. For example, for
p = 15 (see Table 12.5), 70 out of 100 runs of RLS produce the optimal
solution compared to 0 for MALT. The remaining 30 runs of RLS produce
its second best solution, which is within 0.05 (5%) of the optimal, while
MALT produces only 4 solutions out of 100 within 0.05 of optimal.

Further analysis (see [6] for details) also reveals that the augmentation step
in RLS (step 3), where new median points from the continuous phase are
added to the set S containing the nodes of the discrete model, is a useful
feature. This step enhances the algorithm by increasing the number of itera-
tions between continuous and discrete phases; i.e., more descent moves and
better solutions are obtained.
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Table 12.6 Summary of results on larger instances, MALT and RLS (see [6] for details)

Average deviation (%) Average CPU time (sec)

Data set (n) MALT RLS MALT RLS

287 78.79 0.04 9.86 4.79
654 22.82 0.21 54.82 43.32
1060 4.17 0.21 133.79 119.95

Computational Results on Large Instances

Three other data sets commonly used for the MWP (e.g., see [4])
are also examined in [6]. These are the 287 - customer problem
from Bongartz et al. [3], and the 654- and 1060 - customer prob-
lems from the TSP library (Reinelt [42]). Values of p were taken from
{2, 3, 4, . . . , 15, 20, 25, . . . , 100} for n = 287, and {5, 10, 15, . . . , 150}
for n = 654 and 1060, giving a total of 91 instances tested. CPU time for
each instance and each algorithm was set at 20, 120, and 300 sec, respec-
tively, for n = 287, 654, and 1060. The average percentage deviation from
the best-known result over all instances run for the specified data set is
given in Table 12.6 for MALT and RLS (see [6] for detailed results for each
instance). Note that these best-known solutions were shown to be optimal
for the n = 287 instances (Krau [27]). As we might expect, Table 12.6 shows
that RLS significantly outperforms MALT. It is also noteworthy that despite
the simple RLS procedure used in Brimberg et al. [6], this algorithm was
able to improve on two best-known solutions for n = 654, obtained by a
much more sophisticated metaheuristic-based method. These results are quite
encouraging. They also demonstrate that simple algorithm designs can be as
effective (or nearly so) as more complicated ones, in support of the “less is
more” (LIMA) philosophy discussed in a separate chapter of this book.

Injection Points

Brimberg et al. [7] suggest that injection points be added to set S once the
basic RLS procedure terminates. The idea here is to add “attractive” points
to the discrete model in order to improve the discrete approximation of the
original model. In that way, the improving search LD may find a better solu-
tion, and hence, jump out of the current local optimum trap. The steps of
the new procedure, called augmented reformulation local search (ARLS), are
shown in Algorithm 6 below for convenience. Note the new parameter K
in step 1 denoting the total number of injection points that will be added.
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Otherwise, the procedure is the same as basic RLS (Algorithm 5) until step
5 where the algorithm starts to add the injection points (Y j ) once the basic
RLS cannot improve the solution any further. The injection points are added
one at a time, and each time one is added, the search in the discrete phase
(step 4) is resumed. If a better solution is found than the current best (X0),
the algorithm returns to the continuous phase (step 2) with this new solu-
tion, and resumes the basic RLS. The algorithm ends when all K injection
points are added, and the solution cannot be improved further.

The injection points can be determined in different ways. In Brimberg
et al. [7], two strategies are specified. The first requires the injection points
to be convex combinations of two or more demand points (or facilities, or
combinations of the two). The second strategy involves the use of a local
search in the continuous problem that can be different from LC , and that
can generate local optima with new and attractive points to add to the set S .
However, in the computational experiments, they only use the first strategy
with pairs of randomly selected demand points, e.g.,

Y j = A j1/2 + A j2/2,

where Y j is placed at the midpoint of the line segment joining A j1 and
A j2 . The computational results are comparable to basic RLS, suggesting this
is only a preliminary study, and more work is needed to develop effective
strategies for inserting injection points.

Some interesting features of ARLS are noted:

• A small example in [6] demonstrates that a multi-start version of basic RLS
is not guaranteed to be globally convergent. In this case, the starting solu-
tion is a randomly selected combination of p demand points, and Cooper’s
algorithm is used to improve the solution in the continuous phase. They
show that the optimal solution of the MWP is unattainable under these
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conditions. On the other hand, injecting median points into the discrete
approximation easily fixes this issue.

• Adding injection points, for example, median points for the MWP, makes
the discrete model a better approximation of the original (continuous)
model. By generating all possible local solutions, and adding the obtained
facility sites to the set S , the discrete model becomes an equivalent formula-
tion of the continuous one. That is, solving one model automatically solves
the other. Thus, we may view the RLS approach as falling within the FSS
framework in an asymptotic sense.

12.5 Conclusions

Many methods for solving global optimization problems are based on
changing one formulation to another. These types of methods include dual,
primal-dual, Lagrangian, linearization, surrogation, convexification methods,
coordinate system change, discrete/continuous reformulations, to mention a
few. The main idea of Formulation Space Search (FSS) is to provide the set
of formulations for a given problem with some metric or quasi-metric func-
tions. In that way, the (quasi) distance between formulations is introduced,
and the search space is extended to the set of formulations as well. Most
importantly, in all solution method classes mentioned, the discrete metric
function between any two formulations can easily be defined. Those simple
facts open an avenue to a new approach where heuristics are developed within
the FSS framework. Instead of a single formulation with corresponding solu-
tion space, as in the traditional approach, there are now multiple formulations
and solution spaces to explore in a structured way. This opens up immense
possibilities in designing new and powerful heuristics. For example, it may
be that new types of distances in the formulation space will make some hard
problems easier to solve.

Computational results demonstrate that the FSS framework can produce
simple and effective heuristics that support the less is more (LIMA) philos-
ophy discussed in a separate chapter of this book. The authors hope they have
convinced the reader that FSS is an exciting direction for future research.

A Tribute to Professor Nenad Mladenovic
We sadly announce that Professor Nenad Mladenović passed away in May 2022,
before the publication of this book was completed. His sudden death from a heart
attack shocked his many friends and colleagues at universities and research institutes
around the globe. It was a privilege for me to work with Nenad on this chapter,
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and on numerous other projects over the 30 years I have known him. Borrowing
on ideas from Variable Neighborhood Search, a popular metaheuristic framework
that he pioneered, Nenad later introduced the notion of Formulation Space Search,
which is the topic of this chapter. The novel idea in FSS is to structure a formulation
space containing different formulations of a problem by using a distance metric in
the same way a solution space is structured with defined neighborhoods in VNS.

I consider myself very lucky to have known Nenad. He has had a tremendous
impact on my work, as I am sure he has for many others. His ideas will inspire
researchers for many years to come. Rest in peace, my good friend.

Jack Brimberg.
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4. Brimberg, J., Hansen, P., Mladenović, N., Taillard, E.D. (2000) Improvement
and comparison of heuristics for solving the uncapacitated multisource Weber
problem. Operations Research, 48(3): 444–460.

5. Brimberg, J., Hansen, P., Mladenović, N. (2010) Attraction probabilities in
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20. Hansen, P., Mladenović, N., Taillard, E., (1998) Heuristic solution of the multi-
source Weber problem as a p-median problem. Operations Research Letters, 22:
55–62.
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13
Sine Cosine Algorithm: Introduction

and Advances

Anjali Rawat, Shitu Singh, and Jagdish Chand Bansal

13.1 Introduction

A Metaheuristic is a problem-independent algorithmic framework that
provides a near-global optimal solution to an optimization problem. Meta-
heuristic algorithms can be categorized into two categories—single solution-
based algorithms and population-based algorithms. A population-based algo-
rithm begins with a set of randomly generated solutions that are updated
iteratively until the end condition (or termination criteria) is satisfied. On
the other hand, in the single solution-based algorithm, a single solution
is generated and updated iteratively until the end condition is satisfied.
Although both the categories have their own advantages and disadvantages,
the researchers use population-based algorithms more due to their higher
exploratory behavior than single solution-based algorithms. Examples of
some of the population-based meta-heuristic algorithms are Particle Swarm
Optimization (PSO) [1], Artificial Bee Colony (ABC) [2], Differential Evolu-
tion (DE) [3], Ant Colony Optimization (ACO) [4] Genetic Algorithm (GA)
[5], Gravitational Search Algorithm (GSA) [6], Teaching-Learning Based
Optimization (TLBO) [7], Grey wolf Optimization algorithm (GWO) [8],
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Spider Monkey Optimization (SMO) [9], Sine Cosine Algorithm (SCA)
[10], etc.

Sine Cosine Algorithm is one of the recently developed promising
population-based metaheuristic algorithms introduced by Mirjalili [10] in
2016. The main idea behind SCA is to use the cyclic pattern of the sine and
cosine functions to locate the next position of its search agents in the search
space. Since 2016, to deal with the various challenging research problems, a
lot of research has been carried out to make it more efficient and robust. This
chapter covers its mathematical model, its important parameters, and some
of its variants developed to overcome the weaknesses of the SCA.
The proceeding sections of this chapter are arranged in the following

manner: Section 13.2 provides the mathematical model of the SCA and its
pseudo code, Section 13.3 discusses its important parameters, Section 13.4
presents its advances, and Section 13.5 concludes the whole chapter, respec-
tively.

13.2 Sine Cosine Algorithm (SCA)

Sine Cosine Algorithm, being a population-based optimization technique,
begins with a set of randomly generated solutions (called population) of size
‘N ’ where each solution is a ‘D ’ dimensional vector. The random solutions
are then evaluated repeatedly with the help of the objective function and
are relocated in the search space using the following two main mathematical
equations:

Xt+1
i j = Xt

i j + r1 × sin(r2) × |r3 × Pt
g j − Xt

i j | (13.1)

Xt+1
i j = Xt

i j + r1 × cos(r2) × |r3 × Pt
g j − Xt

i j | (13.2)

where, i = 1, 2, 3, . . . , N , j = 1, 2, 3, . . . , D and t is the iteration counter.
Xt
i = (Xt

i1, X
t
i2, . . . , X

t
i D) is the position of an i th individual solution at the

t th iteration, Pt
g j = (Pt

g1, P
t
g2, . . . , P

t
gD) is the global best solution (called

destination point) in the t th iteration. r2 and r3 are two uniform random
values in the range [0, 2π] and [0,2], respectively. r1 is a function of t ,
calculated using Eq. (13.3).
The most crucial aspect of any population-based algorithm is to ensure an

adequate balance between exploration of the search region at initial iterations
to explore the maximum possible area and exploitation at later iterations to
speed up the convergence. To maintain a proper balance between the global
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exploration and local exploitation ability of the algorithm, the parameter r1
is designed as the linear decreasing function of ‘t ’ given by the following
expression:

r1 = a − a ×
(
t

T

)
(13.3)

where a is a constant and T is the maximum number of iteration.
To decide whether the solution is updated using Eq. (13.1) or Eq. (13.2),

a switch probability p(p = 0.5) is used, and the solutions update its posi-
tion based on a random number r4 ∈ [0, 1] using the following update
mechanism:

Xt+1
i j =

⎧⎪⎨
⎪⎩
Xt
i j + r1 × sin(r2) × |r3 × Pt

g j − Xt
i j | if r4 < p

Xt
i j + r1 × cos(r2) × |r3 × Pt

g j − Xt
i j | if r4 ≥ p

(13.4)

For each search agent, the Eq. (13.4) gives 50% chance to both Eq. (13.1)
and Eq. (13.2) in each iteration and each dimension.
The procedure of the SCA can be summarized in Algorithm 1.
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13.3 Parameters Involved in the SCA

The main parameters of the SCA are r1, r2, r3, and r4. The performance of
the SCA is sensitive to the choices of these parameters. These parameters help
the algorithm avoid the local optima and maintain a perfect balance between
the exploratory and exploitative behavior of the algorithm.

In the SCA, r1 is a random parameter responsible for controlling both the
global and the local search process. It dictates the direction of the movement
of the search agents by deciding whether the solution should move toward
the destination point (r1 > 1) or away from it (r1 < 1). It plays a significant
role in ensuring that the exploration behavior decreases with the number of
iterations and the exploitation behavior increases. Its value decreases linearly
from the predefined parameter ‘a ’ to 0.
The parameter r2 is another important parameter that decides to what

extent the search agents should move toward or away from the destination
point. It is a uniformly distributed random number in the range [0, 2π ].

In the SCA, the parameter r3 is the random weight given to the destination
point. It indicates the magnitude of the contribution of the best solution in
updating the next position of the search agents in each iteration. It is respon-
sible in emphasizing (r3 > 1) or de-emphasizing (r3 < 1) the effect of the
best solution in defining the extent of movement. Its value lies in the range
[0,2].
The parameter r4 is utilized to choose between the sine and cosine compo-

nents randomly. It helps the algorithm in skipping the local optima. Its value
lies in the range [0,1].

One more parameter plays a key role in SCA, which is the constant ‘a ’.
This parameter makes sure that the algorithm transits smoothly from the
exploration phase to the exploitation phase. The value of the parameter ‘a ’ is
generally chosen to be 2.

13.4 Advances in the Sine Cosine Algorithm

The original version of the Sine Cosine Algorithm (SCA) was meant to solve
single-objective unconstrained problems with continuous (real-valued) vari-
ables. But apart from real-valued representation, there are other types of
representation, including binary, discrete and mixed. Furthermore, based on
the existence of the constraints and the number of the objective functions
involved, there are other types of optimization problems like constrained,
multi-objective, etc. These types of problems can not be easily dealt with
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by the traditional SCA. Although SCA has been able to avoid local optima,
explore different regions of a search space, exploit promising regions of a
search space, and converge toward the global optimum effectively, still it has
certain limitations like slow convergence in some of the complex optimiza-
tion problems, premature convergence to local optima due to the adoption
of a fixed switch probability, lack of internal memory. To deal with these
limitations, some of the modified and hybridized versions of SCA were also
proposed.

Since its first introduction in 2016, SCA has continued to attract the
interest of investigators from diverse disciplines across the globe. Till now,
several papers have been widely published on the SCA. Based on the papers
available online, the work done on SCA so far can be broadly categorized into
four categories—extension, modifications, hybridizations, and performance
review. Figure 13.1 shows the classification of the various works done on the
SCA. Since significant work has been done on the extension of the SCA, it is
discussed further in detail in the following subsection:

Fig. 13.1 Classification of advances in SCA
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13.4.1 Extension of SCA

The success of the SCA in solving single-objective optimization problems
within continuous search spaces has motivated the researchers to extend it
to solve other optimization problems like multi-objective, discrete, binary,
constrained, etc. These variants of the SCA are explained in detail in the
following subsections:

13.4.1.1 Multi-Objective

In most real-life optimization problems, there can be more than two objec-
tives that often conflict. These problems are called multi-objective opti-
mization problems, where rather than a single objective multiple conflicting
objectives are optimized concurrently. In multi-objective problems, a unique
optimal solution does not exist that optimizes all the objective functions
simultaneously. Instead, there is a set of non-dominated solutions, known
as Pareto-optimal solutions, in which no solution that exists is superior to
the other solution. Conceptually, a multi-objective version should follow the
same mechanism of the parent optimization algorithm to update the position
of solutions. However, several modifications were made to SCA due to the
existence of so-called Pareto-optimal solutions in multi-objective problems.
There have been four attempts in the literature to deal with the multi-
objective problems with the SCA algorithm. The main mechanisms used in
these works are elitist non-dominated sorting, Crowding Distance (CD) and
archives.
Tawhid et al. [11], in 2019, presented an extended version of SCA to solve

engineering design problems using elitism-based non-dominated sorting and
crowding distance (CD) method of NSGA-II [12]. In this algorithm, the
whole population of size N is first arranged into different non-domination
levels. Then it is assigned a Non-Domination Rank (NDR) using the concept
of Pareto dominance. Then for each objective function fl (l = 1, 2, . . . ,m),
all the solutions in the population of a particular non-dominated set are
sorted in ascending order. In order to maintain the diversity of the solutions,
the individuals with the lowest and the highest objective function values are
assigned an infinite crowding distance so that they are always selected, while
other solutions are assigned the crowding distance (cdij ) as follows:

cdil = f i+1
l − f i−1

l

f max
l − f min

l

∀ l = 1, 2, . . . ,m (13.5)
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The final crowding distance value (CDi ) for each solution (Xi , i =
1, . . . , N ) is computed by adding the solution’s crowding distance values
(cdl ) in each objective function. After this, the SCA is operated to generate
the new population Pk . The new and the parent population (Po) are then
merged to form a merged population Pnew of size greater than N . In order to
maintain a constant population size N , the NDR and the crowding distance
(CD) are then used to select N solutions from the Pnew number of solu-
tions using a simple rule, where the solution with the lower NDR is selected
and in case of a tie, one with the higher CD is selected. The proposed
method was tested and approved on various engineering design problems
and multi-objective benchmark functions. Compared with the other well-
known multi-objective optimization algorithms, the results indicated that the
proposed method was better in some instances and at par in others.

In radial distribution networks, Selim et al. [13] introduced another
Pareto-based multi-objective optimization technique to install multiple
Distribution STATic COMpensators (DSTATCOMs) optimally. In this tech-
nique, the Multi-Objective Sine Cosine Algorithm (MOSCA), similar to the
Multi-objective Grey Wolf Optimization (MGWO) [14], was formulated
and was integrated with fuzzy logic decision making to get better results.
In MOSCA, three operators—an archive, a grid mechanism and a leader
selection mechanism, are integrated into the SCA to maintain, improve and
replace the non-dominated solutions in the archive. Once a set of Pareto-
optimal solutions are produced using the MOSCA, the fuzzy logic decision
controller is then used to choose the best compromise solutions. To verify
its proficiency, the MOSCA was tested on the IEEE-33 and 69-bus distri-
bution systems and was compared with the well-known MOPSO [15]. The
experimental results demonstrated the higher efficiency of the MOSCA over
MOPSO in overall voltage profile and total power losses.
To optimally place Distributed Generators (DGs) in radial distribution

systems, Raut et al. [16] proposed an enhanced version of the multi-objective
Sine Cosine Algorithm [11]. This algorithm used the fuzzy logic decision
controllers to select the best solution and the two multi-objective oper-
ators—elitist non-dominated ranking and crowding distance—to sort the
population. However, to get better results, the authors replaced the linearly
decreasing parameter (r1) with an exponentially decreasing parameter (given
by Eq. (13.6)) in the traditional SCA. They then applied a self-adapting levy
mutation strategy on the solutions obtained from it.

r1 = a × e
t
T (13.6)
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In order to validate its efficiency, it was applied on 33 and 69-bus distri-
bution systems under four different voltage-dependent load models and was
compared with other multi-objective algorithms like NSGA-II and MOPSO.
The results showed that the approach outperformed other algorithms in
different performance metrics.

In 2021, Wan et al. [17] introduced another multi-objective variant of
the SCA for image spatial-spectral clustering. In the proposed algorithm, the
individual solutions are first updated using the original update equation of
SCA. The results are then merged with the parent population of size N to
form a new population with 2N solutions. The newly generated population
is then sorted and ranked based on the non-dominated ranking. Out of these
2N solutions, N individuals with the higher crowding distance are selected
(known as density estimation sorting). This density estimation sorting helps
an algorithm preserve the diversity of the optimal solution set and maintain
the original size of the population. In addition to this, a knee-point-based
automatic selection approach [18] is used to automatically obtain the best
solution (destination point) from the Pareto-optimal solution set. The profi-
ciency of the presented approach was tested using the ten UCI data sets and
clustering experiments involving four real remote sensing images. The evalu-
ation of the results showed that the proposed approach performed somewhat
better than several popular clustering methods.

13.4.1.2 Binary

Some optimization problems involve variables taking only two possible
values, namely, 0 and 1. As the SCA was initially designed for continuous
optimization problems, it was hard to apply the main position updating equa-
tion of SCA to problems with a binary-valued domain. Hence, some essential
changes in the SCA mechanism need to be adopted to put the continuous
metaheuristic SCA to work in binary-valued domains. Different binarization
methods like normalization, rounding, transfer functions, angle modulation,
quantum approach, binary operators, etc., are available in the literature to
develop a binary algorithm.

In 2016, Hafez et al. [19] developed a binary version of SCA that uses
the standard binarization rule of rounding off to address feature selection
problems. In the proposed approach, the range of all the variables is limited
to {0, 1} using the rounding method, where first the values of each decision
variable were rounded to the nearest integer using the Eq. (13.7) and then
the features corresponding to the variable value one are selected. At the same
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time, the features with variable value 0 are rejected.

fi j =
{
1 if Xi j > 0.5
0 otherwise

(13.7)

where fi j is the i th individual’s fitness value, Xi j is the value for i th search
agent at the j th dimension.

In 2018, Reddy et al. [20] proposed four variants of SCA to solve the
binary-natured Unit Commitment Problem (UCP). The proposed four vari-
ants of Binary SCA used four different transfer function to convert the local
version of SCA to a binary version. Those transfer functions are—(a) The
tangent hyperbolic transfer function, (b) Sigmoidal transfer function, (c) A
modified sigmoidal transfer function and (d) Arctan transfer function. The
performance of different transfer functions to solve a binary-natured Profit-
Based Unit Commitment (PBUC) problem was investigated. The adequacy
of the proposed approach, in terms of convergence and quality of solutions,
was explored in test systems with the two market mechanisms that were (a)
energy-only market participation and (b) energy and reserve market partici-
pation. In the second market, two different reserve payment scenarios were
considered separately. The convergence characteristics of the transfer function
in solving UCP were found in the following order:

arctan transfer function> the tangent hyperbolic transfer function>
modified sigmoidal transfer>sigmoidal transfer function.

In terms of the solution quality, the arctan transfer function showed supe-
rior results out of all the four variants, and the simple sigmoidal transfer
function showed inferior results. The simulation findings were compared with
other existing approaches. It demonstrated the effectiveness and superiority
of the proposed approaches in solving the PBUC problem in the perfectly
competitive electricity market.

In the same year, another binary variant of SCA called Binary Percentile
Sine Cosine Algorithm (BPSCA) was introduced by Fernandez et al. [21],
in which percentile concept was utilized to conduct the binary adaptation of
the Sine Cosine Algorithm (SCA). The main issue with the Binary percentile
operator is that it generates infeasible solutions. To deal with the infea-
sible solutions, the authors used the percentile binary operator along with
a heuristic operator. To assess the contribution of the percentile operator
in obtaining the solutions, BPSCA was applied to resolve one of the classic
combinatorial problems called the Set Covering Problem (SCP). The exper-
imental results demonstrated that the operator plays an important role in
providing accurate and good-quality solutions. In addition, comparison with
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the two best Metaheuristic algorithm that has solved SCPs, namely, Jumping
PSO (JPSO) [22] and Multi Dynamic Binary Black Hole (MDBBH) [23]
algorithms showed that results obtained using BPSCA were quite close to the
one obtained using the JPSO. It generated superior results than the MDBBH.
The authors emphasized that, unlike JPSO, the percentile technique used in
BPSCA allows binarizing any continuous swarm intelligence algorithm.

In 2019, they proposed another percentile-based binary SCA [24], which
used a repair operator instead of the heuristic operator to address the infea-
sible solutions. To evaluate the usefulness of the percentile concept in the
binarization process, the authors applied it to resolve the multidimensional
knapsack problem (MKP). The results showed that the operator improved
the precision and the quality of the solutions. The proposed method was
contrasted with the Binary Artificial Algae (BAAA) [18] and K-means Tran-
sition Ranking (KMTR) [26] algorithms. The results clearly showed that the
proposed method outperformed the other algorithms in the best value indi-
cator in 9 out of 30 instances. However, it was found ineffective in the average
indicator.

Following this work, Taghian et al. [27] proposed two other binary
versions of SCA using the two-step binarization technique. The first version
is called S-shaped Binary Sine Cosine Algorithm (SBSCA). In SBSCA, the S-
shaped transfer function, defined in Eq. (13.8), is used to define a bounded
probability of changing a position of the search agents.

S(Xt+1
i j ) = 1

1 + e−Xt
i j

(13.8)

Then the standard binarization rule, given in Eq. (13.9), is used to transform
the solutions into a binary space.

(Xt+1
i j ) =

{
1 if rand < S(Xt+1

i j )

0 otherwise
(13.9)

The second version is called the V-shaped binary Sine Cosine Algorithm
(VBSCA). In VBSCA, the V-shaped transfer function is used to calculate the
position changing probabilities given as:

V (Xt+1
i j ) = | 2

π
arctan(

π

2
)(Xt

i j )| (13.10)
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Then the complement binarization rule, given by Eq. (13.11), is utilized to
transform the solution into a binary domain.

(Xt+1
i j ) =

{
complement of Xt+1

i j if rand < V (Xt+1
i j )

(Xt
i j ) otherwise

(13.11)

The performance of both the proposed algorithms was assessed and compared
with four popular binary optimization algorithms, including binary GSA [28]
and Binary GWO [29], over five UCI medical datasets: Pima, Lymphog-
raphy, Heart, Breast Cancer and Breast-WDBC. The experimental results
demonstrated that both the binary SCA variants have effectively enhanced
the classification accuracy and yielded competitive or even better results
compared to the others.

13.4.1.3 Discrete

There exist several optimization problems in the real world whose search
space is restricted to take discrete values. Such problems are called discrete
optimization problems. To tackle these problems, a Discrete Sine Cosine
Algorithm (DSCA) was devised by Tawhid et al. [30] to resolve the Trav-
eling Salesman Problem (TSP). To make the original SCA suitable for discrete
combinatorial problems such as TSP, the authors operated two local search
techniques—the heuristic crossover [31] and the 2-opt [32] on the best solu-
tion based on two randomly generated numbers between 0 and 1 (say R1 and
R2), in the following manner:

If R1 < R2, Heuristic crossover is operated

Otherwise, 2-opt local search is operated

The DSCA was tested on 41 different benchmark instances of symmeter-
ical TSP. The results indicated that the technique provided optimal solutions
for 27 benchmark problems and near-optimal solutions for the remaining
ones. When the results were compared with other state-of-the-art techniques,
the DSCA demonstrated promising and competitive performance over the
others.

In the same year, another discrete version of the Sine Cosine Algorithm
[33] was put forward to tackle the discrete truss structures optimization
problem. In this algorithm, the solutions obtained from the traditional SCA
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are rounded to their nearest integer to speed up the process significantly.
However, the solutions generated by the unintelligent round-offs might lie in
an infeasible region, and their fitness values might differ drastically from that
of the optimal solutions. The two main strategies—regeneration and muta-
tion operator—are incorporated with it to address these issues. These two
strategies were found to help the algorithm explore and exploit the design
space better. In the regeneration strategy, individual solutions of the popula-
tion of size N are first arranged based on their objective function values in
ascending order as follows:

sort(Xt ) = [Xt
1, X

t
2, . . . , X

t
k−1, X

t
k, X

t
k+2, . . . , X

t
N−1, X

t
N ] (13.12)

where sort(Xt ) is the sorted current population, and Xt
k to Xt

N are the worst
solutions at the current iteration (t ) that needed to be regenerated. Then, λ×
N number of worst particles (Xt

k to Xt
N ) are removed from the population,

and then the best solution found so far, X∗ = [X∗
1, X

∗
2, . . . , X

∗
j , . . . , X

∗
D]

are added λ × N times in the population, that is,

For l = k, k + 1, . . . , N , Replace Xt
l by Xt

l = [X∗
1, X

∗
2, . . . , X

∗
D]

(13.13)

Then a randomly selected design variable j ∈ [1, 2, . . . , D] from each of
these solutions Xt

k to Xt
N−1 is regenerated on a random basis as follows:

X∗
j = round(XL

j + r × XU
j + XL

j ) (13.14)

where XL
j and XU

j are lower and upper limits of the j th design variable, and
r is a random number in [0,1].
The regenerated variables of the individuals Xt

k to Xt
N−1 are then substi-

tuted in the last particle (Xt
N ), thus increasing the chances of finding

promising regions of the search space. In the second strategy, a mutation oper-
ator is added to it to escape the local optima trap. In this, for each particle
(Xi , i = 1, 2, . . . , N ), a random number in [0,1] is generated and if for the
i th particle, the selected random number is less than a predefined parameter
mutation rate (mr ), Xi will be regenerated using the following equation:

Xt+1
i = round

(
Xt
i + (

t

T
) × Rt ⊗ (Xt

best − Xt
r )

)
(13.15)

where Rt is a D dimensional vector of random numbers in the range [0, 1]
in the t th iteration; Xt

best is the best solution of the current population, and
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Xt
r is a randomly selected solution from the current population in the t th

iteration. In this paper, the values of λ and mr were assumed to be 0.2 and
0.05, respectively. The proposed algorithm was applied on five well-known
benchmark truss optimization problems, and the outcomes were compared
with the original SCA and many optimization algorithms. The experimental
findings represented the superiority of the proposed technique over the orig-
inal SCA. In fact, in most of the cases, the proposed MSCA outperformed
the other algorithms as well.

In 2019, another discrete version of the Sine Cosine Algorithm (DSCA)
[34] was developed to solve community detection problems. In this algo-
rithm, a population of N individuals is generated via Label Propagation [35]
and the individuals are updated based on the following updating rules:

Xt+1
i =

⎧⎪⎨
⎪⎩
Xt
i � [S(r1 × sin(r2) × |r3 × Pt

g j ⊕ Xt
i j | if r4 < p

Xt
i � [S(r1 × sin(r2) × |r3 × Pt

g j ⊕ Xt
i j | if r4 ≥ p

(13.16)

where ⊕ represents XOR operation. The � operator is defined as follows:
Let Y = [y1, y2, . . . , yD] and X = [x1, x2, . . . , xD] be any two D

dimensional vectors, then W = X�Y is defined as:

Wi =
{
x j if y j = 0
Nbest j , otherwise

(13.17)

where Nbest j is the label identifier that most neighborhood individuals in
the j th dimension.
The S function is defined as follows:
Y= S(X) such that

yi =
{
1 if rand() < sigmoid(xk) ∀ k = 1, 2...N
0 otherwise

(13.18)

where the sigmoid function is given by Eq. (13.18)

sigmoid(x) = 1

1 + ex
(13.19)

In addition to this, the locus-based adjacency mutation is applied to maintain
the diversity of individual solutions. After the new individuals are generated,
the greedy selection technique is applied to retain the better individuals.
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13.4.1.4 Constrained

An optimization problem refers to finding the optimum value of the given
objective function. Based on the existence of constraints, an optimization
problem can be classified as constrained or unconstrained. If there are no
constraints involved on the variables, the problem is called unconstrained
Optimization problems, else is called constrained optimization problem.
The unconstrained optimization problems are easier than the constrained
ones. Most of the real-life problems are constrained (i.e., it involves various
constraints such as resource constraint, time constraint, cost constraint,
design constraint, etc., depending on the nature of the problem to be opti-
mized). These constraints have a significant effect on the performance of
the algorithms applied to them. All the stochastic optimization algorithms
are inherently suited to solve unconstrained optimization problems. Applying
these algorithms directly to the constrained optimization problems could be
problematic; thus, they need to adapt themselves. The most common and
the oldest approach of incorporating constraints into an unconstrained opti-
mization algorithm is penalty functions. The basic idea behind this method
is to convert a constrained problem into an unconstrained problem by simply
subtracting or adding a particular function from or to the objective functions
based on the violation degree of constraints in a solution.

In 2020, Chen et al. [36] proposed a multi-strategy enhanced SCA
(MSCA) and then incorporated the death penalty function with it to
solve three constrained engineering problems—welded beam design problem,
tension/compression spring design problem, and pressure vessel design
problem. The MSCA, as the name suggests, uses multiple strategies that
include Cauchy Mutation (CM) operator, Chaotic Local Search (CLS)
mechanism, Opposition-Based Learning (OBL) strategy and, Mutation and
Crossover Strategy (MCS) of Differential Evolution (DE). The death penalty
function is a simple and easiest way to handle constraints. It penalizes the
primary objective function of the problem with a factor that measures the
point of infeasibility and ensures that infeasible solutions are automatically
rejected in each iteration. The experimental results demonstrated that the
approach is very efficient and effective in solving various engineering prob-
lems and provides competitive and potential results than its competitors.
The authors concluded that the proposed algorithm could effectively solve
real-world optimization problems with complex search space.
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13.4.1.5 Miscellaneous

In 2017, Rizk et al. [37] proposed a new approach named novel Sine Cosine
Algorithm (NSCA) for solving the non-smooth environmental/economic
load dispatch (EELD) problem in both single and multi-objective frame-
works. In the proposed algorithm, an opposition-based learning strategy is
employed in the initialization stage and after each iteration to improve the
diversity and the quality of solutions. Opposition-based learning (OBL), orig-
inally introduced by Tizhoosh in [38] is a machine learning technique that
takes into consideration the opposite position of solutions in the search space.
Given population X = ∪Xi , the opposite position Xi of each individual (Xi )
is calculated as follows:

Xi = [Xi1, Xi2, ....XiD] (13.20)

where Xi j = u j + l j + Xi j , i = 1, 2, . . . , N ; j = 1, 2, . . . , D and Xi =
[Xi1, Xi2, . . . , XiD] is a randomly generated individual of dimension D in a
population of size N . This leads to the generation of a new population X =
∪Xi . The basic idea behind this is to consider the current estimate (guess)
and its corresponding opposite simultaneously to obtain the optimal solution.
After calculating the opposite population, the fitness of each individual (Xi )
and its opposites Xi are calculated, and then the population is brought back
to the original size (N ) by selecting the N best solutions from the population
(X ∪ X ).
The algorithm begins with initializing random solutions, their opposite

positions, and their evaluation for the single or multi-objective cases accord-
ingly. After that, the solutions update themselves to obtain an approximated
optimal solution in the single-objective case or Pareto-optimal solutions in
the multi-objective case, where the weighted sum method is used to trans-
form the multiple objective functions into a single one with the help of
different weights. The authors used the traditional SCA for single-objective
cases and introduced some modifications in the update mechanism to deal
with the multiple objective cases. The authors used two separate external
archives M and K , for the multiple objective cases to store the dominated
solutions and the non-dominated solutions, respectively, according to the
Pareto front concepts. Further, the new solutions are generated based on
mutation probability (pi ) using the following modified updating mechanism
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of the SCA:

Xt+1
i j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
Xt
i j + r1 × sin(r2) × |r3 × Pt

g j − Xt
i j | if r4 < p

Xt
i j + r1 × cos(r2) × |r3 ∗ Pt

g j − Xt
i j | if r4 ≥ p

if r5 > pi

{
Xt
i j + r1 × sin(r2) × |r3 × Pt

a − Xt
i j | if r4 < p

Xt
i j + r1 × cos(r2) × |r3 × Pt

a − Xt
i j | if r4 ≥ p

if r5 ≤ pi

(13.21)

and

pi = 0.4 − 0.4 × t

T
, i = 1, 2, . . . , K (13.22)

where r5 is a switch parameter lying in [0, 1], and Pt
a is a solution chosen

randomly from the archive K . To boost its exploration and exploitation capa-
bilities, the authors tuned the parameter r1 using the following non-linear
strategy:

r1 = α ×
(
amax −

(
t × (amax − amin)

T

))
, α = 0.98t (13.23)

where amin and amax are the minimum and the maximum limits set by
the user, respectively. In order to evaluate the performance of the proposed
approach, the authors used two benchmarking systems- 6-unit and 10-unit,
with fuel cost and emission issues. It concluded that MSCO could be a
promising and competent alternative for solving EELD problems in both
single and multi-objective cases, as compared to other techniques present in
the literature.
They again, in 2018 [39], proposed a new update mechanism for the

same economic emission load dispatch (EELD) problem with the same
update equations but with a slight twist. Instead of using an opposition-based
strategy in both the initialization and solution update mechanism, the authors
only used it in the solution update mechanism. Apart from this, only one
external archive A(t ) is used instead of two archives, which stores only the
non-dominated solutions and discards the dominated solutions. The perfor-
mance of the proposed approach was investigated on the IEEE 30 bus test
system with 6, 10 and 40 generating units. The results clearly demonstrated
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the proposed mechanism’s effectiveness and robustness in tackling the EELD
problem in both single and multi-objective frameworks.

In 2019, a multi-objective discrete version of SCA (MOSCA) [40] was
proposed for optimal band selection of Hyperspectral remote Sensing Images
(HSI). In MOSCA, a novel discrete SCA is proposed where the incremental
part (vi j ) given by Eq. (13.25) taken from the original SCA become a version
of the probability in updating the position of the individual solutions, in the
following way:

Xt+1
i j =

⎧⎨
⎩
0 if rand() ≤ sig(vi j ) and vi j ≤ 0
1 if rand() ≤ sig(vi j ) and vi j > 0
Xt
i j if rand() > sig(vi j )

(13.24)

vi j =
{
r1 × sin(r2) × |r3 × Pt

i j − Xt
i j | if r4 < p

r1 × cos(r2) × |r3 × Pt
i j − Xt

i j | if r4 ≥ p
(13.25)

sig(vi j ) =
{
1 − 2

1+evi j if vi j ≤ 0
2

1+evi j − 1 otherwise
(13.26)

After updating the individual solutions by the discrete SCA, Pareto domina-
tion ranking and density ranking strategies are used, and the best solution
(destination point) is updated using the knee point-based method [41]. The
proposed band selection method was investigated on two real HSI scenes
provided by the Remote Sensing group (RSIDEA group). The results proved
that MOSCA produces better results than other optimization methods in
terms of accuracy and stability.

13.5 Conclusion

SCA is a simple and relatively new population-based stochastic approach,
originally developed to tackle single-objective unconstrained optimization
problems over continuous spaces. Its success in solving single-objective
optimization problems within continuous spaces motivated the researchers
to extend it to other types of optimization problems like multi-objective
optimization, binary optimization, constrained optimization, discrete opti-
mization, etc. Since there is no single best algorithm, SCA, too, failed to
provide near-optimal solutions in many cases. Hence, the SCA was modified
by using specialized operators, local search, etc., and by hybridizing it with
other algorithms, to improve its capability and efficiency.
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This chapter attempted to highlight the SCA and its extended versions that
were developed to solve various other types of optimization problems like
multi-objective, discrete, binary, etc., only. The hybridized version of SCA
and its modification using various specialized operators are not covered in
this chapter. Based on the papers considered, it is observed that the SCA
is capable of tackling almost all types of optimization problems, including
multi-objective, discrete and binary optimization problems.

SCA, as a stochastic algorithm, has fewer control parameters, is easy to
execute, and could be modified and hybridized with other techniques. Over
five years have passed since its introduction, and in these five years, SCA
proved itself to be a powerful and robust algorithm. Even though the SCA
has been modified in many ways, there are still various dimensions where this
algorithm can be enhanced. Its potential advantage of being simple and easy
to implement makes it viable for being continuously utilized in various areas
(with or without modifications) in the coming years.
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Less Is More Approach in Heuristic

Optimization

Nenad Mladenović , Zvi Drezner , Jack Brimberg,
and Dragan Urošević

14.1 Introduction

Whichever creative work people undertake, if the inclination to improve it
by adding more and more new elements prevails, there comes a moment
when the obtained result is perceived to be far from the desired and expected
outcome. A response to this “more and more” attitude is an approach usually
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called “less is more”. It is the case in almost all the scientific and art disci-
plines: in Architecture (Van der Rohe, 1886–1969), Genetic Networks [7],
Medicine Treatment [52], Cancer Immunotherapy [87], Neuro-sciences [19],
Signaling [5], Education [67], Functional Materials [6], and so on. In the
venerable Science journal there are more than 20 articles with the title “Less
is more”. Even the last article written by Lenin in 1923 that considered the
five-year macro-economic plan, had a title “Less is more”. He wrote: “We
must follow the rule: better fewer, but better”. In Search Engine Optimiza-
tion (SEO) and Marketing, the less is more principle is used to find a keyword.
Indeed, industry best practices recommend focusing each page on a single
keyword, rather than trying to optimize for several at once. This helps with
SEO and makes it easy for consumers to find targeted information. If too
many terms are added on a page, the keyword density required for search
engines will not be achieved.

Optimization problems (OP) may be defined in general as

(min){ f (x)|x ∈ X, X ⊆ S}, (14.1)

where x, f , X , S are solution, objective function, feasible set, and solu-
tion space, respectively. OPs occur in the private and public sectors, and
small or huge enterprises. The main difficulty in solving them is the exis-
tence of multiple local optima, often in the millions, among which there are
only one or a few global optima. Such problems are classified as NP-hard,
and vastly outnumber those problems solvable in polynomial time. Many
methods, both exact and heuristic, have been proposed to avoid the so-called
local optimum trap, or to describe how to continue the search once a local
minimum is reached. To do that, various methods use different ingredients
and ideas. Meta-heuristics, or frameworks for building heuristics, are methods
to overcome local optimum traps. Most popular among them are Simulated
Annealing [62], Tabu Search (TS) [44], Variable neighborhood search (VNS)
[49], and the Genetic algorithm [97]. Researchers have frequently adopted
the more is more approach by combining different meta-ideas to get complex
hybrid algorithms. In that way, over a hundred different combined strategies
may be proposed, resulting in procedures that are often hard to understand.
The less is more approach (LIMA) has been recently proposed for solving

global optimization problems. Its main idea is to find the minimum number
of combinatorial or search elements (ingredients, or control variables) when
solving an optimization problem that would make some optimization
method more efficient and effective than the currently best. LIMA has
appeared as a reaction to more and more complex hybrid heuristic methods
that combine many different ideas and metaphors, yet giving no proper
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explanations for such combinations. Combining several heuristics to get a
new hybrid method comes at a price of losing efficiency and user friend-
liness, two very important and desired properties of any heuristic. Indeed,
despite the simplicity of LIMA, significantly better results have been reported
compared to more complex, “state-of-the-art” heuristics used to solve several
classical optimization problems. A few such examples will be presented later.
Thus, including many ideas in the search does not necessarily lead to better
computational results. On the contrary, sometimes less can yield more.

In this chapter we follow the opposite research direction from more is more;
i.e., we advocate the less is more approach (LIMA) in optimization. In the next
section, we give a quick overview of LIMA successes from the literature on
optimization. To make the LIMA concept more general and more precise,
we define a dominance relation between two algorithms in Sect. 14.3 that
measures and compares their relative simplicity/complexity. Section 14.3 also
outlines a general approach for constructing algorithms that follow the LIMA
principle. Section 14.4 discusses various applications that reinforce the LIMA
principle, and also expand the scope of LIMA. Section 14.5 concludes the
chapter.

14.2 Literature Review of LIMA
Implementations

We give here a brief survey of some successful implementations of LIMA that
adhere to the interpretation of the LIMA approach presented in Sect. 14.3.
Most of these LIMA applications are based on the Variable neighborhood
search (VNS) meta-heuristic, since the developed heuristics are usually less
complex than heuristics based on other principles.

Minimum Differential Dispersion Problem Mladenović et al. [74] were
the first to solve an optimization problem by LIMA. It was proposed in
2016. The basic VNS (BVNS) suggested here uses a random initial solu-
tion and only one neighborhood structure, while providing much better
results than the hybrid heuristic which was state-of-the-art at that time.
We will give more details of this LIMA application later in Sect. 14.4.
Balanced Minimum Sum-of-Squares Clustering Costa et al. [25]. Given
a set of entities or points, the clustering addresses the problem of finding
homogeneous and well-separated subsets of those entities. In balanced clus-
tering, the constraints impose that the entities be equally spread among the
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different subsets. Again, a basic VNS (BVNS) is implemented. Computa-
tional experiments and statistical tests showed that the proposed algorithm
outperformed the more complex state-of-the-art algorithm at that time.
Max-Mean Diversity Problem Brimberg et al. [15]. Given a set of
elements, this problem requires finding a subset that maximizes the
quotient of the sum of all edges belonging to that subset and the cardinality
of the subset. The authors developed a new application of general VNS for
solving this problem. Extensive computational results showed that the new
heuristic, while simpler in design, significantly outperformed the current
state-of-the-art heuristic. The best-known solutions were improved on 58
out of 60 large test instances from the literature.
Discrete Obnoxious p -Median Problem Mladenović et al. [72]. Given
a set J of possible facility locations and a set of customers I , as well as
the distance between each customer i ∈ I and facility location j ∈ J ,
the Obnoxious p-median problem consists in choosing p facility locations
from the set J so that the sum of the distances between each customer
and its nearest facility is maximized. LIMA is successfully applied to solve
this problem in [72]. A basic variable neighborhood search is developed,
where a single search ingredient, an interchange neighborhood structure, is
used. According to the results obtained on benchmark instances, the LIMA
heuristic turns out to be highly competitive with the existing ones, while
establishing new state-of-the-art results. For example, four new best-known
solutions and 133 ties are claimed in testing a set of 144 instances.
An Integrated Production and Assembly Scheduling Problem in Smart
Manufacturing Lu et al. [66]. The authors also use a LIMA-VNS algo-
rithm. The problem is divided into two stages: the production stage
and the assembly stage. Then it is proved that the investigated problem
is NP-hard. The computational experiments indicate that the designed
LIMA-VNS has an advantage over other heuristics in terms of convergence
speed, solution quality, and robustness, especially for large-scale problems.
The Traveling Repairman Problem with Profits Pei et al. [80]. This
problem generalizes the Traveling Repairman Problem, by taking into
account the variability of the repairman’s profit over different time steps
in order to maximize the total profit. Detailed experiments on benchmark
instances show that the new LIMA-GVNS-based method outperforms all
previous heuristics. Out of 60 instances tested, it was able to replicate the
best-known solutions in 20 of them and find new best solutions in the
remaining 40.
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The Capacitated Modular Hub Location Problem Mikić et al. [70].
This problem belongs to the class of single assignment hub location prob-
lems, where a terminal can be assigned to only one hub. In addition, the
problem imposes capacity constraints on both the hubs and the edges that
connect them. It is directly related to air traffic control where the number
of flights between pairs of cities directly determines the conditions of the
capacity. In order to tackle the problem the authors propose a general vari-
able neighborhood search (GVNS) based heuristic. They show through
exhaustive testing that the GVNS method gives superior results in compar-
ison to earlier methods. This is especially reflected in the number of best
solutions that were obtained in a much shorter time. Statistical tests are
applied showing conclusively that GVNS is superior to the earlier methods.
Unconstrained Continuous Optimization Gonçalves Silva et al. [46].
The Nelder-Mead method (NM) [77] for solving continuous nonlinear
optimization problems is probably the most cited and most used method
in the optimization literature and in practical applications, too. It belongs
to the class of direct search methods. The popularity of NM is based on its
simplicity. In [46] an even simpler algorithm for larger instances, following
the NM idea, is proposed. It is called Simplified NM (SNM): instead of
generating all n + 1 simplex points in Rn , the search uses many fewer
simplex points, say q + 1. Though the results cannot be better than the
original NM with n + 1 points, a substantial speed-up allows the authors
to run SNM many times from different starting solutions, usually getting
better results than those obtained by the full NM within the same cpu
time. A computational analysis is performed on 10 classical convex and
non-convex instances, where the number of variables n can be arbitrarily
large. The obtained results with n as large as 10,000, show that SNM is
more effective than the original NM, confirming that LIMA can yield good
results when solving a continuous optimization problem. Furthermore,
such a dimensional simplification may be used in many other numerical
methods.
Solving a System of Nonlinear Equations Pei et al. [79]. A continuous
VNS for finding all the solutions to a nonlinear system of equations (NSEs)
is proposed. The NSE problem is transformed into an equivalent optimiza-
tion problem, such that a new objective function allows them to find all
the zeros. Instead of the usual sum-of-squares, our objective function is
presented as the sum of absolute values. Despite its simpler form, a theoret-
ical investigation confirms that the new objective function provides more
accurate solutions regardless of the optimization method used. Secondly, a
basic VNS is developed to solve the transformed problem. Computational
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analysis of standard test instances shows that the proposed method is more
precise, much faster, and simpler than two recently developed methods.
Similar conclusions are reached when comparing the proposed method
with many other methods in the literature.
Binary Bipartite Quadratic Programming Problem Urošević et al. [93].
Given a complete bipartite graph G with given weights assigned to vertices
and edges, the Boolean/Binary Bipartite Quadratic Programming problem
(BBQP) (in the literature also called maximum weighted induced sub-graph,
maximum weight bi-clique or maximum cut on bipartite graphs) consists of
selecting a sub-graph which maximizes the sum of the weights assigned to
the chosen vertices, and the edges that connect them. Applications of the
BBQP are present in mining discrete patterns from binary data, approx-
imating matrices by rank-one binary matrices, computing the cut-norm
of a matrix, and so on. Since the problem is NP-hard, many heuristic
methods have been proposed in the literature to solve it. In [93] a simple
LIMA heuristic based on Tabu search is proposed. It uses two neigh-
borhood structures and a relatively simple rule for implementation of a
short-term memory operation. In addition, a simple rule for automatic
calculation of the tabu list length is proposed, without increasing the
method’s complexity. Despite its simplicity, this heuristic showed better
performance than the current state-of-the-art, with six new best-known
solutions of well-studied test instances.

14.3 LIMA Algorithm

When designing a LIMA-type algorithm, one must consider what method to
choose to compare with, let us say method A vs. our method B. It is easier to
design a LIMA-based method B if we have some method A to compare with.
Naturally, a method A should be the most successful in the literature for the
problem considered. If problem P in (14.1) is new, then method A could be
an exact solution procedure.

14.3.1 What Is More and What Is Less in Algorithm
Design

Here we will answer a fundamental question of how to define more precisely
what is more and what is less in solving an optimization problem? If we accept
the natural assumption that less means fewer ingredients used in the search
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for a better solution, then the question is how to define the set of search
ingredients U ? There are two possible ways of defining the control set U .

i. The simple way is just to analyze the state-of-the-art algorithm A, and
collect the ingredients it uses; then set U = UA. A LIMA type algorithm
will first specify an order of ingredients u� ∈ U , and after solving this
part, add and drop those ingredients in a given order. The aim is to get
UB ⊆ UA for a proposed LIMA algorithm B. Of course, an order of
ingredients could be an interesting question by itself. Up to now, most
of the successful implementations of LIMA from the literature follow the
general procedure above.

ii. Another, more general and harder way is to design some set of ingredients
U , that we call the control or universal set. Elements ui of the universal
set U define the heuristic method that is currently used. By changing
the arrangement of these elements, by swapping, adding, removing, and
so on, we automatically change the method within our LIMA algorithm.
Possible elements of U could signal if a heuristic uses an initial solution
obtained by some constructive heuristic or not, if it uses local search or
not, if it uses memory or not, etc.

The usual way to compare methods in solving OPs is by their precision
and speed. However, there is no measure of an algorithm’s simplicity in
the literature. The worst-case analysis cannot usually give answers in a prac-
tical comparison of computer results. Consequently, hybrid methods with
several heuristic ideas have been claimed as the best, without checking if a
smaller subset of algorithmic ingredients would provide results with better
quality. Here we introduce a different dominance relation for algorithms
solving minimization problem (14.1) that measures also the simplicity of the
compared algorithms.

Definition 1 The cardinality of the set of ingredients UA used to solve mini-
mization problem (14.1) on data set D by algorithm A is called the LIMA
number of A.

Definition 2 We say that algorithm B is LIMA-dominant over algorithm A
in solving problem (14.1) on data set D, if and only if

(a) the objective function value fB ≤ f A;
(b) the running time tB ≤ tA;
(c) the cardinality of the ingredient set of B (LIMA number of B ) |UB | ≤

|UA|;
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and at least one of these inequalities is strictly satisfied.
The LIMA dominance relation could be too strong if applied to each

run and each test instance. Therefore, we can easily define weak or average
LIMA- dominance, i.e., after many runs on the same problem, by requiring
that average values fB ≤ f A, tB ≤ tA, and |UB | ≤ |UA|, on all runs.

14.3.2 Steps of the LIMA Algorithm

We next present in Algorithm 1 the general steps of LIMA that will satisfy
those three relations (a), (b), and (c), and minimize the LIMA number. To
include efficacy (precision) and efficiency (speed) in the algorithm quality, let
us introduce the following:

• f∗, t∗ the objective function value and the running time of algorithm A
(state-of-the-art), respectively;

• f ∗, t∗ the objective function value and the running time of algorithm B
(LIMA), respectively (Fig. 14.1).

In step 1 the set of ingredientsU is defined. As discussed before, the simple
way is just to analyze the state-of-the-art algorithm A, collect ingredients it
uses, and then set U ⊆ UA. The initial solution of the problem is found
in step 2, while the main loop starts from step 3. It consists of an enumer-
ation of elements from U , selected in step 1, until CPU time exceeds an
imposed limit (tmax). In step 4 the optimization problem with objective cut
constraint obtained by the best-known value, is solved, where the cut repre-
sents the original best value. If the solution is feasible (satisfying the objective
cut constraint as well) and if obtained in a time less than t∗ (step 6), then the
LIMA-based algorithm is successful, and it can stop in step 7. Alternatively,
the search for even better solutions can continue (go to step 12). If a better
solution is not found within t∗ (step 9), then we can either stop and admit
that we did not get a better solution than algorithm A in t∗ time, or continue
the search for a better solution using more time (step 10).

14.4 Applications of LIMA

In this section we demonstrate the LIMA approach with the following four
optimization problems: minimum differential dispersion problem; planar p-
median problem; continuous obnoxious facility location problem and gray
patterns problem.
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Fig. 14.1 A general algorithm for implementing the less is more approach (LIMA)

14.4.1 Minimum Differential Dispersion Problem

We are given a set N of n elements and the distances di j between all pairs of
elements (i, j ). Let S be a subset of N whose cardinality is equal to m. The
differential dispersion of the subset S is calculated as follows

δ(S) = max
i∈S �(i) − min

j∈S �( j)

where �(i) represents the sum of distances of element i from all remaining
elements in S . The minimum differential dispersion problem consists in
finding subset S (of cardinality m) with the minimum differential dispersion.
The mathematical programming formulation is as follows [82]:

min
t,r,s,x

{ t }
subject to:

r ≥
∑

j, j �=i

di j x j −Ui (1 − xi ) + M−(1 − xi ), i ∈ N
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s ≤
∑

j, j �=i

di j x j − Li (1 − xi ) + M+(1 − xi ), i ∈ N

t ≥ r − s
∑

i∈N
xi = m

x ∈ {0, 1}n

where

Li =
∑

j∈N , j �=i

min{0, di j }, Ui =
∑

j∈N , j �=i

max{0, di j },

and M− and M+ denote the lower bound of Ui and the upper bound of Li
values, respectively.
The following ingredients are adopted in the state-of-the-art algorithm to

solve the minimum differential dispersion problem: GRASP for the initial-
ization, and then hybridizing TS, Path Re-linking (PR), and VNS-based
heuristics for the improvement [41]. The binary variables u1, u2, u3, and
u4 are defined to be 1 or 0 if GRASP, TS, PR, and VNS are included or
not in the algorithm, respectively. The LIMA type objective function (LIMA
number) for algorithm A in this case is equal to 4 ( f = u1 + · · · + u4).
Using Algorithm 2, we are looking for a method with LIMA number less
than or, equal to 4. Following the steps of LIMA, a random initial solution
is constructed, and the VNS-based heuristic is adopted as the only selected
ingredient of the improvement phase in the heuristic developed in [74] (see
Algorithm 2).
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Fig. 14.2 Ingredients for GRASP_EPR (left) and VNS_LIMA (right)

Its LIMA objective (LIMA number) is obviously equal to 1 ( f = u4 = 1).
Surprisingly, there are 170 new best-known solutions found, and another 20
solutions remain the same as before, but are obtained in less time (Fig. 14.2).
The average improvement on solution quality is over 10% (Table 14.1).

14.4.2 Planar p-Median Problem

The continuous p-median problem [32, 39], also known as the multi-source
Weber problem [11, 50, 60], or continuous location-allocation problem [12,
65], requires finding p sites for facilities in Euclidean space in order to mini-
mize a weighted sum of distances from a set of demand points to their
closest facility. Let Xi denote the location of facility i ∈ {1, . . . , p}, and
A j the known location of demand point j ∈ N = {1, . . . , n}. The points
Xi = (xi , yi ) and A j = (a j , b j ) are all located in the plane. Distances are
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Table 14.1 Average results on each data set group SOM, GKD, and MDG. Each
instance was run 10 times, getting 1900 runs in total

GRASP_EPR VNS_LIMA (%)imp.

Data
set (#
ins.) Best Time Best Avg. Worst Time Best Avg. Worst

SOM
(20)

23.35 173.41 18.40 20.09 21.75 121.47 21.82 15.20 9.32

GKD
(70)

52.57 56.99 45.08 46.85 49.13 129.44 24.78 19.46 13.70

MDG
(100)

3567.63 1472.35 3052.07 3290.12 3521.92 1040.30 14.60 8.43 2.89

Average
(190)

1214.52 567.58 1038.52 1119.02 1197.60 430.40 20.40 14.37 8.64

assumed to be measured by the Euclidean norm:

d(Xi , A j ) =
√

(xi − a j )2 + (yi − b j )2. (14.2)

The weights (or demands) at the A j ’s are given by w j > 0, j ∈ {1, . . . , n}.
The formulation of the planar p-median problem is:

min
X⊂R2

⎧
⎨

⎩ f (X) =
n∑

j=1

w j min
1≤i≤p

{d(Xi , A j )}
⎫
⎬

⎭, (14.3)

where X = {X1, . . . , X p} denotes the set of location variables.
This model was originally proposed by Cooper [23, 24], who also observed

that the objective function f (X ) is non-convex, and may contain several local
optima. The problem was later shown to be NP-hard [68]. For recent reviews
of the discrete p-median problem see [28], and for the planar p-median
problem see [13].
The single facility (1-median) problem termed theWeber problem [95] has

a long history dating back to the French mathematician Pierre De Fermat of
the 1600s. Recent reviews of the Weber problem are [20, 37, 96].

Kalczynski et al. [53] proposed to use solutions to the discrete p-median
problem, where facility locations are restricted to demand points, as starting
solutions for algorithms that heuristically solve the planar p-median problem.
They applied the RATIO algorithm [9], which is a small modification of
the IALT algorithm [8], on the set of starting solutions. Cooper [23, 24]
suggested the original ALT (alternating) algorithm. Since each demand point
gets its services from the closest facility, each facility attracts a subset of
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demand points. The ALT algorithm alternates between determining the
subsets attracted by each facility, and re-locating the facilities to the optimal
location for each subset, until stabilization. Once Cooper’s algorithm termi-
nates, the IALT algorithm finds for each demand point the difference between
the distances to the closest facility and the second closest, and considers
re-assigning the demand points with the L smallest differences (they used
L = 20) individually from the closest facility to the second closest. The
RATIO algorithm selects the L smallest ratios between the distances rather
than differences. It was found in [9] that this small modification significantly
improves the performance of the IALT algorithm.
The connection between the discrete p-median problem, where potential

facility locations are restricted to a given set of nodes (or demand points), and
its continuous counterpart, where the facility sites are modeled as unknown
points in the plane, has been a topic of study since the introduction of the
continuous problem by [23, 24]. Hansen et al. [50] propose a heuristic that
first finds an optimal solution of the discrete problem, and then performs
one step of continuous adjustment starting from this solution to obtain the
final one. Very good computational results are reported, but as observed in
Brimberg et al. [11], the CPU time to find an optimal solution to the discrete
p-median becomes prohibitively high for larger problem instances. Kalczynski
et al. [53] showed, through extensive computational tests, a rather counter-
intuitive result that “good” discrete starting solutions can actually be better
than optimal (or best-known) ones. The implication is that heuristics that
interface between discrete and continuous versions of the p-median (e.g.,
[11, 50]), should not focus efforts on obtaining exact solutions in the discrete
phase, but rather introduce some randomness by using multiple good discrete
solutions as starting points for the continuous phase. This will save consider-
able execution time, and may, depending on the improving search, produce
as good or better continuous solutions.
The following formulation for finding the best set (or optimal discrete

solution) is similar to the one in [27, 28, 56, 85]. Let x j ∈ {0, 1} be a binary
variable. x j = 1 if demand point j is selected for locating a facility, and zero
otherwise. yi j = 1 if selected demand point j is the closest facility to demand
point i. The BLP (binary linear programming) optimization problem is:

min

⎧
⎨

⎩

n∑

i=1

n∑

j=1

[
wi di j

]
yi j

⎫
⎬

⎭

subject to:
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n∑

j=1

x j = p

yi j ≤ x j for i, j = 1, . . . , n
n∑

j=1

yi j = 1 for i = 1, . . . , n

x j ∈ {0, 1} for j = 1, . . . , n

yi j ∈ {0, 1} for i, j = 1, . . . , n (14.4)

In formulation (14.4) there are n2 + n variables, and n2 + n + 1 constraints
not including the last two.
To get the kth best optimal solution the following procedure is followed.

Let P(1) be the optimal set. In order to get the second best solution add the
constraint

∑

j∈P(1)

x j ≤ p − 1

getting the second best set P(2). Once the best k ≥ 1 sets are found, the
(k + 1)th best solution is obtained by adding to the original problem (14.4),
k constraints:

∑

j∈P(m)

x j ≤ p − 1 for m = 1, . . . , k (14.5)

Kalczynski et al. [53] also designed and tested a genetic algorithm. We report
only the computational experiments with the 10 best solutions. One would
expect that the optimal discrete solution will result in the best continuous
solution. However, confirming the less is more approach, it is not the case
for the continuous p-median problem. They first tested the approaches on
the 50 randomly generated instances of problems used in [9]. The number
of demand points is n = 100, 200, . . . , 1000, and the number of facilities is
p = 5, 10, 15, 20, 25, for a total of 50 instances. They also tested problems
that were extensively investigated in the literature, and reported results on
two of them with n = 654 and 1060 demand points [84].
The best discrete solution for the 50 random instances was obtained by

solving (14.4) using CPLEX [26]. Some of the largest problem sets required
several days of computing time. Applying RATIO on the best discrete solu-
tion required a negligible fraction of one second by a FORTRAN program.
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The results are disappointing. The best-known (BK) continuous solution was
found for only 12 of the 50 instances. The average percentage above the
best-known solution was 0.048%.

When the top 10 discrete solutions were used as starting solutions, the
improvement in the results was again disappointing. The best-known contin-
uous solution was obtained at least once in 21 of the 50 instances, an increase
of only 9 instances. The average best result was 0.035% above the best-known
solution, down from 0.048%. There are also some unusual results. In eleven
instances the same continuous solution was found for all ten discrete starting
solutions, but it was not the best-known solution.

In conclusion, for this set of test problems, the best discrete solutions are
not recommended as starting solutions confirming the less is more principle.
On the other hand, good discrete solutions were generated quickly using a
greedy heuristic with a random component to achieve some diversity. Using
these solutions as starting solutions for RATIO resulted, to the surprise of the
authors, in the same or better results in a small fraction of the run time. In
other words. “good may be better than best” as starting solutions for problems
of this type.

In the next subsections we report on two papers that have a “less is more”
component, and verify the “less is more” philosophy. In [55] it was found
that infeasible starting solutions resulted in a better final solution, and in
[35] it was found that of the two formulations proposed by the authors, the
one with many more variables and constraints performed much faster than
the streamlined model to their surprise.

14.4.3 Multiple Obnoxious Facility Location Problem

In most location problems, the closer a facility is to communities the better.
However, there are facilities that have a negative impact on communities
(being “obnoxious”), and being farther from communities is preferred. For
example, noisy or polluting factories, garbage dumps, airports, should not be
located close to communities. The obnoxious facility location problem was
initiated in the 1970s, for example [3, 4, 22, 76], and intensively analyzed in
the literature (for reviews see [21, 51, 69, 81]).

Suppose that n communities are located in an area. One needs to locate
p ≥ 1 obnoxious facilities in that area. Most of the papers on the subject are
modeled in discrete space, i.e., there is a limited number of potential locations
for the facilities (for example in a network environment). However, in most
of these applications, the negative impact propagates “by air”. Therefore, the
use of planar Euclidean distances is appropriate. Also, locations of facilities
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are usually in open spaces far from the communities, and thus not limited to
a list of locations. So location anywhere in the area is appropriate as well.

Drezner et al. [36] investigated the model of locating obnoxious facilities
in the plane with the objective of maximizing the shortest distance between
facilities and communities subject to a minimum distance D between facil-
ities. Let Ai = (ai , bi ) for i = 1, . . . n be the given locations of the
communities, and X j = (x j , y j ) for j = 1, . . . , p be the unknown
locations of the p facilities. The nonlinear programming formulation is:

max{L}
subject to:

(x j − ai )
2 + (y j − bi )

2 ≥ L for i = 1, . . . , n; j = 1, . . . p

(xi − x j )
2 + (yi − y j )

2 ≥ D2 for 1 ≤ i < j ≤ p . (14.6)

In addition, constraints that restrict the facilities’ locations to a convex
polygon or any finite region are needed. Otherwise, the solution is to locate
the facilities “at infinity”.
This problem is extremely non-convex. The surface plot for one facility

among n = 100 communities (tested in [36]) is plotted in Fig. 14.3. There

Fig. 14.3 Surface of squared distances to the closest community for 100 communities
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are 202 “hilltops” (for n = 1000 there are 2002 hilltops), and the solution
for the p = 1 instance is on the top of the highest hill. The hilltops are
located at Voronoi points [2, 78, 89, 94] that can be found by Mathematica
[98] or FORTRAN codes (for example [88]). Okabe et al. [78] showed that
for n generating points there are about 2n Voronoi points. Shamos and Hoey
[86] recognized this property and optimally solved the p = 1 case by finding
all Voronoi points generated by the set of demand points, and selecting the
one with the maximum objective.

Drezner et al. [36] generated a data set of 76 instances in a 10 miles
by 10 miles square, that can be easily replicated. There are two values of
n = 100, 1000, 19 values of 2 ≤ p ≤ 20, and two values of D = 10√

p ; 10√
2p
.

They first solved the problem 100 times by the nonlinear solver SNOPT
[43]. For example, the best results for the n = 1000, p = 20, and D = 10√

2p
instance had a minimum distance of 1.63 miles between the facilities and
the communities. It required about 5 hours of computer time. They then
suggested to select the highest p hilltops (Voronoi points) that have at least a
distance D between them. Note that any feasible selection of p hilltops is a
local maximum. The objective function is determined by the facility with
the minimum distance to all communities. An infinitesimal move of this
facility can only decrease its minimum distance, and thus decrease the value
of the objective function, and infinitesimal moves of other facilities have a
zero impact on the value of the objective function.
The selection of the best p locations from the list of v Voronoi points, that

satisfies the requirement of a minimum distance D between facilities can be
found by a binary linear program (BLP) (see [36]). Let the distance between
potential locations i and j be Di j , and di is the minimum distance between
Voronoi point i and all communities. Also, d

∧

= max
1≤i≤v

{di }.

Maximize {L}
subject to:

v∑

i=1

xi = p

xi + x j ≤ 1 when Di j < D

L + xi (d
∧

− di ) ≤ d
∧

for i = 1, . . . , v

xi ∈ {0, 1} . (14.7)
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The objective function L in an optimal solution is the maximum possible
minimum distance between any p feasible Voronoi points and all communi-
ties.
They found that the obtained solution by the BLP (14.7) is much better

than applying a multi-start approach using general purpose nonlinear solvers.
It could not be improved by SNOPT because it is a local maximum. For
example, the results for the n = 1000, p = 20, and D = 10√

2p
instance had a

minimum distance of 4.02 miles between the facilities and the communities,
and required only 24 seconds of computer time. It is almost 150% better than
the best solution found by SNOPT from 100 random starting solutions, and
was found in a tiny fraction of the run time.

Kalczynski and Drezner [55] found that the results of Drezner et al. [36]
can be further improved if an inferior selection of the p Voronoi points is
used. Three approaches to selecting starting solutions were proposed.
The p selected Voronoi points i1, . . . , i p found by BLP (14.7), are sorted

so that di1 ≥ di2 ≥ . . . ≥ dip . The value of the objective function is dip .
In each iteration of the first Algorithm, the facility i p is replaced by

a facility located at a feasible optimal location while keeping the other
p − 1 facilities at their current locations. The algorithm is stopped when
no improvement is found.

In the second algorithm, the selected location i p is removed from the list
of selected locations and the set of all Voronoi points for which di > dip :
I = {1, 2, . . . , i p − 1}, plus locations not selected by BLP (14.7), is consid-
ered. There is no feasible selection of locations in the set I . Otherwise, such
a selection would have been found by the BLP. The maximum D0 ≤ D
for which a selection of p points in I that satisfy Di j ≥ D0, is found by
bisection for a given accuracy ε > 0. This non-feasible solution is used as a
starting solution for a Sequential Linear Programming algorithm (SLP, [34]).
If a better feasible solution is found, this is the result of the algorithm.
The third algorithm is a small modification of the second algorithm. Facil-

ities on taller hilltops can be moved more than facilities on lower hilltops
before their height falls below the lowest hilltop. Therefore, smaller Di j
distances can be accommodated for distances between high hilltops. dip is
the height of the lowest selected hilltop. di − dip is the extra height between
hilltop i and the lowest hilltop. di + d j − 2dip is the total extra height of
hilltops i and j above the lowest hilltop. Therefore, the bisection to find D0
in the second algorithm, is replaced by a bisection to find the minimum θ

that satisfies Di j + θ(di + d j − 2dip) ≥ D.
Algorithms 2 and 3 confirm the less is more approach. Rather than

selecting the optimal set of Voronoi points, non-feasible sets are selected and
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in 33 out of 76 instances these selections improved the solution found in
Drezner et al. [36]. The average improvement of these 33 instances is 2.7%
with a maximum improvement of 14.6%. That is, starting with inferior initial
solutions (in this case infeasible) leads to better final solutions.
There are other obnoxious facility models where solution methods based

on selecting the best potential locations from the set of Voronoi points were
suggested [29, 54, 56, 57]. It is possible to be able to improve the final
solutions for these and similar models by starting with inferior selections of
Voronoi points.

14.4.4 Gray Patterns

The Gray Pattern Problem proposed by Taillard [90] is based on a rectangle
of dimensions n1 by n2. A gray pattern of p black points is selected from
the n = n1 × n2 points in the rectangle while the rest of the points remain
white. This forms a “gray pattern” of density p

n with rectangles covering the
whole plane. The objective is to have a gray pattern where the black points
are distributed as uniformly as possible in the rectangle considering identical
patterns in adjacent rectangles.
To achieve maximum uniformity, Taillard [90] created a distance matrix

[di j ] between locations i and j by the principle of minimum entropy in
Physics. For details see also [35]. A non-convex quadratic integer program can
be formulated as follows. Let xi = 1 if point i is black, and zero otherwise.
The formulation is:

min

⎧
⎨

⎩

n∑

i=1

n∑

j=1

di j xi x j

⎫
⎬

⎭

subject to:
n∑

i=1

xi = p

xi ∈ {0, 1} (14.8)

The initial formulation of the Gray Pattern Problem (GPP) was made in the
context of the generation of gray (black-white) patterns [92], but the problem
can also be well applicable to color halftones [58, 63]. Finding a cluster of p
out of n points which minimizes the total distance between all pairs of points
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in the cluster [30], and the maximum diversity problem [61] can also be
formulated as a GPP.
The GPP can be formulated as a Quadratic Assignment Problem (QAP,

[31]). Solving the QAP optimally is an extremely difficult problem [33, 48,
64]. The QAPLIB website [18] provides up-to-date information about the
QAP.

Drezner et al. [38] exploited the structure of this specific QAP, and were
able to establish optimal solutions for relatively large problems. Misevicius
et al. [71] improved some best-known solutions.

Drezner et al. [35] proposed two new formulations for the gray pattern
problem. They converted the quadratic binary program (14.8) to a linear
Mixed Integer Program (MIP) in two ways. For simplicity we assume that
di j = d ji and dii = 0 as in the gray pattern problem.

In the first formulation they defined (continuous) variables zi j so that
zi j = xi x j , and linearized in a standard way to get:

min

⎧
⎨

⎩2
n−1∑

i=1

n∑

j=i+1

di j zi j

⎫
⎬

⎭

subject to:
n∑

i=1

xi = p

zi j ≥ xi + x j − 1 for 1 ≤ i < j ≤ n

x j ∈ {0, 1}; zi j ≥ 0 (14.9)

In this formulation there are n binary variables, 1
2n(n − 1) continuous

variables, and 1
2n(n − 1) + 1 constraints.

A second formulation is based on (14.8). The objective function can be

written as
n∑

i=1
xi

[
n∑
j=1

di j x j

]
. Define bi for i = 1, . . . , n as the sum of the p

smallest di j ’s and bi as the sum of the p largest ones. Clearly,

bi ≤
n∑

j=1

di j x j ≤ bi . (14.10)
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They added to the formulation n continuous variables zi for i = 1, . . . , n

which will satisfy, after the optimum is found, zi = xi

[
n∑
j=1

di j x j

]
. To

achieve that, they formulated the following MIP:

min

{
n∑

i=1

zi

}

subject to:
n∑

i=1

xi = p

zi ≥ xibi for 1 ≤ i ≤ n

zi + (1 − xi )bi ≥
n∑

j=1

di j x j for 1 ≤ i ≤ n

xi ∈ {0, 1} (14.11)

Formulation (14.11) has n binary variables, n continuous variables, and 2n+
1 constraints.

Which of the two formulations is “better”? The second formulation is
much smaller. For example, for n = 64 both have 64 binary variables but
formulation (14.9) has 2,016 continuous variable and 2,017 constraints while
formulation (14.11) has only 64 continuous variables and 129 constraints.
One would expect that Gurobi [47], for example, will solve the second
formulation much more efficiently. However, confirming the “less is more”
principle, the first large formulation was solved much more efficiently. Run
times usually increase as p increases. Drezner et al. [38] proved optimality of
all instances up to p = 25 with the largest one requiring about 12 days of
computer time. By the first formulation (14.9), all 2 ≤ p ≤ 32 were opti-
mally solved, each requiring less than 80,000 seconds of computer time. The
instances p > 32 were not tested because they are equivalent to p < 32
instances when the black and white points are switched. When applying the
second formulation (14.11), they proved optimality only up to p = 13,
which took almost a day of computer time. p ≥ 14 instances required
more than a day. The increase in run time was very significant. For example,
p = 12 required only about 10% of the run time of p = 13. The p = 13
instance required only about 5,000 seconds by the first formulation.

Researchers normally try to derive compact formulations, assuming that
available solvers will be more efficient as a result. In this example, a smaller
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formulation does not give better results. Similar findings occur in other
scenarios, for example, weak and strong formulations of hub location prob-
lems. In other words, more sophisticated derivations do not necessarily
perform better, confirming the less is more approach (that can be stated as
less is better).

14.4.5 Discussion

Four optimization problems are presented in this section to demonstrate
the “less is more” approach (LIMA). We summarize here some common
characteristics of each.

1. The general LIMA methodology of Sect. 14.3 is applied on the minimum
differential dispersion problem in a straightforward way. The state-of-the-
art method (Algorithm A) contains four ingredients, given by UA =
{GRASP, T S, PR, V NS}, and hence, has LIMA number |UA| = 4,
which is used to measure the complexity of this method. (A higher LIMA
number indicates a higher complexity when comparing two methods.)
The goal is to find a new Algorithm B that is LIMA dominant with respect
to A. The authors propose to use a single ingredient from UA, the VNS
component (with standard random initial solution); thus, UB = {V NS},
and |UB | = 1. The computational study reveals the surprising and
counter-intuitive result that Algorithm B performs significantly better
than A. We can say that B strongly dominates A in the LIMA sense, since
all three conditions in Definition 2 are strictly satisfied.

2. The second example, the planar p-median problem, is very different, in
that the general LIMA approach is not followed. The aim of the authors
here is to study the effect that the quality of starting solutions has on
the local optima obtained by a powerful local search from the literature
(which we will refer here as LS). There is no attempt to find an Algorithm
B that dominates the state-of-the-art algorithm in a LIMA way. Yet there
are some interesting LIMA results. In one part of their study, two algo-
rithms are proposed and compared. The first one uses the optimal solution
of the corresponding discrete p-median problem as the starting solution,
which is found by solving a binary linear program using a general MIP
solver (call this ingredient OPT). The second one constructs a starting
solution in a greedy, random way similar to GRASP, and in a miniscule
fraction of the time. We can summarize as follows: UA = {OPT, LS},
UB = {GRASP, LS}, and both methods have LIMA number = 2. The
authors find a surprising and counter-intuitive result that Algorithm A is
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LIMA-dominated by B. This refutes earlier best knowledge that recom-
mends using the optimal discrete solution. Researchers can also use this
information to construct new state-of-the-art algorithms, for example, by
developing an Algorithm C with UC = {GRASP, V NS}.

3. The third example considers the multiple obnoxious facility location
problem. As in example 2, the authors study the effect of different starting
solutions on the final solution. The base algorithm (call it A) uses a general
nonlinear solver to find local optima from random initial solutions. This
method has a single ingredient, UA = {LS}. The second algorithm (call
it B ) finds an optimal solution of a discrete approximation of the OP,
where facility locations are restricted to the set of Voronoi points. The
LIMA number of B is also equal to 1. Since better results are obtained in
a fraction of the time by Algorithm B, LIMA dominates A. In a later
study, it was found that the results from state-of-the-art Algorithm B
could be further improved by constructing infeasible solutions in two
prescribed ways as starting solutions for a sequential linear programming
algorithm (SLP). The added ingredient (SLP) means that the new algo-
rithms cannot LIMA dominate B, since these newer methods have LIMA
number = 2. Nonetheless, the newer algorithms advance the state-of-the-
art by obtaining better solutions to test instances, implying that “more is
more” can also be useful at times, particularly when LIMA numbers are
low.

4. The last example studies the gray pattern problem (GPP). In this case,
three different mathematical formulations of the problem are considered.
Another interesting feature is that optimal solutions are sought, therefore
requiring an exact solution method. So we are not comparing heuristics
here. The first formulation is the original quadratic binary integer program
of the GPP from the literature. The authors then propose two linear
models of GPP, which are both mixed binary integer (MILP). These two
new models were solved using a general MIP solver. The unexpected result
was that the first model, which is substantially larger in terms of number
of variables and number of constraints than the second, performed much
better. Solving the first model (Algorithm B ) produced optimal solutions
in a miniscule fraction of the time, and allowed larger instances to be
solved exactly, compared to the second (Algorithm A). Thus, Algorithm B
dominates A in the LIMA sense. We may conclude that the formulation of
more compact mathematical programs can be counter-productive, again a
counter-intuitive result as in most cases where the less is more phenomenon
is observed.



492 N. Mladenović et al.

14.5 Conclusions

In this chapter, we study a recently proposed philosophy for heuristic
design known as the “less is more” approach (LIMA). To date, more than
a dozen papers in the optimization literature have applied this philosophy
with surprising success. They show that the popular trend to implement
more and more complex algorithms can be counter-productive, and actually
produce inferior results. LIMA algorithms with fewer ingredients may not
only find better solutions, but tend also to be more user friendly and easier
to understand.

A brief review of LIMA implementations on various optimization prob-
lems is given at the beginning of the chapter. This is followed by a description
of the general steps that are needed to build LIMA-dominant algorithms. The
concept of LIMA dominance involves a new parameter, the LIMA number,
which measures the number of ingredients (or identifiable components or
subroutines) used by an algorithm, and may be used to compare different
algorithms in a simple and quantitative manner. We then review in detail four
applications of LIMA that further illustrate the practical benefit of finding
better solutions in less time, but also perhaps more importantly, the intangible
benefit of better understanding the nature of the considered optimization
problems.
The “less is more” approach is just getting started, and we hope that this

chapter will inspire readers to advance this methodology in new and exciting
ways.

A Tribute to Professor Nenad Mladenovic
We sadly announce that Professor Nenad Mladenović passed away in May 2022,
before the publication of this book was completed. His sudden death from a heart
attack shocked his many friends and colleagues at universities and research institutes
around the globe. Nenad introduced several important ideas in Operations Research.
He is known principally for his pioneering work in Variable Neighborhood Search,
which was later extended to Formulation Space Search (the topic of another chapter
in this book). The VNS methodology has been applied with great success on many
combinatorial and global optimization problems. It is interesting that while heuristic
methods have tended to become more and more complex in order to obtain a
competitive edge over other heuristics, Nenad has argued for the principle of simple
designs. This is the less-is-more principal, which is the topic of this chapter. Simple
heuristic designs are not only competitive; they also lead to a better understanding
of the underlying nature of the problem.
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The passing of Nenad is a great loss to the Operations Research community. His
work has stopped, but it will continue to inspire us for many years to come. Rest
in peace, my good friend.

Jack Brimberg.
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49. Hansen, P. and Mladenović, N. (1997). Variable neighborhood search.
Computers and operations research, 24(11):1097–1101.
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Todosijević, R. (2020). An efficient heuristic for a hub location routing
problem. Optimization Letters, DOI: https://doi.org/10.1007/s11590-020-016
75-z,

84. Reinelt, G. (1991). TSLIB a traveling salesman library. ORSA Journal on
Computing , 3:376–384.

85. ReVelle, C. S. and Swain, R. W. (1970). Central facilities location. Geographical
analysis, 2:30–42.

86. Shamos, M. and Hoey, D. (1975). Closest-point problems. Proceedings 16th
Annual Symposium on the Foundations of Computer Science, Berkeley, CA,
pages 151–162.

87. Shi, L. Z. (2020). Less is more for adoptive immunotherapy? Science Transla-
tional Medicine, 12.

88. Sugihara, K. and Iri, M. (1992). Construction of the Voronoi diagram for
“one million" generators in single-precision arithmetic. Proceedings of the IEEE ,
80:1471–1484.

89. Suzuki, A. and Okabe, A. (1995). Using Voronoi diagrams. In Drezner, Z.,
editor, Facility Location: A Survey of Applications and Methods, pages 103–118.
Springer, New York.

90. Taillard, É. D. (1995). Comparison of iterative searches for the quadratic
assignment problem. Location Science, 3:87–105.
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The New Era of Hybridisation and Learning

in Heuristic Search Design

Saïd Salhi and Jonathan Thompson

15.1 Hybridisation Search

The metaheuristics presented in the earlier chapter [51] though are useful
and some proved to be superior to others when tested on certain classes
of instances, these could be made even more powerful if they are somehow
complementing each other. This can be done between the methods or within
the method themselves. In this section we explore these various aspects of
hybridisation. The simplest way of hybridisation is obviously to put one
heuristic after another which is usually known as post-optimisation. A more
exciting approach is to extend such integration to cater to intermediate
stages of the search by hybridising rules whenever needed within the search.
In this section three main approaches are described, namely, the hybridisa-
tion of heuristics with heuristics, the hybridisation of heuristics within exact
methods, and finally the hybridisation of exact methods within heuristics.
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15.1.1 Hybridisation of Heuristics with Heuristics

The most common integration of heuristics is usually a two-phase method
where one heuristic calls the other at the end making the latter behave as
a simple post-optimiser. This approach is now extended to incorporate the
integration within each of the heuristic or metaheuristic. This view seems to
attract more attention in recent years. The most used ones include hyper-
heuristics and memetic algorithms.

15.1.1.1 Hyper-Heuristics

These are originally designed to construct a good quality feasible solution
using several instead of one constructive/greedy heuristic only. The reasoning
behind this is that each heuristic has strengths and weaknesses, and it is
thought to be appropriate if those aspects are taken into account during the
search. Though this notion has been hinted at in the literature from time
to time since the 1960s [43], these methods, known as hyper-heuristics, were
revisited and intensively studied by [10]. There are two ways of implementing
this kind of approach which we refer to as constructive and improvement
hyper-heuristics.

Constructive Hyper-Heuristics

The idea is to use, at each iteration during the construction of the solution,
a chosen heuristic from a list of low level heuristics either randomly or intel-
ligently. The design of such a high level heuristic that controls the evolution
of the incomplete solution and hence decides which low level heuristic is
more appropriate at each iteration is known as a hyper-heuristic. This can
be achieved by (i) a brute force approach where all the low level heuristics
at each step of the construction of the solution are first used, and the one
that produces the best solution is chosen by selecting the next attribute from
that best configuration to add to the incomplete solution configuration. The
process is repeated until all attributes are included to make up a complete
feasible solution. This mechanism guarantees that the obtained solution is
either better or the same as the solution found by the best individual low level
heuristic. In (ii), the idea is to apply a random scheme where the selection is to
choose at each step of the construction of the solution configuration, one of
these low level heuristics randomly and with equal probability. This is obvi-
ously much quicker than (i) but may produce a solution which is inferior
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to the one that could be generated by the best low level heuristic. Finally
in (iii), a learning-based approach made up of two stages can be adopted. In
stage one (i.e., the training stage), each low level heuristic is applied over
the set of instances (or just over a training subset) where useful information
are recorded. In stage two, this information is then used to choose the low
level heuristic at each step of the construction of the new solution as used
in the above two schemes. The only weakness is that the approach needs to
be run more than once or at least on a smaller subset of instances which
leads to biases towards the selected subset. Another slightly more finely tuned
version is based on the brute force approach to record the information in
stage one which can be performed based on the first steps that are used to
construct the incomplete solutions only. This information is then passed to
stage two where in subsequent steps the selection of the low level heuristics
is performed pseudo-randomly. This approach is quicker than the brute force
method but could produce relatively less competitive results as it may miss
some good opportunities when selecting the next attribute. Note that both
the first and the third methods could be made more focussed if a smaller
subset of promising low level heuristics that produce good but diverse solu-
tions are chosen a priori so as to avoid unnecessary computations used by
those heuristics that are proved to behave poorly in most cases.

Improvement Hyper-Heuristics

Here, an initial solution is already found and the use of hyper-heuristic is
adopted to act as a post-optimiser or a local search. However, instead of
using one particular metaheuristic, say TS or SA, to improve the solution, the
hyper-heuristic philosophy is adopted. Note that it is common and simpler
to use local searches as low level heuristics in these type of hyper-heuristics
though the use of metaheuristics is also attempted by a few authors. The
question is how to spread the total computing time between each run of a
given metaheuristic and how long the short periods in the training and the
launching stages should be. For instance, Garcia-Villoria et al. [19] obtained
superior results with this strategy when solving a class of scheduling problems.
This approach is displayed in Fig. 15.1.

Note that hyper-heuristics could also be considered as a form of an expert
system that guides iteratively the selection of the heuristics within the search
in order to solve a given optimisation problem, irrespective of whether these
heuristics are low or high level. The strategy for selecting the low level
heuristic at a given iteration and the choice of the pool of these low level
heuristics to be used can be challenging. Burke et al. [10] give an interesting
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Fig. 15.1 A representation of the improvement hyper-heuristics (adapted from [46])

classification of hyper-heuristics and provide further references on this issue,
with a focus on timetabling problems.

15.1.1.2 Memetic Algorithm and Its Variants

These are based on a population of solutions like a GA except that each solu-
tion (chromosome) within the same generation is improved via intensification
by a refinement/improvement procedure like a local search. Memetic algo-
rithms (MA) can therefore be considered more aggressive than their classical
GAs. Obviously this combination can be seen as a hybridisation of a GA
and local search. Such a heuristic was originally put forward by [31] and an
overview of this approach can be found in [31] and [32] though other authors
have also implemented a similar strategy indirectly, see for instance [56] for
the case of multi-depot routing. Here, the multi-level heuristic of [48] was
integrated with a GA to improve the obtained chromosomes at each gener-
ation. The questions may include how long the improvement procedure is
allowed to run? Is the local search necessary at each generation or just for
specific chromosomes? And how to avoid the risk of early stagnation due to
such intensifications? To control diversity and to answer the last question,
one attempt was performed by [53] who introduced schemes to manage the
population (PM) which they refer to as MA/PM. An efficient implemen-
tation of MA/PM for solving an integrated distribution/production system
is also proposed by [6]. The above authors put emphasis on how to better
manage the population so as to maintain diversity and to guide the search
more efficiently. The idea is to use a smaller population size than in a typical
GA (say 20 or 30), and also to control diversity, not through mutation as in
a GA, but via a measure of diversity which is embedded into the generation
of the chromosomes, such as dissimilarity or distance between solutions. In
simple terms, MA/PM can be considered as a guided MA, though it has more
parameters than a GA and the classical MA. One may argue that this avenue
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may suffer from its additional parameters and computational burden, but, in
our view, this has scope for improvement as this can be overcome and hence
could lead to a much more promising outcome.

15.1.1.3 A Brief Summary of Other Metaheuristic
Hybridisations

The above population-based hybridisation is also valid for any other
population-based heuristics described in the earlier chapter as these are
successful at finding promising regions of the search space but not powerful
enough to localise the exact local optima. In this case, some form of local
search or those one point solution (or trajectory) methods as discussed in the
earlier chapter are usually better suited for the job. For instance, a local search
or small runs of those metaheuristics described in the earlier chapter could
be combined with ACO after global updating is performed, with the bee
algorithm ABC once some sites are dropped or reinforced, with PSO when
global velocity update is activated, with HS once the new set of harmonies are
selected, etc. For more information on these population-based metaheuris-
tics, see [46] and the earlier chapter in this volume by [51]. The interested
reader could consider any of the above by thoroughly investigating the time
to activate the local search, how intensive this is implemented and which
solutions are better suited for such improvement. The choice of the subset
of solutions can be based on the top quality solutions as well as those with
high level of diversity. Other integrations of metaheuristics have also been
attempted. For instance, for the vehicle routing problem, interesting results
were obtained by [63] who integrate VNS with SA, Akpinar [3] who consider
the hybridisation of LNS with ACO, and [54] who hybridise VNS with LNS.
For more information on hybridisation of metaheuristics the reader will find
the review in [39] and the relevant chapters in [46] and the references therein
informative and useful.

15.1.2 Integrating Heuristics within Exact Methods

Exact methods can be slow and inappropriate for some applications but could
be made useful if combined with heuristic search. In this section we shall
present some schemes that are shown to be promising and worth considering.

Injection of Upper Bounds The simplest way is to introduce the value of
a feasible solution from a heuristic as an upper bound say within Branch and
Bound (B& B). Note that this extra information will fathom any unnecessary
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branches from being explored but may incur an extra computational effort
due to this additional constraint.

Tightening of Lower and Upper BoundsThere are some approaches that
aim to tighten both the upper and the lower bounds simultaneously. These
include

Lagrangean Relaxation Heuristics (LRH) This approach takes into account
the advantages of both exact and heuristic methods for generating proven
lower bounds and corresponding upper bounds, respectively. LRH was first
proposed by [23] and [24] and proved to be successful at solving many classes
of optimization problems. The main concept of LRH is to identify the set
of constraints of a general integer program that results in an increase of
the computational complexity of the problem making it intractable. These
constraints are then introduced into the objective function in a Lagrangean
fashion by attaching to them unit penalties, that will be reduced as the search
progresses with the aim of reducing the amount of feasibility violation. This
transformation should be constructed to render the new relaxed problem
easier to solve optimally (usually by inspection or a basic polynomial optimal
type algorithm) and hence produce lower bounds for the original problem.
Note that the relaxed problem could, after mathematical manipulations, turn
into a subset of separable subproblems, instead of a single one only. These
subproblems are solved individually and their respective optimal objective
function values and their corresponding decision variables values are then
used to make up the overall solution for the relaxed problem. A feasible
solution of the original problem (an upper bound in the case of a mini-
mization problem) is then derived using a usually quick heuristic method.
The penalties are adjusted based on the violation and the process is repeated
until one of the stopping criteria is met. This could include, for instance,
the gap between the best lower and upper bound is small enough, a negli-
gible change in the solution configuration is detected, the step size is nearly
zero, and the maximum computing time is reached, among others. Theoret-
ically after several iterations this approach should lead to a near or optimal
solution. It is worth noting that it is effective to add a simple local search
as a mini step that aims to improve the upper bound before the updating is
performed. This yields a tighter upper bound which in turn will speed up the
process when adjusting the penalties, etc. A schematic graph of LRH is given
in Fig. 15.2. This mechanism was successfully applied for a class of discrete
location problems by [2] and [33].

Note that not all problems fit nicely into this category as both the lower
bound problem (LB) and its corresponding feasible problem may not be
always easy to solve. It is also worth mentioning that there is no guarantee
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Fig. 15.2 Principle of Lagrangean relaxation heuristics (adapted from [46])

that the new corresponding upper bound found at a given iteration of LRH is
always an improving feasible solution. This is due to the heuristic procedure
used to transform the lower bound into a feasible solution. In this case, extra
care is required to guide the search by referring to the best upper bound so far
when updating the lagrangean multipliers, etc. LRH can also be integrated
within heuristics or metaheuristics to act at optimally solving subproblems
within a larger problem that are implemented in a recursive way. For instance,
in vehicle routing problems, Bouzid et al. [7] used LRH to obtain an optimal
split of the giant tour into optimal routes and the VNS is applied as a diversi-
fication tool to build a new giant tour. This hybridisation showed to be more
efficient than using the classical ILP to split the giant tour.

Reduction/relaxation-based schemes The idea is based on a dynamic variable
fixation mechanism obtained by solving a series of relaxed problems with an
efficient way of recording useful information using memory and frequency.
For instance, a variable that is never used is more likely to not belong to the
optimal solution and a variable which has been used most often could be
fixed permanently. This is an iterative process that continues until no change
in the solution is found. One approach, which seems to have gained more
pace recently, is to solve a series of reduced problems exactly by fixing some
of the variables to their integer values as found by the LP relaxation. The
problem is then augmented by an additional constraint (or a small number
of constraints) every time leading to a new lower bound and hence to a
new fixation of the variables for the new reduced problem. This process is
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then repeated until the gap between lower and upper bound is either zero or
negligible. This concept is adopted by [21] and [61] for solving the multi-
dimensional knapsack problem. An interesting review by [60] discusses some
of these aspects with a focus on knapsack problems.

A similar view that is based on solving a succession of subproblems opti-
mally while adding at each iteration a few attributes (say r ) is successively
presented by [12] and recently enhanced by [11] for solving a class of contin-
uous p-centre problems. This approach though sensitive to the values of r has
the advantage that the optimal solution if it exists can be identified whenever
the optimal solution of the last reduced problem happens to be feasible for the
original one. One approach that also incorporates solutions and useful infor-
mation from heuristics to tighten both the upper and lower bounds in the
corresponding ILP formulation is presented by [49] for the vertex p-centre
problem.

Kernel Search This is an iterative approach introduced by [4] for solving
MILP problems. The idea is to define a succession of smaller related MILP
problems where promising values, usually those with positive values, are used
to make up a reduced and smaller problem with the idea that at each itera-
tion, additional variables are added to the subproblem whereas some may be
removed. At the initial phase, the LP is usually solved and all positive vari-
ables are used to make up the subset of promising variables which is referred
to as the kernel from which Kernel Search (KS) was named. The rest of the
variables are put into groups known as buckets. At each iteration one bucket
is added to make up a larger problem. This approach is adapted to allow for
the removal of some variables from the kernel and the sequence in which
the buckets are added. For instance, the variables to be removed from the
kernel can be those which happen not to be part of the optimal solutions
in the last few iterations. This removal strategy can be extended to identify
a performance measure for the variables based on frequency of occurrence,
their shadow prices if not selected, etc. This process continues until the last
bucket is utilised. Guastaroba and Speranza [20] explore these issues for the
case of a large capacitated facility location problem with competitive results.
Besides, in this iterative approach, at each iteration the new objective func-
tion value, if it is found to be an improved and feasible solution, is considered
as the new upper bound which is then added to tighten the formulation. The
choice of the bucket to add and the selection of the variables to remove from
the kernel constitute a challenging part of this approach that could be critical
to the success of KS.

Regular seeking of new upper bounds Another option which is more chal-
lenging is to integrate heuristics and exact methods more intensively by
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Fig. 15.3 Integrating heuristics within B&B (adapted from [46])

calling a heuristic which transforms (a) an infeasible solution (lower bound)
into a feasible one at certain nodes of the B&B tree and (b) improve the
best upper bound or even other promising but less attractive already found
upper bounds. The question is to determine which nodes are worthwhile
exploring and also which type of heuristics are better suited for (a) or (b).
A basic representation of (a) and (b) is shown in Fig. 15.3.

In other words, instead of applying the optimal method (B&B, Branch &
Cut) till the end, we can at intermediate points of the search that need to
be identified, inject extra information. For instance, in B&B, one way would
be to take a solution at a given node and see whether that solution (upper
or lower bound) can be either improved or transformed from lower to upper
bound. For example, if the node is a feasible node as mentioned in (b) with
a value UB0 (see Fig. 15.3), a metaheuristic or just a simple heuristic that
uses that feasible solution as a starting point may improve it (say UB+

0 ) and
hence provide a tighter upper bound for quick fathoming. This mechanism
can be either applied each time a new upper bound within B&B is obtained
even if it is not better than the best, or if the new upper bound happens to
be slightly worse than the best incumbent upper bound but passes a certain
threshold, as commonly used in TA, see earlier chapter. The new improved
upper bound, if it exists, may be proved to be even optimal if it happens to
match the best lower bound so far or satisfies certain optimality rules. Simi-
larly in (a), if an infeasible solution is at a node (lower bound, LB1), before
branching a repair mechanism that transforms such an infeasible solution
(i.e., lower bound) into a feasible one (say UB0

1 ) could be used. If this solu-
tion happens to be better than the best upper bound so far, this will become
the incumbent upper bound leading to further fathoming in the B&B tree.
This temporary node with UB0

1 can then be improved via (b) again to obtain
an even tighter bound, say UB+

1 . One obvious way would be to choose those
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attributes with higher values close to 1 (in case of binary optimisation) while
checking feasibility.

Local branching There are however interesting studies that aim to find
feasible solutions, the first of which is the idea of local branching (LoBr)
developed by [16]. For simplicity consider a binary optimisation problem
where a lower bound is found at a given node (including the source node)
with X̄i = [X∗

i ] for all i ∈ E1 where the set E1 ⊂ E is the required subset
of binary variables and X̄i = [X∗

i ] for all i ∈ E − E1 (those not required to
be binary or integer say). The idea is to solve the original problem with the
addition of the following linear constraint given a suitable value of k which
aims to restrict the distance between X and X̄ to be within k only using
�(X, X̄) = ∑

i∈E1:Xi=0 Xi + ∑
i∈E1:Xi=1 Xi ≤ k. This is updated and

the process is repeated until a feasible solution is found. In other words, if
the solution is not improved after a certain time limit at a node, k is halved,
however if no solution was found in that time limit or the solver proved
infeasibility the new linear constraint is relaxed by setting k = k + k/2 .
An enhanced method, which avoids some of these parameters, is known as
feasibility pump (FP). This is presented by Fischetti et al. [17] whose idea is
to solve the auxiliary subproblem by substituting the original objective func-
tion with Min�(X, X̄) = ∑

i∈E1:Xi=0 Xi + ∑
i∈E1:Xi=1 Xi instead. This

is repeated until a feasible solution is obtained. Extra refinements to reduce
the computing time and to get a good quality solution are also examined. As
both (LoBr) and (FP) run under a certain time limit, the obtained solution
if it exists is obviously a feasible MIP solution. Very competitive results are
produced for a variety of difficult combinatorial problems, see [17] for more
details. An interesting adaptation of (LoBr) by [22] is to use a general VNS
structure within (LoBr). Here, the initial step at the root node is found as
in (LoBr) as this is the initial solution found by a commercial solver such
as CPLEX. In the shaking step of the VNS, the values of the parameter
follow the VNS structure instead where the neighbourhood is defined by:
Nk(X̄) = {X |�(X, X̄) ≤ k}; k = Kmin, . . . , Kmax.
In the local search, a VND is applied where a solver is also used to find the

local minimum based on Nl(X̄); l = 1, . . . , lmax defined as the new linear
constraint. Very competitive results are discovered when compared against
the classical (LoBr) results. Other examples that use such a similar hybridi-
sation include the work by [34] who combined B&B with SA to solve the
binary and the mixed ILPs. A depth first of B&B is incorporated to generate
an initial feasible solution and SA is used to determine feasible ones whenever
infeasibility is encountered. This is a hybrid approach that is based on sharing
information between concurrent runs of B&B and SA. Wilbaut et al. [61]
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combined heuristic solutions and ILP formulations to design an adaptive
search for solving the 0–1 knapsack problem. Lazic et al. [28] also embedded
VNS with ILP formulation to tackle 0–1 mixed integer programs with very
good results.

15.1.3 Integration of ILP
within Heuristics/Metaheuristics

In some cases the original problem reduces to manageable and relatively
easier subproblems to be solved optimally when the promising attributes are
identified only or when the problem is split into separable subproblems that
are also easy to solve optimally. We present one approach for the former
(heuristic concentration) and a brief on the latter (problem decomposition).

15.1.3.1 Heuristic Concentration (HC)

This is a two-stage process where in stage 1, a large number of solutions are
generated randomly using multi-start, for instance, or through a heuristic
such as GRASP. The selected attributes of those solutions are then put
together to make up the concentration set which is obviously a relatively
much smaller subset. The aim of the selected subset is to represent the orig-
inal problem with those promising attributes only without considering the
large number of irrelevant ones. The reasoning behind this idea is that the
optimal or the final best solution is likely to consist of those attributes. Note
that HC shares some similarities with the metaheuristic Cross Entropy (CE)
described in earlier chapter in [51] in terms of identifying the subset of
promising attributes. In the second stage, an exact method or an intensive-
based metaheuristic or even a powerful local search is then applied on this
small subset. This idea is originally developed by [41] with some variants
being later proposed by [42] for solving the p-median problem. For instance,
in stage 1 only those attributes (potential sites) that belong to all the solutions
are considered as fixed to make up the potential sites and hence will be part
of the optimal solution and in stage 2 a reduced problem, made up of these
potential selected sites, is then solved either optimally or heuristically with a
powerful metaheuristic. Another stricter way is to choose the concentration
set from those attributes that happen to exist in k(k > 1) times in the solu-
tions configurations. The reasoning behind this is that some attributes with
very low frequency of occurrence (i.e., k = 1 ) could have been chosen by



512 S. Salhi and J. Thompson

luck and hence may distort the basic principle of this method. The value of k
can affect the final solution and hence linking k to the number of solutions
generated could be one way forward.

15.1.3.2 Problem Decomposition

The idea here is to decompose the original problem into separable prob-
lems which are solved optimally. As the splitting is not optimal a recursive
approach is usually adopted. As an example solving the capacitated or the
single source location problem, once the facilities are sited the problem
reduces to either a transportation problem (TP) or a generalised assignment
problem (GAP). In the former a customer may not need to be served from
one facility only whereas in the former a customer is entirely served by one
facility only. Both the TP and the GAP can be solved using standard commer-
cial optimisation solvers such as CPLEX, LINDO, Xpress-MP, and GuRobi
just to cite a few. A metaheuristic is then used to relocate some of the facili-
ties. As the number of calls to the TP (or the GAP) can be too excessive, an
approximation technique or heuristic could be used instead and only once
in a while the allocation is performed optimally. The balance between the
use of approximation and optimality depends on the complexity of the ILP
problem and the problem size. As an example the TP is relatively much easier
to solve than the GAP so the number of calls to optimally solve the TP could
be used more often than its counterpart the GAP if found necessary. It could
also be emphasised that the use of a two-phase method, such as the ‘locate-
allocate’ approach commonly used in multi-source Weber problem (or its
discrete counter part the p-median problem) is also another example. Here,
in phase one p clusters are obtained and in phase two the optimal p-median
problem is optimally solved within each cluster. The new locations are then
used to construct the new p clusters for phase one and the process continues
until there is no change in the location of any of the p facilities. This approach
is originally proposed by [13] and applied by several authors including [18]
and [30].

A similar example, commonly encountered in routing strategies, is the
cluster-first routing-second strategy. Here, the clusters are first constructed
and then in each cluster a small TSP is optimally solved. The search is to guide
the search by identifying other sets of clusters usually through performing a
certain level of perturbations on existing clusters.

Another approach that also deals with the same routing problem is to
remove from a feasible tour some sequences, as in ILS, and then insert them
back optimally to the split points of the tours through solving optimally the
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corresponding set partitioning problem where this ruin/repair mechanism is
repeated several times. This approach is successfully adopted by [14].

15.1.3.3 Data Mining

Here the idea is similar to the above two schemes. This can be organised into
two phases where in phase one (learning phase) many solutions are obtained
and the elite solutions, say the top k%, are identified with their attributes
being considered as potential. For instance, in the p-median problem like in
HC, those attributes (facilities sites) that belong to the elite solutions and
having a high frequency of occurrence are assumed to belong to the best
final solution. In phase two, the local search will be relatively much faster as
it starts with a solution which already has good quality. This can be imple-
mented in two ways where those attributes are kept unaffected reducing the
search space even further or free them for potential improvement. Note that
the former may be limited in terms of improvement whereas the latter though
slighter slower will explore a larger search space. This concept can also be used
in routing where in phase one, common subsequences that belong to the elite
solutions with a high frequency, usually known as bones in the routing liter-
ature, are identified. These routes can then be augmented through suitable
insertion mechanisms. This type of implementation can also be used in a GA
where parts of the chromosome, that are considered to be promising, can be
treated differently by retaining them from one generation to the next during
the execution of the operators such as crossover or mutation. In phase two,
these subsequences can either be retained or made free throughout the rest
of the local search. As discussed earlier, in the former the problem is reduced
into a more constrained and smaller problem. An interesting approach that
relies on identifying good subsequences of nodes in routing is developed by
[55]. This can be used in stage two to fix these subsequences either in the
local search or if an exact approach is adopted making the problem much
reduced and hence easier to solve. This concept of identifying bits of the
solution configuration can be adopted to solve several combinatorial opti-
misation problems including knapsack, bin packing, location, routing, and
graph colouring, among others. For example, the use of data mining for the
p-median problem is explored by [36] and for combinatorial optimisation in
general an interesting and informative paper can be found in [37].

In summary, the power of an individual approach can be very strong,
taking advantage of the strengths of more than one approach when searching
for a good quality solution. This mechanism of intelligently integrating
various methods leads to the design of efficient hybridisations which can be
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challenging is worth the effort especially the matheuristic-based ones as these
have the added advantage in guaranteeing optimality or at least providing
interesting bounds even though at the expense of extra computational
burden.

15.2 Big Data andMachine Learning

When there is a large volume of data and the aim is to extract some interesting
information either known a priori or completely unknown (patterns, clusters,
relationships, classification), schemes that are inspired from heuristics and
sometimes supported by statistical modelling and exact methods are worth
the investigation. For example, in loan insurance or mortgages, customers get
a yes or a no score to assess whether the customer is eligible for the loan or
not. This solution is based on the customers attributes and historic past infor-
mation (such as age, gender, salary, home ownership, etc.). This can be seen
as a classification issue where the instance here is to decide if the customer
is put into a specific category (yes or no). A neural network or decision tree-
based approaches such as random forest are usually used to provide the user
with such an important decision which is useful for the company and vital
for the customer.

In many cases, the problem is so large that there will be interesting features
and patterns in the data that cannot be easily discovered but are still worth
identifying. Note that if the size of the problem is that big, modelling through
standard optimisation or statistical modelling becomes inappropriate. The
idea is to approach such combinatorial problems with massive data using
Artificial Intelligence (AI) based methods, known as machine learning (ML),
with recent ones exploiting deep learning within their search. We will briefly
discuss some of these issues but the reader will find the review on deep
learning by [29] with a focus on neural network to identify images or texts,
interesting and informative.

Due to the internet and the advances in computer technology and novelty
in algorithm design a lot of information is now stored providing a rich source
of discovery while requiring some ways of digging deep to find the right
information as highlighted in [58].

Big data can be defined using the following five attributes which are usually
referred to as the 5Vs:

• Volume- relates to the massive scale of the data.
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• Variety- describes the data structure such as structured, semi-structured, or
unstructured.

• Velocity- defines how the data presents itself such as streams, real time,
batches.

• Veracity- highlights the reliability of the data.
• Value- provides the amount of knowledge and possible insight that can be

gained from it.

The same data can lead to various outcomes depending on the aim of the
exercise. Exploiting this massive content is not easy and can be even confusing
and in some cases misleading. There are heuristic type methods known as
artificial intelligence or machine learning algorithms that attempt to provide
answers. These techniques are well suited to discover implicit relationships
within big data with high dimensions which were impossible to analyse in
the recent past.
These techniques are now also easy to implement on personal computers

due to the advances in computer technology, the popular programming
languages such as R or Python, and the simple connection to popular statis-
tical and optimisation tools. Although the understanding of these algorithms
can be mathematically demanding in some cases, these algorithms are now
made accessible to a wider audience. We will present briefly three super-
vised ML algorithms that are commonly used in the OR community. These
include random forest, support vector machines, and neural network, all three
have shown to be promising at classification tasks. Other techniques include
k-nearest neighbour, decision trees, and logistic regression, among others.
Note that methods for prediction are usually based on regression such as
linear/nonlinear types and those for clustering include k mean, for instance,
though the above techniques can be adapted to tackle this kind of problems
too. These techniques are also commonly used in the OR literature espe-
cially linear/nonlinear regression in prediction, and k mean and k-nearest
neighbours in combinatorial optimisation mainly in clustering such as loca-
tion analysis. Other applications that require other types of MLs are not
discussed. Unsupervised learning techniques can be considered as exploratory
techniques given there is no a priori target to compare against and aim at
discovering new patterns or hidden answers. This will be discussed as part of
the section in deep learning.
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15.2.1 Decision Trees and Random Forest (RM)

This is one of the most popular machine learning (ML) techniques
adopted especially in classification and in regression such as in bioinformatics,
banking, insurance, etc. This is a supervised learning which is an ensemble
algorithm of random trees (RTs). For simplicity let us first introduce briefly
a decision tree as a machine learning technique as this forms the basis for
several known techniques such as branch and bound, genetic programming,
and particularly RF.

Decision Trees A decision tree is the simplest supervised ML technique for
several problems including classification and regression problems. The idea is
to choose the best feature (i.e., age) and feature values (say 30, 50, and 65)
to split the data into two distinct cohorts for a given value. How to split and
in which order the features and their values are chosen is a critical issue that
may not have an optimal solution. This is similar to the key issues found in
branch and bound implementation (which decision variable to branch from,
depth or width first, among others). For the case of decision trees, one way
is to use the splitting based on the Information Gain by [38], or the GINI
impurity by [8]. See [40] for more information on this aspect. Though deci-
sion trees are simple to implement and can handle various types of features
(i.e., from real to categorical), they are however sensitive to bias and vari-
ance as a minimal change in the data set may result in a big change in the
configuration of the chosen decision tree and therefore may cause the risk of
overfitting.

Random Forest (RF) aim to overcome some of the drawbacks that arise in
decision trees by constructing a number (say n) of random trees, RTs, instead.
Given the randomness of these RTs, a subset of good features (say m <<

total number of features) and the thresholds for these best features that will
be used to split a node (Thk; k = 1, . . . ,mk ) with mk being the number
of thresholds used for the kth feature are also chosen. For instance, a salary
feature could have 3 thresholds leading to four ranges, namely low, medium,
high, and very high defined by the three thresholds such as £20K, £50K, and
£90K. In other words, each RT can have a depth of at least

∑m
k=1mk .

As in most MLs, RF also uses mainly two subsets, the training set and the
testing set, approximately accounting for 2/3 and 1/3 of the entire set, respec-
tively. Note that this split is commonly used but it was also found recently
that a smaller size for the training set, say approximately 20–25%, could be
promising when tested on a variety of applications and also in many MLs
including RF, see [59]. Using the training set, each RT will result in a score
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and the average score (or other appropriate performance measures) of all these
n RTs is then used to assess the prediction of the RF when used in the data set.
RF has a high predictive accuracy and also a good identification of important
variables or attributes for classification. A comprehensive and critical review
can be found in [9]. The number of the best features to split (m) and the
chosen best features are critical parameters impacting the depth of the tree.
The order to choose the best features with their corresponding thresholds
at a given level can be performed randomly for diversification purposes or
based on a guided split using one of the performance measures that will be
briefly given later. RF has the advantage of being simplistic to implement
while incorporating randomness due to the choice of the m best attributes
and also the way the split is followed at intermediary nodes.
These n RTs can be constructed independently or iteratively taking

account of information already identified in earlier RTs and then introducing
weights to bias towards those features accordingly. Note that the former is
easier to parallelise whereas the latter is not. The latter can however, be more
powerful as in Adaboost split but can be less robust especially in terms of
output noise when compared to bagging or random split that use the former.
An interesting point was also shown by [9] that having a larger number of
trees will not provide overfitting due to the strong law of large numbers
but will not add extra valuable information. In other words, after a certain
number of RTs the added value is minimal and hence getting a critical value
is important as the added computational burden may not be worthwhile. RFs
have usually a lower risk of overfitting though this advantage can be affected
if too much pruning is adopted (i.e., if a large number of best features is used,
rendering the process similar to decision trees). In addition, RFs have shown
to be robust to outliers, can respond well to nonlinear data and above all can
yield better accuracy than most other ML techniques. However, RFs can be
biased towards categorical data, are found to be relatively slow and may not
be suitable for sparse features. One way to enhance the robustness of the iter-
ative approach is to construct a small number of trees instead of one at a time
and then based on the information found this is then introduced to guide the
construction of the next lot. In other words this can be not only efficient at
learning but also can take advantage of parallelisation within each lot. The
number of random trees within each lot does not have to be fixed a priori
either as a dynamic approach could be even more efficient.
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15.2.2 Support Vector Machines (SVM)

This supervised ML technique also uses training and testing data sets. These
are for classification and regression but showed to be more effective at the
former especially in text recognition and image detection. The idea is to
construct a hyperplane that will split the data set into two subsets. For
instance, in 2D that will be a line whereas in 3D this becomes a plane,
etc. The hyperplane is defined by the two nearest points to the hyperplane
resulting in a distance margin. The larger is this margin the better at clas-
sifying the data is the hyperplane, and hence a data that is far away from
the hyperplane can be considered classified with a high probability. In other
words, if one of these nearest points is removed, the dividing hyperplane
is affected and hence this helps in defining the hyperplane. However, when
using the training set it is unlikely that there would be one hyperplane that
completely classifies all these data sets and therefore a compromise between
having a large margin and a small number of classification is adopted. One
commonly adopted approach is to start with a lower dimension, evaluate the
margin and then increase the dimension until segregation or near segrega-
tion is discovered. This procedure can be time consuming and hence SVM
are accurate and effective for small data sets with low dimension mainly due
to the computational burden. Also, this technique may not be as promising
in producing a high level of misclassification on data sets with overlapping
classes.

Mathematically this is a challenging non-convex problem given the issue
of weight determination that is associated with these two conflicting objec-
tive functions. An interesting approach is to solve the problem by solving a
sequence of quadratic programming problems as given in [35]. In addition,
how to measure the overall margin is also challenging question as this can be
based on a maximin or maxisum minimisation problem. A recent study that
considers this issue and incorporates various norms is given by [27].

In the OR sphere, this concept is indirectly used, though not referred to
as SVM or hyperplane, when solving location and also multi-depot routing
problems. In the case of latter, customers are assigned to their nearest depots
and hyperplanes can be formed based on the borderline customers resulting
in forming a Voronoi diagram where each customer is classified within the
region of a given depot, see [48]. Those not borderline customers are classi-
fied or considered to belong to their respective depot with confidence when
routing is adopted whereas the borderline customers, those that are close to
the hyperplane can be assigned to either of their nearest depots and hence
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could be misclassified. A similar reasoning is also applied in location analysis
where the clusters are defined by their hyperplanes.

15.2.3 Neural Networks (NN)

This approach was not well received in the early eighties as it was consid-
ered to be a black box with little mathematical rigour, therefore suffering
the same problem as heuristic search. Neural networks due to their rich
applicability have now become well studied resulting in several interesting
developments. The standard architecture for the supervised learning NN is
the well known multilayer feed forward neural network proposed by [44].
The network consists of input, hidden, and output layers with weights repre-
senting the importance of the connections between two nodes. Based on a set
of given input patterns and their corresponding target outputs, the training
is applied to minimise the sum of the errors between the unknown output
patterns and the known target patterns. This problem turns out to be an opti-
misation problem with the weights as the decision variables and the objective
as the minimisation of the sum of square of the errors. Initially, the problem
is solved by back propagation with a descent method as its optimiser. Given
the problem is non-convex there is a risk of hitting a poor local minimiser.
This is where metaheuristics flourish and become important part to incorpo-
rate within the search. For example, a more powerful optimiser that includes
adaptive tabu search within the optimisation is developed by [52] to iden-
tify cancer recurrence. Another approach developed by [29] is to adopt a
stochastic gradient descent where a subset of samples is used to estimate the
gradient of the objective function when small changes in the weights are
performed. The weights are then increased or decreased in the opposite sign
of the average gradient values. NN can be applied in two ways either as a
black box where a new entry detail (e.g., the input of a customer requesting a
loan) is entered into the network which is already well defined and hence the
decision comes as either accept or reject the applicant, or the black box could
also have the facility to incorporate new entries and fine tune the network
dynamically or once in a while to produce even more reliable solutions.

15.2.4 MLs Evaluation Measures

When training these supervised MLs, depending on the task there are suit-
able evaluation metrics. For instance, in regression the commonly used metric
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includes the mean square error though others such as mean absolute error or
max absolute error could be useful in area where worst cases are of more rela-
tive importance. For classification, the measures used are based on ratios (or
probabilities) reflecting the correctly classified and vice versa. These include

Accuracy is the ratio of correctly classified either as true positive (TP) or
true negative (TN) over all possibilities including false negative (FN) and false
positive (FP);

Accuracy = (TP+TN)
(TF+TN+FP+FN)

Sensitivity or Recall can be even more useful as it refers to the ratio of
correctly classified in the target class, i.e., Sensitivity = TP

(TP+FN)
; for example

the percentage of those who may get cancer.
A similar measure is specificity which represents the ratio of correctly clas-

sified in the target class, i.e., Specificity = TN
(TN+FP)

; for example percentage
of those who may not get cancer. Finally, precision refers to the ratio of those
correctly classified in the target class that are really in the target class; i.e.,
Precision = TP

(TP+FP)

Other measures that attempt to combine the above measures include the
F1score which is defined as F1score = 2(Recall×Precision)

(Recall+Precision) and the area under
the receiver operator curve (ROC) which measures the true positive rate vs
the false positive rate for varying thresholds setting.

>Observation It is worth noting that one of the main concerns is that
though most users found these ML techniques very useful and practical, we
believe it is important to stress that the results provided are by no means
guaranteeing optimality though some may be. This is because the problems
addressed are usually non-convex and the ML techniques are just heuristic
in nature and hence do not guarantee optimality. This anomaly needs to be
made aware of as it is important for the user to know. For example, this has
been demonstrated by [59] who showed using applications from different
areas and a number of MLs including RF, SVM, and NN, that using a frac-
tion of the data set for the training (say about 20%) can be much more
effective and robust than using a larger sample, for instance, the 70–30 split
as usually suggested. This is just one of the issues among others where the
decision maker ought to be aware of this potential hidden aspects that appear
to be either ignored, not emphasised enough or just not taken that seriously.
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15.3 Deep Learning Heuristics

MLs with no supervision (unsupervised learning) could exploit the large
volume of data and through correction and self-improvement, like a child
learns through experience, identify important features, useful patterns that
could not have been found otherwise, and even discover exciting new models
that one would not have thought about. This is because in some cases, it
is hard to identify before hand the output a user is looking for. This can
also be seen as an extension of reinforcement learning which focusses on the
search path based on earlier outcome and then reward positive outcome as the
search progresses and then by taking into account such information it biases
the search accordingly. A more advanced learning is transfer learning which
considers any good information (this refers to useful characteristics as well
as non-promising ones) found during the search to be incorporated in future
exploration. This continuous learning mechanism tends to identify promising
search areas and discard others. The above two concepts of learning can obvi-
ously be considered in supervised learning too though their impact is more
intensified in unsupervised learning as the search space is even more open
and unstructured.

One possible approach which we think to be worth exploring and could
enhance the quality of the above ML techniques mentioned above can be
outlined as follows:
This is based on a multi-phase approach consisting of say K phases. At the

beginning of the search (i.e., phase 1) and as no information is available, we
can start by taking a few samples randomly and perform some simple analysis
using very quick selection rules. This leads to some attributes that could be
worth recording. At this stage the technique used is either optimisation-based
or statistical and can be rather crude and fast. This is repeated for a certain
number of rounds until T1 say, where those individual results could be anal-
ysed using a simple heuristic leading to useful information to be selected.
In the next round of sampling, given some of the useful information are
already embedded in, a similar analysis is carried out again. The choice of
the samples and their sizes can be identified by heuristic rules as well. At this
point, the technique that will be used becomes slightly more powerful and
the sampling strategies relatively more sophisticated. This process of gathering
information and increasing the level of solution quality by adopting a slightly
more powerful heuristic as the search progresses is repeated several times. The
switching to a higher calibre heuristic can be either dynamically identified or
set at fixed points, say. Note that at this stage enough information is collected
and the problem sizes become more manageable until Tk is reached where we
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can then adopt till the end a more powerful metaheuristic, or even an exact
method based on mathematical programming, dynamic programming or just
pure statistical modelling if necessary. The number of phases, K , the time
spent in each phase (i.e., the Tj ; j = 1, . . . , K ), the number of samples
within each strip and their sizes all contribute to the final solution leading
to challenging and exciting questions that need answers. This is one of the
methodologies that can be explored further to efficiently discover some of the
important hidden attributes of big data arising from classification, clustering,
regression, and so forth.

For example, a similar but slightly simpler methodology using sampling,
VNS, and ILP formulation was presented with interesting results by [25]
and [26] for large p-median and the p-centre problems, respectively. Some
of the ideas can also be inspired from data mining where interesting patterns
are first found as discussed in the previous section. A schematic representation
that shows the level of focus and the depth and power of the methods (solu-
tion quality) with the reduction of the problem size as the search progresses
is shown in Fig. 15.4.

In summary, hybridisation is carried out using higher and higher level
heuristics as the search progresses. In other words, crude heuristics or even
simple rules are first used to perform the sampling as well as to analyse
them, then followed by more advanced approaches such as composite heuris-
tics or metaheuristics but applied within a small computing time or based
on a reduced number of neighbourhoods, then finally a well defined and
structured problem could be defined which is then addressed in a standard

Fig. 15.4 Level of hybridisation of heuristics in big data (adapted from [46])
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optimisation or statistical manner where powerful metaheuristics or exact
methods are adopted if possible. This type of hybridisation which is heavily
recursive and time dependent on the progress of the search may not be that
simple to explore but, in our view, this is worth the challenge.

15.4 Implementation Issues in Heuristic Search
Design

Since metaheuristics are computer intensive, any intelligent way of reducing
the computer time without (or significantly) affecting the solution quality is
a welcome way forward. Such a saving in computer time can be reallocated
if necessary to perform additional iterations which may lead to even better
quality solutions. There are many ways of enhancing the implementation of
a given heuristic to improve its efficiency. The following key aspects which
include data structure, duplication identification, cost approximation , neigh-
bourhood reduction schemes, efficient way of parameter estimation, and the
use of parallelisation could be of some help and guidance when designing a
powerful metaheuristic including an ML technique.

15.4.1 Data Structure

Some ideas that may help in emphasising this concept of data structure (DS)
while designing a computer program are outlined below. Note that DS does
not affect the quality of solutions.

Avoidance of the Recomputation of Already Computed Information
This can be achieved by storing the necessary intermediate information.
These data will usually be not kept and hence not taken advantage of if DS is
not used. Though there is obviously an initial fixed cost to bear and a small
computational burden linked to recording and updating the information,
this effort is relatively negligible considering the large number of iterations
that needs to be performed in metaheuristics-based methods. For example,
Sze et al. [54] developed an efficient scheme on how to record information
for the case of the vehicle routing problem which yields a massive saving in
computational time.

Elimination of Common Tasks which are Used in Several Parts of
the Method For instance, in routing problems where a move is based on
customer removal or exchange, the cost (total demand or time) of a vehicle
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route without a given customer remains unchanged from its insertion in all
potential routes. This information though small helps enormously in cutting
redundant calculations as shown by [47] when solving the vehicle routing
with heterogeneous vehicle fleet. This obviously requires an additional storage
requirement but this is usually not a severe restriction. This clue is worth
incorporating in other applications where intermediate information could be
identified.

Avoidance of Extra Unnecessary Computation This can be performed
by detecting as early as possible the possible conditions or restrictions that
may not permit a given move to be worth evaluating. For instance, in
any constrained type problem, say the vehicle routing problem, if a given
customer is introduced into a vehicle route which violates capacity or time
constraints, it would be economical if such an information was made available
as early as possible in the search so as to cut down on any earlier worth-
less computation. We assume we base our search on feasible moves only,
otherwise extra care is needed as the amount of violation can be used as a
target to whether or not it is worth exploring such moves. Another example
is the vertex p-centre problem where the aim is to locate p facilities among
the existing customer sites such that the furthest customer from its nearest
chosen facility is minimised. This problem relates to emergency services such
as the case of locating hospitals, fire service, or police stations. One of the
approaches is based on reducing the gap between lower and upper bounds
(thresholds or response times) by applying a bisection method in the range
to define the new threshold for which a set covering problem is applied. This
is repeated until there is nothing left in the range. One interesting view is to
sort the distances between nodes and therefore identify quickly those distance
elements that lie in a range (between the current lower and upper bound) at
any iteration without considering the others which will be many. The bisec-
tion point, which will be used as the next threshold, is then computed but
chosen as the nearest existing distance element in that range and not as its
original value which may not be necessarily one of the elements in the range.
Besides, if there are only 1 or 2 elements left in the range even if the range is
still wide, a complete enumeration of these elements used as thresholds can
be conducted instead which can be much faster. The search then terminates
much quicker without searching for a bisection point all the way until there
is a range of size one. Irawan et al. [25] incorporated this scheme within their
hybrid exact/VNS framework to produce optimal solutions for large instances
for both the p-median and the vertex p-centre problems for the first time.



15 The New Era of Hybridisation and Learning in Heuristic Search Design 525

Quadtree-based DS One well known data compression technique is the
quadtree-based DS commonly used in computer science. This was success-
fully adopted by [50] to solve very large p-median problems. Here the data
is first classified under quadtrees which are well defined by their corners. The
idea is to construct a tree starting from the first node representing the overall
region, which is then split into 4 branches (the initial space is split into four
equal spaces usually rectangles), this splitting continues until the number of
lowest level is reached. This mechanism requires a high fixed cost at the begin-
ning of the search which is then compensated by the massive saving in later
stages of the search. The idea is that once the four corners of each quadrant
are assigned to their nearest facility, all those nodes (customers) inside that
quadtree are systematically assigned to that facility as one block instead of
individual nodes resulting in a massive saving in computational time. This
DS is practically useful if the size of the problem is very large and many runs
are required as the construction of the DS can be time consuming though
performed once only.

15.4.2 Duplication Identification

In addition to the basic data structures some of which can be problem
specific, there are several ways on how to identify duplicate solution config-
urations during the search. These mechanisms are introduced to avoid the
risk of cycling as well as the unnecessary recording of similar already found
information that do not need to be examined again. Some of these schemes
are presented here.

Hashing Function and Its Related Versions A hashing function is one
way to efficiently record and detect previously found solutions, see [62].
These functions which are defined from the solution configuration set, need
to be assigned integer numbers while being bijective. In other words, each
value of the hashing function will relate to one single solution configuration
only (i.e., a one to one relationship). The construction of such functions is
not easy as these functions need to be theoretically proven to guarantee the
unique interdependency between the hashing function value and the corre-
sponding configuration. In practice, a nearly bijective function is usually
adopted as a proxy with a small degree of inaccuracy. For instance, in vehicle
routing possible functions may include the objective function value namely
the total cost, some index function based on route configuration such as the
number of routes, for each route with the same number of customers, and
cost of the sequence of customers in those routes, among others. However,
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when these are put together will reduce the risk of missing the ‘one to one
relationship’ property. For instance, in the case of routing problems, we can
use the following checks in sequence. We can conclude that if the total cost
is different, then the new solution is different, otherwise, we check if the
number of routes is different, then if the number of customers in each route
is different, if the load in each route, etc.

Subset-Based Configuration It is worth noting that the issue of dupli-
cation can be relatively easier to deal with in those applications where the
solution configuration is defined by a selected subset of integer numbers
instead of a sequence. For instance, in the p-median problem where the
configuration is made up of p integer numbers denoting the site number of
the facilities, we can sort each configuration in ascending (or descending)
order of its sites numbers as the order in this situation has no practical
meaning. If the total cost (or the objective function value of the problem
studied) happens to be the same as some of the previous configurations,
the following two rules can be applied. We can either turn each solution
configuration into a string and then compare the strings only, or perform the
checks column by column starting from the first one. For example, if the two
elements (i.e., the location in this case) at a given position of the two solu-
tion configurations are different, the new configuration must be different and
therefore there is no need to check the remaining positions. This overall check
of the new configuration, if, for instance, m other already found configura-
tions have the same cost, will take 0(pm) in the worst case. This is performed
successfully in [18] where a cellular approach is used for the Weber problem
making the problem easier to identify its small pieces, referring to the cells in
this example.

15.4.3 Cost Function Approximation

The computation of the objective function, once the move is selected, can
require an excessive computational effort. As there will be a lot of moves
to evaluate, if such an evaluation is too heavy computationally, it could be
important to apply a good but quick approximation of the cost evaluation
instead. To add flexibility and reduce the risk of missing good solutions, the
top K moves will be rechecked properly using the full cost evaluation. Note
that if K represents all the possible moves, this will reduce to the original
implementation but if K = 1, the chosen move will be based on the best
one using the approximation only. The former could be too time consuming
whereas the latter is quick but could be too myopic and hence could miss
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good quality moves. Having K as a fraction of the problem size or just
based on the number of possible moves could be a good way forward. Such
implementation is proved to be successful in solving capacitated location
problem where the full transportation problem is solved optimally using the
selected moves only and the approximation is based on assigning customers
to the open facilities using the nearest proximity criterion or the regret cost
(difference between the second nearest and the nearest facility to a customer)
instead. The main idea is that the approximation needs to be easy to compute
while being as close as possible to the real objective function and robust in
the sense that all moves are similarly approximated irrespective of whether
they are all over or under estimated.

15.4.4 Reduction Tests/Neighbourhood Reduction

The reduction in computing time can be obtained by introducing some
neighbourhood reductions which eliminate from the testing certain cases that
are unlikely to influence the global best solution. There will be a trade-off
between speed by which the best solution is obtained and the quality of
the solution. This important aspect is crucial when designing a heuristic.
When implementing a heuristic it is important to understand the problem
which will help in defining the right size of the restricted neighbourhood
for each attribute that only will be considered. This mechanism, also known
as a reduction test, can be built to be either dynamic or deterministic that
is set from the outset. For instance, Salhi and Sari [48] introduced some
reduction tests when studying the multi-depot vehicle routing and saved
over 85% of the cpu time with a negligible loss in solution quality. A good
neighbourhood reduction scheme has also the added benefits in matheuris-
tics in some circumstances, as it transforms the original problem into a
new reduced problem that could be manageable to be optimally solvable.
A similar approach that considers the power of neighbourhood reduction is
the interesting paper on granular tabu search by [57] where restricted neigh-
bourhoods are defined making the overall search relatively much faster. It
is worth mentioning that the use of neighbourhood reduction may slightly
affect the solution quality though the challenge is to construct such schemes
which only exclude with high probability those unnecessary moves. This risk
presents an exciting challenge with the aim to thrive towards finding the right
balance between a strong reduction test (remove as much as possible) while
not affecting seriously the solution quality.
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For illustration purposes, we shall present some of those neighbourhood
reductions that are originally proposed for the vehicle routing by [48] and
revisited by [54]. We show two rules, namely, rule 1 which is proximity based
and rule 2 which is depot based.

Proximity-based scheme (Rule 1) For each node i, let us define the subset
of nodes that should not be excluded for subsequent moves where node i is
involved. This can be distance-based (those nodes that are within a certain
threshold from i ) or cardinality-based (a certain number of neighbouring
nodes from i ), or a combination of the two measures. For each node i, we
define the following logical flag as flag (i, j ) to false if node j is not excluded
due to the above conditions. Initially all flags are set to true. Note that when
no reduction scheme is adopted, this is equivalent to setting all flags to true.

Depot-based (Rule 2) Some customers may be far away from each other
but could be close to the trajectory of leaving the depot or returning to the
depot. This observation can be taken into account by considering node j to
be a neighbour of i if its insertion cost between the depot, say 0, and node
i is less than a defined insertion-based threshold. The above two rules that
define the two neighbourhood reductions are represented in Fig. 15.5 for a
VRP example of three routes.

Another test that considers those pairs of nodes (i, j ) which happen to be
within a certain angle with respect to the depot, θ(i, 0, j), or not too far
apart but within proximity to the depot is also worth incorporating as part of
the overall pruning mechanism. For more details on all the neighbourhood
reductions , see [46].

It is important to make the link between neighbourhood reduction and
valid inequalities. Both are defined as some form of cuts to eliminate

Fig. 15.5 Two neighbourhood reductions for a 3 routes VRP (adapted from [46])
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some regions from being searched. However these two schemes differ in
the following. The former eliminates feasible regions that are unlikely to,
though still could, contain the optimal solution whereas the latter retains
the optimality property of not missing the optimal solution. In addition, the
former tends to eliminate a relatively much larger portion of feasible regions
contrarily to the latter by making the search even much faster. An inter-
esting potential research view related to these schemes is also discussed in
the suggestion section.

15.4.5 Parameters and Hyper Parameters Optimisation

One of the weakest and most criticised aspect within heuristics and machine
learning is the reliance on good estimate and fine tuning of the parame-
ters used. For example, in a GA we can consider the crossover rates, type of
crossover, mutation rate, number of chromosomes in a population, whereas
for the RF we need to identify the number of RTs, the number of best
attributes, their threshold, depth of the RTs, etc. Some of these parameters
can be continuous, discrete, categorical within their domain spaces which can
be also large making this global/combinatorial problem even more complex
to study.
This task is usually performed on a training set. Two commonly adopted

approaches are grid search and manual search with the latter incorporating
random search. The former is used by evaluating the entire space (all combi-
nations in the grid space) for all the dimensions which could be impractical
and time consuming. This is because this approach may suffer from the curse
of dimensionality and hence not always appropriate and even not promising
due to the defined grid adopted. Note that this grid could be adaptively
redesigned to focus on the promising areas. For instance, one can start with
a uniform grid and as the search progresses, many areas could be discarded
and the rest made more granulated. This process of continuously granulating
the grid search approach is a useful and promising area to pursue within the
sphere of deep learning. Random search on the other hand is very simple but
can be blind so one common strategy is to adopt a combination of the two,
see [5]. However, random search can also take advantage of the same enhance-
ment mentioned above to make the search pseudo random while giving more
weight to certain regions instead. In practice, there are usually four ways to
select the parameters:

(a) Experimental work. This is one of the most used techniques which aid to
find the most appropriate values after performing preliminary testing usually
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conducted on a subset of instances, known as training sets, using grid search,
random search, or a combination of the two.

(b) Matching methods. The idea is to assign the parameters already found
in other studies to similar classes of problems.

(c) Analytical forms. This aims to determine analytically these values which
can be derived statistically via linear/nonlinear regression for example.

(d) Adaptive learning . This is based on dynamically adjusting the parameter
values depending on the solution quality as the search progresses.
The first two approaches are the commonly applied ones with (a) mainly

in the computer science/artificial intelligence areas where machine learning is
core whereas (b) is more used in the OR areas. In (c) it can be difficult to
define an analytical function that works all the time. For instance, Salhi [45]
put forward an analytic formulae for defining tabu length and aspiration level
within tabu search, Dorigo and Gambardella [15] gave a formula for the
number of ants based on the other parameters within ant systems, and [1]
conducted a statistical investigation for a metaheuristic which is applicable
for other ones. Also, there are several studies related to simulated annealing
for setting the initial temperature say. The fourth category (d) is the most
challenging and also one that starts to gain more attention. This is because it
shows to be robust besides yielding more competitive results when compared
to the above static measures. Here, some form of control is embedded into
the search so corrective measures are added to either avoid the risk of early
convergence or to control the problem of divergence. The use of information
to control the search is successfully applied in several applications. As exam-
ples, consider the reactive TS where the tabu size goes up or down depending
on the solution quality and the risk of collision. In SA, the temperature is
reset to previously found values, in VNS for larger and complex problems,
the use of a smaller number of promising neighbourhoods is restricted in
pseudo-random way to a smaller but promising subset among the original
set of neighbourhood structures. The same idea is applied to the use of a
subset of local searches instead of the full set which may require an excessive
computational effort. The choice of such subsets is performed dynamically
that is based on those good solutions found earlier in the search. In GA the
rate of selection between the elite solutions and the less well-off ones can also
be controlled dynamically as the search progresses. Note that learning is now
also integrated in both (a) and (b) to strengthen the search and hence provide
better estimates of the parameters. One way forward is to adopt a two-phase
approach where in phase 1 we start with random search for a while then iden-
tify interesting and promising regions where in phase two a grid search could
then be employed in those well defined spaces only. Here the grid coverage
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in a given dimension could take advantage of the learning to assess whether
the objective function is relatively more sensitive to certain dimensions than
others. The first phase is similar in principle to manual search where regions
are first identified but there it is not easy to reproduce the results. In other
words, this first phase is systematic and problem independent. In addition,
the search could be made even more efficient if parallelisation is applied as
both random search and grid search, for instance, can easily be parallelised.

At a higher level, the hyper parameter optimisation could be dealt with in
two layers that are nested. For instance, in layer one an evolutionary approach
such as GA, PSO, or Ant colony is used with parameters provided to the
lower layer say VNS, TS, SA, or RF to solve the problem that yields the
fitness function values. The parameters of the first layer are usually fixed.
This iterative process could be time consuming as the lower level itself will
require some time to complete and hence a good learning on how to cut on
the calls to the higher level or how to approximate the result at the lower level
relatively quickly is paramount. Note that the two levels could obviously be
interchanged where in level one the parameters are updated given the param-
eters of lower lev are made fixed. In machine learning, for instance, a higher
level could be GA that optimise the parameters of a neural network (number
of layers, number of inputs, etc.) or RF (number of RTs, type of branching,
number of attributes, etc.).

15.4.6 Impact of Parallelisation

There exist various models on how to parallelise a given algorithm including
master slave, fine grained, island, and obviously a hybridisation of the above.
The first one is to use several computers (or processors) and carry out a
scheduling task between them, whereas the others especially the island model
focusses on exploiting the power of course grain parallel computers. Even
a computer with one processor only which happens to have dual or multi-
core (internal parallel processing) can be taken advantage of its architecture.
In addition, parallel random access model, or known as PRAM, could also
make use of memory better and hence activate the processing accordingly.
Recently, GPU short for Graphics Processing Units, which is originally used
in the video game industry, can be explored. Note that GPU handles thou-
sands of cores whereas CPU has only multiple cores only. However, it is worth
noting that each GPU core runs significantly much slower than its counter-
part CPU core. The strength of GPU is for those applications that are or can
be massively parallelised so each little job can be performed separately even if
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it is slower. The idea is to offload parts of a given job to the GPU and leave
the hard part to run on the normal CPU.
There are some techniques though that may not be so powerful but their

performance can easily be enhanced as their structure fits naturally with
parallelism. These include random forests where each random tree can be
exploited separately, population-based metaheuristics such as GA and PSO
can be parallelised easily as each chromosome in GA or a particle in PSO
can be exploited separately and then their overall result is then combined
before the process starts again. This is also the case for ant colony and bees
optimisation.

15.5 Conclusion and Research Issues

In this final section we summarise the main aspects we discussed and provide
some research avenues that could be worth pursuing.

In this chapter, we extend on chapter [51] where strengths and weaknesses
can be found in any heuristic. Hybridisation which is one way forward to
overcome this limitation, is covered with an emphasis on exact methods
with heuristics, heuristics with exact methods and heuristics with heuris-
tics. A possible hybridisation for big data that adopts a series of heuristics
with increasing complexity as the search progresses is also proposed. As
the search progresses, the effect of learning is briefly discussed. Due to the
advance in computer technology and algorithm design, three commonly used
machine learnings, namely, random forest, support vector machines, and
neural network are briefly described with their strong links to heuristic opti-
misation highlighted. The efficiency of heuristics depends on several aspects
including the hidden key elements when it comes to their implementation.
This delicate issue has a massive practical importance is put across where
the benefits of constructing effective data structure, neighbourhood reduc-
tions, duplication identification schemes, parameters estimation, and parallel
processing, among others are highlighted.
The following research aspects could be worth exploiting.

1. The first issue is the hybridisation of heuristic and exact methods. This
is a nested approach (heuristics within exact methods, or exact methods
within heuristics), which in our view, will remain a hot topic for many
years to come. The issue here is to dynamically identify those nodes of
the B&B tree which are worth examining further. Some of these could
have (a) infeasible solutions (i.e., lower bound values) or (b) feasible ones
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(upper bounds) not only the incumbent one. Embedding some form of
repair mechanism followed by an improvement scheme, such as a local
search or even a small version of a powerful heuristic, can be used for
(a) whereas the improvement scheme is better suited for (b). In (a) the
aim is to first transform the infeasible solution into a feasible one whereas
in (b) the idea is to improve the feasible solution if possible. Note that
the improvement scheme is used not only on the best upper bound as
applied in integer programming for fathoming purposes but also on the
other upper bounds for which their feasible solutions display some form of
diversity or promising attributes. This mechanism could lead to improving
upon the best incumbent upper bound while strengthening the improve-
ment scheme adopted for diversification purposes as is commonly used in
TS or via the injection operators as in GA.

2. The view of identifying promising attributes or patterns as the search
progresses is an exciting avenue that is likely to yield excellent results
in the future. The idea is to obtain, through a simpler heuristic which
could be called several times such as a smaller version of GRASP, guided
LP relaxations, or even a GA, to generate several solution configurations.
These solution configurations when merged together in either subsequent
reduced problems or an augmented problem will control the search in a
guided manner towards optimal or near optimal solutions due to their
promising attributes. This aspect has shown to be worth pursuing in
various powerful heuristics such as concentration set approach, harmony
search, relaxation methods, and bucket search, among others.

3. The understanding of how a given method works and then to design
a data structure that incorporates as much as possible those interesting
intermediate found information so to avoid re-computing unnecessary
calculations is vital. This process though may increase some level of
memory and may require an initial fixed cost in terms of development
and computation time, it does often lead to a massive time saving without
affecting the solution quality at all.

4. Another aspect that enhances the implementation is the construction
of effective neighbourhood reduction schemes. These help the search to
avoid even checking combinations and operations that are unlikely to
result in improving the solution. A note of caution here is that the latter
schemes though will have a considerable saving in computational time
and are usually simple to construct, could affect the solution quality. This
is contrarily to valid inequalities which retain optimality. It would be
interesting to create a new flexible scheme that sits between the two by
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developing a powerful neighbourhood reduction while guaranteeing opti-
mality within 1 − α with α being the risk (or probability) of missing
optimality. In other words, this is a compromise between controlling the
restricted neighbourhood which is powerful enough (remove as many as
possible irrelevant checks) while not excluding promising moves which
may lead to optimal solutions is exciting and hence worth exploring.

5. As the decision problems tackled by machine learning are combinato-
rial or global optimisation type problems that are often not convex, with
the added complexity of very big data, it is important to stress that the
solutions usually provided are feasible solutions only which by no mean
guarantee optimality. It is therefore important that as the engine of the
machine learning is mainly linked to optimisation, which is usually not
made aware of as it should be, more research and involvement of the
OR community in general and heuristic optimisation in particular is
crucial. This not only opens a massive opportunity for applications but
also a massive boost to research in combinatorial and global optimisation
general.

6. Evolutionary heuristics are relatively easier to be parallelised and hence
can be used for larger instances and in practical setting if the computing
facilities are available. The integration of GPU and CPU, as briefly high-
lighted earlier, can be a useful addition to the mix which may entice
researchers, mainly in the computer science community, to be more
excited about. Though this is a technical issue, it may require some
interesting developments that could be worth exploring.

7. The design of adaptive search that dynamically learns and makes use
of the obtained information is crucial. This learning mechanism which
ought to be continuously or at least periodically updated is then used to
pseudo-randomly select at each iteration or just after a certain number
of iterations the decision rules to be used. These can include a subset of
neighbourhoods to choose from, a number of local searches to be used for
intensification purposes, or even the powerful heuristics or exact methods
to opt from. This kind of search is self-adaptive and also efficient as it
uses what it needs only rather than having everything with the expectation
that a good solution may be found! This research issue though challenging
and practically useful would probably be one of the most popular research
areas in the near future as it has the additional benefits of being applicable
in several areas ranging from engineering to medicine.

8. In a related but different aspect, it is well known that most exciting
powerful heuristics seem to suffer from parameter tuning. It is therefore
worthwhile concentrating on schemes that incorporate ways of reducing
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the number of parameters or adjusting the parameters values dynamically
and adaptively. This is very welcome and in our view is also one of the
ways forward. Results from such studies will provide us with tools on
how to avoid the excessive time for fine tuning of the parameters, besides
making the heuristic less sensitive to parameter values and hence more
reliable to use.
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Forecasting, Simulation and Prediction



16
Forecasting with Judgment

Paul Goodwin and Robert Fildes

16.1 Introduction

Despite the rise of Big Data and predictive analytics, most forecasts in organ-
isations still rely heavily on people’s judgments (Fildes and Petropoulos [41];
Fildes et al. [39]). For example, forecasts of the demand for a new product
may be based wholly on managers’ guestimates. Similarly, in the case of
exceptional events such as sales promotions, forecasters may make judgmental
adjustments to statistical or algorithm-based forecasts. The forecasts may be
made by an individual, or, alternatively, aggregated from a group of individual
judgments. They can be based on nothing more than a holistic view of the
problem or prompted by information cues , both quantitative or qualitative
(such as a competitive price rise, a statistical forecast or a rise of pneumonia
in China).
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Alternatively, judgment can have an indirect influence on forecasts. For
example, it can be used to decide which statistical forecasting method to
employ, the length of historical data that should be used to estimate the
parameters of a statistical forecasting model or the variables which should
be included in the model. The key element of judgment is that it is subjec-
tive and cannot be exactly reproduced by an algorithm or a set of explicit
rules.

In some circumstances, forecasts reflect the judgments of potential
customers on their likelihood of purchasing a particular product or service
or the views of the electorate on their voting intentions. These judgments
are elicited in intentions surveys and typically translated into forecasts of
demand, market share or election outcomes (Morwitz et al. [101]). However,
for brevity, this aspect of forecasting will not be considered here.
The tasks faced by judgmental forecasters making direct judgments can

take several forms. They can involve forecasting a numeric quantity, such as
next month’s demand for a product or the rate of a country’s inflation over the
next quarter. Alternatively, they can entail forecasting whether an event will
occur, for example will the next US President be a Democrat or will a human
land on Mars by 2040? In both cases the forecast can be expressed with or
without probabilities. A manager might simply forecast that next month’s
demand for a product will be 320 units (a so-called point forecast) or they
may provide a complete probability distribution for possible levels of demand
(a density forecast). An intermediate position would be to forecast specific
quantiles of the distribution. A special case of this involves the estimation of
a prediction interval. For example, a manager may estimate that there is a
95% probability that the interval from 280 to 360 units will contain next
month’s level of demand. In the case of events, the forecaster may simply
report what they consider to be the most probable event, for example that
the UK will not rejoin the EU within the next decade or they may attach a
probability to this event (e.g., “I estimate there is an 85% chance that the
UK will not rejoin the EU within the next decade”).

Given that judgment is frequently used in such a wide variety of forecasting
tasks, all fundamental in OR, this chapter first explores why judgment has
such a prevalent role in forecasting. We then review what the latest research
tells us about the benefits and drawbacks of using judgment to perform
these different forecast tasks. In the third section we examine and evaluate
strategies that are designed to support and improve the role of judgment in
forecasting, highlighting the many under-researched questions, followed by
our conclusions on the role of judgment.
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16.2 Why Is the Use of Judgment so
Widespread in Forecasting?

There are several reasons why forecasts often rely heavily on judgment. Quan-
titative forecasting methods such as exponential smoothing, regression or
artificial neural networks (ANNs) require past data, often in significant quan-
tities, before they can be used. Many forecasting situations are unique or have
only a few close analogies, so large amounts of data may not be available. For
example, a product due to be launched next week may be unlike anything
previously seen on the market, or an established product may be the subject
of a sales promotion strategy that has not been tried before. Even when data is
available, it may no longer be relevant, as when a once-in-a-century pandemic
has a profound disruptive and long-lasting impact on demand. Alternatively,
the cost of acquiring relevant data may not be justified by the relatively
limited benefits of accurate forecasts. In these circumstances, forecasters may
have no option but to rely on judgment.

However, there is plenty of evidence that, even when inexpensive and
useful data can be accessed, people still resort to judgment. There are several
reasons for this (Fildes and Goodwin [36]).

i. Many forecasters may lack the training or facilities (such as software)
that are required to apply quantitative methods (Watson [141], Hoover
et al. [72]);

ii. They may be unaware of the potential benefits of such models;
iii. They may suffer from egocentric discounting of advice, or from algo-

rithm aversion—the human tendency to abandon algorithms quickly
after they see them err (Dietvorst et al. [27]; Önkal et al. [108]); but
also see Logg et al. [92] who reported ‘algorithm appreciation’;

iv. They may have a fear of being deskilled if their role as forecasters is
replaced by algorithms (De Baets and Harvey [22]);

v. They may require a sense of ownership of the forecasts (Önkal and
Gönül [106]);

vi. They may see forecasts, based on their judgments, as a means of
demonstrating their expertise (Fildes and Goodwin [36]);

vii. They may be subject to a range of cognitive or motivational biases,
which cause them to reject reliable statistical forecasts;

viii. Misunderstanding the forecasting task, they may confuse targets, plans
or decisions with forecasts (Goodwin [48]; Fildes et al. [38]); or
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ix. They may believe that they have valid extra information that comple-
ments or contradicts the information already incorporated into the
quantitative model.

In addition, when models or algorithms are available, people often prefer
to use judgment because they suffer from ‘deluded self-confidence’ (Klein-
muntz [85]), overconfident that they will ‘beat the odds’ because they have
real expertise in a domain. Their false perception of expertise can be exac-
erbated by hindsight bias (Goodwin [51]), which can encourage people to
think that they are better forecasters than they really are, and an illusion that
they have control over the variable they are forecasting (Durand [30]).

16.2.1 The Benefits of Judgment in Forecasting

Although early researchers advised against the widespread use of judgment
in forecasting (Meehl [97]; Carbone and Gorr [17]), there is evidence that,
under the right conditions, judgmental forecasters can provide reliable fore-
casts and even outperform quantitative methods when a comparison between
the two approaches is possible. These conditions relate to the nature of
the forecasters, the forecasting environment and the characteristics of the
forecasting task.

Moritz et al. [100] have suggested that judgmental forecasters could be
selected based on a cognitive reflection test, which assesses their ability to
balance intuitive judgment with cognitive deliberation. Those performing
well on the test produced more accurate forecasts in an experiment—though
a study by De Baets and Vanderheyden [24] did not find any effect of cogni-
tive reflection on the susceptibility to forecasting biases. Qualities associated
with judgmental forecasting ability have also been extensively explored by
Tetlock [131]. In a study of the performance of experts in estimating the
probabilities of future economic and political events, he found that those he
referred to as ‘hedgehogs’ were less accurate than guesswork in their predic-
tions. Hedgehogs were characterised by a ‘dogged perseverance in believing
in their limited vision of the world’, a tendency to ‘know one big thing and
toil devotedly within one tradition’ and ‘a belief that history occurs as a result
of deep underlying laws’. These forecasters were less successful than those
labelled as ‘foxes’—experts who are sceptical of dogmatic theories and are
open to re-adjustment in light of recent findings. In later work, Tetlock and
Gardner [132] were able to identify relatively rare people who they termed
superforecasters. Working in groups, these people were able to outperform
intelligence specialists in their prediction of world events. Unlike hedgehogs,
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the superforecasters were open-minded, able to blend conflicting arguments,
emotionally detached from what they were forecasting, open to challenge,
analytical and numerate, and accepting that the world is complex, contradic-
tory and untidy. Subsequent work by Katsagounos et al. [80] suggests that
superforecasters can be identified and employed within organisations, even
where there is a small pool of potential forecasters to select from. However, it
is important to note that these studies relate to probabilistic event forecasting
over shorter horizons and it is unclear whether the notion of superfore-
casters could be successfully applied to situations such as month-to-month
product demand forecasting in companies (Goodwin [52], p. 112) or to
longer term forecasting problems (Scoblic and Tetlock [122] and associated
commentaries).

Even where superforecasters are not available, some environments have
characteristics that can favour judgmental forecasters. Psychologists have
found that humans have evolved mental shortcuts, known as heuristics,
that reduce the information processing demands of judgment and decision-
making (Tversky and Kahneman [136]). Heuristics consist of simple rules
that people can apply quickly and effortlessly. For example, the recognition
heuristic states that when faced with a choice between two products, only one
of which is recognised, a purchaser should choose the one that is recognised
(Gigerenzer et al. [46]). This rule will work well in an environment where
better known products tend to be superior, or more generally where a propen-
sity to recognise an option correlates with its performance. This can apply in
some forecasting contexts. For example, Gigerenzer et al. ([46], p. 69) found
that laypeople outperformed experts when asked to select stocks that they
thought would offer the best future returns. While the experts selected less
well-known stocks, the laypeople tended to select stocks that they recognised-
dominant companies with large market shares tend to be more profitable and
more recognisable. Similar results have been found in sports forecasting. More
recognisable football teams and tennis players tend to have a greater proba-
bility of winning games (Ayton et al. [5]; Scheibehenne and Broder [121];
Serwe and Frings [123]). The recognition heuristic is an example of where
‘less can be more’. The less a person knows about the situation they are fore-
casting the less likely they are to be distracted by non-diagnostic information
that is not useful in the forecasting task.

Other experiments by Gigerenzer and his colleagues (Gigerenzer
et al. [46]) have revealed that so-called fast and frugal heuristics can outper-
form multiple regression when the environment has particular structural
characteristics. For example, when a single cue dominates others in its asso-
ciation with the variable to be predicted, judgmental forecasts based on this
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cue alone can be more accurate than regression models based on multiple
cues. This is because, when many cues are available, there is a likelihood
that the regression model will reflect accidental correlations in the training
dataset between cues and criterion—correlations which fail to be sustained
outside this dataset. When data is relatively scarce this is more likely to be
an issue because the ratio of the number of cues to the number of available
observations may be high.

Several other aspects of the forecasting environment can be advantageous
to judgmental rather than algorithmic forecasts. Human forecasters may be
able to draw on non-linear relationships between cues and outcomes (Seifert
et al. [124]) and configural cues. For example, combinations of cues may
have emergent non-linear properties which provide indications that cannot
easily be captured by formal models (Einhorn [32])—though developments
in artificial intelligence research may mean that this advantage is becoming
less marked (e.g., Veksler et al. [140]).

In addition, judgment may perform relatively well in environments where
accurate forecasts depend on the ability to adapt speedily to change or disrup-
tion (Blattberg and Hoch [12]). The extent to which this advantage applies
depends upon the forecaster’s ability to identify changed or abnormal circum-
stances and distinguish these from variation arising from noise (O’Connor
et al. [102]). We discuss later the factors that may restrict this ability.
However, when changed or abnormal circumstances can be anticipated (e.g.,
as in the case of forthcoming sales promotions or price increases) research
in organisations suggests that judgmental adjustments to statistical forecasts
can improve accuracy under some conditions. These include a high level
of expertise by those making the adjustments (Alvarado-Valencia et al. [2])
and statistical forecasts that are relatively inaccurate and lacking in credi-
bility (Alvarado-Valencia et al. [2]; Franses and Legerstee [44]). However,
empirical studies with a number of supply chain company data sets by Fildes
and colleagues ([37, 38]), found that only negative adjustments (i.e., those
that reduced the size of the statistical forecast) consistently proved bene-
ficial, possibly because positive adjustments were subject to optimism bias
(see later). When sales histories were presented graphically in a laboratory
study, Goodwin and Fildes [53] found that judgmental adjustments tended
to improve statistical forecasts when the sales promotion effect was strong
and the series in normal periods was stationary or subject to low noise. This
meant that spikes on a sales graph representing past promotion effects were
salient. Recent work (Sroginis et al. [126]) found that it is the most recent
promotional peak that has the most influence.
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Effectively, when making an adjustment, the forecaster is weighting the
statistical forecast and the corresponding conditional judgment. A re-analysis
of the Franses and Legerstee and Fildes et al. data (Fildes et al. [37]) has
confirmed the weightings are typically inefficient. Nevertheless, in some
circumstances such as positive adjustments reweighting leads to improved
accuracy. The Covid-19 pandemic of 2020–2021 has provided a particularly
pertinent example as in the initial stages of the pandemic, the statistical fore-
casts for many products were irrelevant and as the pandemic progressed, the
relative weights to judgment and the statistical forecast needed updating.
The performance of human judges in selecting appropriate statistical fore-

casting methods is an area that has only recently been researched. However,
two studies suggest that people are proficient in identifying the most accu-
rate method when asked to make a choice between candidates (Petropoulos
et al. [116]; De Baets and Harvey [23]). Both studies involved the selection
of statistical time series methods, such as variants of exponential smoothing,
where past observations were presented on graphs. In [116], judgmental selec-
tion rivalled that based on algorithmic selection using the Akaike information
criterion (AIC) and it tended to avoid the selection of the worst method more
often than algorithmic selection. In [23], participants’ ability to identify the
best method improved as the difference in the true accuracy of two candidate
methods widened. Also, when invited to adjust forecasts judgmentally, people
were more influenced by the better performing method. Further research
could usefully examine the quality of judgmental selection when contextual
information is available in addition to time series data: model specification
through the use of dummy event variables is featured in SAP’s popular F&R
software.

16.2.2 The Drawbacks of Using Judgment
in Forecasting

16.2.2.1 Motivational Biases

In some circumstances, judgmental forecasters may be motivated to produce
forecasts that do not conform to their true assessment of future outcomes.
When their forecast’s accuracy is subject to scrutiny, forecasters may be
tempted to play safe and set their prediction close to those of other people -
a process known as herding (e.g., Hong et al. [71]; Christoffersen and Stæhr
[19]). In contrast, other forecasters may have a tendency towards contrar-
ianism (or anti-herding) because they want to stand out from the crowd
(e.g., Pierdzioch et al. [117]). The odd extreme forecast that fortuitously
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turns out to be accurate may be enough to establish your reputation, partic-
ularly if it eclipses a record of inaccuracy in people’s minds (Henry [69];
Denrell and Fang [25]). Preserving one’s reputation may also be a reason
for forecasters’ reluctance to change forecasts when relevant new information
becomes available because such changes may be regarded as a sign of incom-
petence (Kirchgässner and Müller [83]). When it comes to probability-based
forecasts, users may discount overly wide prediction intervals or probabilities
that are not close to certainties, even when such forecasts are well calibrated
(e.g., Keren [81]; Yaniv and Foster [144]) so forecasters may feel pressurised
to exaggerate the level of confidence they have in their predictions (Løhre and
Teigen [93]).

Politics can be a major cause of bias in judgmental forecasting (Deschamps
[26]). For example, pressure groups may produce distorted forecasts to try to
influence government policy or public opinion (Goodwin [52], p. 157). Even
respected international institutions are not immune. There is evidence that
the International Monetary Fund (IMF) produces ‘better’ forecasts of growth
and inflation when a country is politically aligned to the United States—the
IMF’s major funder (Dreher et al. [29]). At the company level, forecasts may
be exaggerated to attract funding to the forecaster’s project (Tyebjee [137])
or to meet the requirements of senior managers. Alternatively, they may be
set at unreasonably low levels when people will gain kudos by exceeding the
forecast. In financial services, brokerage houses may produce overly optimistic
forecasts for investors to attract more trade (Mehran and Stulz [98]). Mello
[99] has provided a comprehensive account of the game playing that can be
associated with forecasting in supply chain companies. Supply chain planning
sees functional biases and political conflict coming into play and these can
be seriously damaging. Oliva and Watson[104] showed how these could be
overcome through a coordination system that made underlying assumptions
explicit and shared information across functions.

Even where forecasts are produced by apparently objective quantitative
methods, there is a danger that motivated judgments will distort forecasts.
It is known that predictive algorithms can reflect the biases of their authors
(Kirkpatrick [84]; O’Neil [105]). Some forecasting software products enable
users to manipulate the selection of methods and their parameters and data
histories until they obtain forecasts that they are happy with -effectively
leading to judgmental forecasts ‘by the back door’ (Fildes and Goodwin [36];
Ioannidis et al. [74]).
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16.2.2.2 Cognitive Factors

Although the human brain is remarkable in its ability to carry out complex
tasks of pattern recognition, such as instant facial recognition and language
construction, there are limits on its information processing capacity and
working memory and this can be detrimental to the performance of judg-
mental forecasters. Han et al. [62] used brain imaging to show that when
more difficult forecasting tasks, such as discerning systematic patterns in noisy
time series, placed a higher cognitive load on forecasters, their performance
deteriorated. While the heuristics we have evolved to reduce cognitive effort
can often provide efficient ways of solving problems as we showed earlier,
they can also be unsuited to some tasks and environments and can lead to
oversimplifications and cognitive biases (Harvey [65]).

The Effect of Heuristics

In addition to pattern recognition, heuristics that people may rely on in
judgmental forecasting include representativeness, availability and anchoring
and adjustment (Tversky and Kahneman [136]). Biases can result from
each of these heuristics and there is evidence that they can interact and
that their effects are prevalent in many organisational forecasts (Karelse
[79]). The representativeness heuristic is used to judge the probability that
a phenomenon belongs to a particular category, or has originated from a
particular process, based on how representative it appears to be of that cate-
gory or process. For example, in judgmental time series extrapolation, it may
be used to assess the likelihood that a time series has been generated by a
random process based on the forecaster’s assessment of how representative
the observed time series is of what they perceive to be a random process.
In general, people have a poor conception of randomness and may perceive
systematic patterns in the noise appearing in time series (Eggleton [31]).
These illusory patterns are then extrapolated when future values of the series
need to be forecast because people aim to make these representative of what
they have observed in the past series (Harvey [65]). If statistical forecasts are
available, these can be subject to damaging adjustments because forecasters
may regard forecast errors arising from noise as evidence that the statistical
method has failed to recognise predictable patterns (Goodwin and Fildes
[53]).
The availability heuristic is used to assess the probability of a given event

occurring based on how easily the forecaster can recall or imagine similar
events occurring. For example, a recent crash in the stock prices may cause
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the forecaster to estimate a high probability of the event reoccurring within
a specified period. Biases arise when ease of recall or imagination are not
associated with an event’s probability. Recent vivid or dramatic events and
those highlighted in the news media can be unduly influential causing people
to estimate high probabilities of reoccurrence, even when they are rare. The
availability heuristic can also lead to illusory correlation. This occurs where
forecasters have an unsubstantiated prior belief that an independent variable
is correlated with the forecast variable, for example that machines manufac-
tured in a given country have higher probability of failure. They may tend
to recall instances that confirm their belief, while disconfirming evidence
is forgotten. As a result, their conviction that the two variables are related
persists.
The anchoring and adjustment heuristic involves a forecaster making an

estimate by starting with an initial value (the anchor) and adjusting from it
to reach their final estimate. For example, a forecast of next month’s sales
may start with the current month’s sales or perhaps the most recent fore-
cast; this is then adjusted to take in any new information about next month’s
market conditions. However, people tend to under adjust from the anchor.
This can lead to the under estimation of trends because people stay too close
to the most recent value when making forecasts (Bolger and Harvey [13]).
It is also one reason why prediction intervals tend to be too narrow, given
their stated coverage probability, because people anchor on the most likely
value and under adjust from it when estimating the interval’s bounds (Doyle
et al. [28]). This tendency, known as overconfidence, can also occur when
forecasters are estimating the range of density forecasts. When estimating
subjective probabilities for multiple future events there is evidence that people
start by assigning an equal probability to all the events and then adjust from
these to reflect their beliefs on the relative likelihood of the events. However,
anchoring on their initial equal probabilities causes the resulting probabilities
to be too close to a uniform distribution (Fox and Clemen [42]).

Other Cognitive Factors

Several other cognitive factors may have an impact on the quality of judg-
mental forecasts. Forecasters are more likely to pay attention to items of
information that are relatively salient, irrespective of their true value to the
forecasting process (Fildes et al. [39]). Recent data, such as the latest obser-
vation or forecast error, is likely to be particularly salient (Petropoulos et al.
[114]) as will recent contextual information. Recent events may be highly
influential when the forecast lead time is short, and this may account for
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the finding in a study by van den Broeke et al. [138] that company fore-
casters made increasing adjustments to statistical forecasts as the sales period
got closer, even though these damaged accuracy. Narratives are also likely
to attract more attention and be more memorable than statistical informa-
tion, even when they are unreliable (Taleb [129]). Statistical forecasts may
be adjusted based on persuasive narratives that have no diagnosticity, being
based merely on rumours, speculation or samples of one observation (Fildes
et al. [39]).

Forecasters may also suffer from the false consensus effect where, for
example, they expect that their own preferences for products will be shared
by most potential consumers (Belvedere and Goodwin [9]). They may also
egocentrically discount advice from experts (or computerised advice) because
they have a better understanding of their own rationale for producing a
given set of forecasts than those provided by the adviser (Bonaccio and Dalal,
2006). Confidence in an advisor can also be lost when their advice leads to a
rare large forecasting error, despite their general track record of accuracy.
The perception of a substantive signal in noise can be exacerbated by

people’s ability to invent elaborate narratives to explain random movements
in series (Fildes and Goodwin [35]). For example, a recent random rise in
sales can activate attention to factors that are consistent with higher sales and
a neglect of negative factors that are present (Krizan and Windschitl [87]).
The system neglect hypothesis proposed by Massey and Wu [96] provides

an additional explanation of why people have a propensity to adjust statis-
tical forecasts in the light of recent errors. Variation within a time series and
statistical forecast errors are salient while the underlying signal is latent. As
a result, there is a tendency to overreact to forecast errors when the environ-
ment is relatively stable but underreact in relatively unstable environments
when the errors are signalling genuine disruptions or change (O’Connor et al.
[102]; Kremer et al. [86]; Petropoulos et al. [114]). This can undermine the
potential value of judgment in times of change or disruption.

When a particular future outcome is desired, information favouring the
outcome may be accepted at a lower quality threshold, while disconfirming
information may be more carefully scrutinised so that its weaknesses are more
likely to be uncovered (Krizan and Windschitl [87]). Alternatively, forecasters
may deliberately search for information that is consistent with what they hope
will happen, thereby manifesting confirmation bias. All of this can result in
optimism bias (Fildes et al. [38]).

If statistical point forecasts are accompanied by best- and worst-case narra-
tive scenarios intended to highlight the uncertainty associated with the
forecast, this may also damage accuracy (Goodwin et al. [55]). The scenario
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that is congruent with the latest movement in the series (e.g., a best-case sales
scenario and an upward movement) can exacerbate the tendency to focus on
this recent movement, while the opposite scenario is discounted. The presen-
tation of opposite scenarios has also been found to have a contrast effect (e.g.,
Herr et al. [70]). For example, when participants in a study by Goodwin
et al. [56] were asked to make a forecast, under the assumption a pessimistic
scenario would prevail, they tended to make even more pessimistic forecasts
when an optimistic scenario was also presented. Normatively, the opposing
scenarios belong to different independent possible future worlds and hence
the presentation of (say) a best-case scenario should have no effect on fore-
casts based on the opposite scenario. There is also a danger of forecasts being
distorted by scenario bias. The more detailed a scenario is, the more prob-
able it may appear to be, while its true probability of occurring diminishes as
more details are added (Kahneman [78], p. 159). Nevertheless, some of the
evidence on the benefits or disbenefits of providing scenarios to forecasters is
contradictory and the area would benefit from more research (Önkal et al.
[110]).

When estimating the probability of future events, such as the probability
that a new business will survive for the next twelve months, forecasters may
be tempted to discount relevant statistical information when it is available in
the form of a base rate. Their focus on the specific case they are forecasting
can cause them to neglect the wider picture and what this may reveal. For
example, statistics may reveal that only 20 per cent of similar business survive
for a year (this is the base rate) but a person planning a new business may be
tempted to regard their own plans as unique and estimate there is a 90 per
cent chance of survival. In one study this tendency was intensified because
the focus of prospective entrepreneurs was on formulating their own detailed
financial plans. (Cassar [18]). This fostered what Kahneman [78] has called
an ‘inside view’, which is to be contrasted with an outside view that involves
considering the percentage of similar cases that have succeeded. People’s pref-
erence for narratives, at the expense of statistical information, can also lead
to base rate neglect, the two factors reinforcing each other.

Finally, in organisations, forecasts are often finalised by groups of people
in meetings (Fildes and Goodwin [36]). As a result, they can reflect the
views of the most loquacious, domineering, or high-status group members,
irrespective of their ability to forecast. Where the group is highly cohesive,
insulated, under stress and has a dictatorial leader who spurns methodological
procedures, there can be insufficient debate about possible future outcomes
and a pressure to conform. This phenomenon, known as groupthink (Janis
[75]), can be associated with an unwillingness to search for new information
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and selective bias when processing information that is available. The result
can be unmerited optimism and a failure to acknowledge the risk associated
with forecasts. Groupthink can also adversely affect the judgment of analysts
applying quantitative models when they select methods or relevant variables
(Ioannidis et al. [74]).

16.3 Strategies for Improving the Role
of Judgment in Forecasting

16.3.1 Providing Feedback

Feedback on the performance of judgmental forecasts can be provided with
the aim of helping forecasters to learn how to make improvements. However,
to be effective, feedback needs to be timely, unambiguous, easily compre-
hended and indicative of how improvements can be achieved. It should also
avoid oversensitivity to recent forecast errors, which may merely reflect noise,
while simultaneously being responsive to underlying changes in a forecaster’s
performance.

In the case of point forecasts, simply feeding back the latest observation
or forecast error, known as outcome feedback, fails to meet these criteria.
It provides no indication of how future forecasts might be improved and
exacerbates the tendency to focus on the most recent observation. Forecasters
will be unable to discern whether their latest error is due to noise or a defi-
ciency in their forecast and they may overreact unnecessarily. Feeding back
accuracy, averaged over several periods, can mitigate this problem to some
extent, but an accuracy metric alone will still provide no guidance on the
cause of any deficiencies. In contrast, feeding back a measure of bias, such as
the mean error, will indicate whether forecasts tend to be too high or too low
by a certain amount and thereby specify potential improvements (Petropoulos
et al. [115]). The value of feedback may also be greater when it is provided in
a variety of forms and combined with formal training (Legerstee and Franses
[90]).

For probability forecasts several forms of feedback are available, including
simple outcome feedback, which reveals whether the event in question
occurred, and calibration feedback, which reveals the extent to which esti-
mated probabilities conformed to the percentage of times an event occurred
on those occasions when given probabilities were put forward. Outcome feed-
back was ineffective in a study where participants were asked to estimate the
probability of college football teams winning sporting contests in a study by
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Benson and Önkal [10]. However, calibration feedback improved probability
forecasts because it indicated whether these probabilities tended to be too
high or low. It was also the most effective form in a study of stock market
probability forecasting by Önkal and Muradoglu [109].
There is, however, some evidence that outcome feedback is more effec-

tive in helping judgmental forecasters to produce better calibrated prediction
intervals. This is because people estimating overly narrow intervals will
frequently experience outcomes that fall outside their intervals (Goodwin
et al. [57]). Nevertheless, where the time period between the production of a
forecast and the outcome feedback is long people may fail to recall how their
previous estimates fared. In this case, the provision of calibration reports, such
as: ‘Your 95% prediction intervals only captured the true outcome on 30%
of occasions’, is likely to be more effective (Bolger and Önkal-Atay [14]).

In short, based on a number of studies, feedback is of limited value in
improving accuracy. Research on the benefits with regard to bias and calibra-
tion has been limited, but perhaps because both measures suggest an easily
implemented action, there is greater potential for improvement (and further
influential research).

16.3.2 Providing Advice

Advice on forecasting can come from a human or be produced from soft-
ware. In the latter case, an algorithm-based forecast can be regarded as a
form of advice. To be useful, advice has not only to be accurate, but it
must also overcome the barriers of egocentric discounting and scepticism
(Bonaccio and Dalal [15]). There is evidence that advice from a machine is
more likely to attract scepticism than that for a human (Önkal et al. [108]).
However, if advice is from a human, their presumed credibility, based on
their status, can interact in complex ways with their credibility as experienced
from their track record, when determining the extent to which their advice
is used (Önkal et al. [107]). When multiple advisors are available, people are
better at assessing the relative quality of their advice than using this advice to
produce a forecast, suggesting that it is best to combine the advice mechan-
ically based on the judges’ estimates of quality (Harvey et al. [66]). When
there are some advisors with dissenting opinions, people tend to discount
their views. However, feedback on the advisors’ accuracy can enable them
to learn to rely on outlying opinions when these are accurate (Harries et al.
[68]).

Advice can have a stronger effect if people are asked to suspend making
their judgment until after they have received it (Yaniv and Choshen-Hillel
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[143]). However, when forecasters are less knowledgeable than their advi-
sors, they should consider avoiding making their own forecasts altogether
(Harvey and Harries [67]). Other research has indicated that, although advice
suggesting a particular forecast is likely to improve the final adjusted forecast’s
accuracy, such advice is likely to be less successful in promoting learning than
informative guidance (i.e., the provision of unbiased, relevant information
without a specific suggestion) (Parikh, Fazlollahi, and Verma [112]). Expla-
nations behind the proffered advice can increase trust, (Gönül et al. [47]), but
the most appropriate format for these explanations requires further research
(Alvarado-Valencia and Barrero [1]). This issue is of developing importance
when the advice is derived from an opaque machine learning algorithm.
Baker [7] has made interesting suggestions as to how ‘fuzzy’ advice can nudge
forecasters towards a desired adjustment. In his study machine learning clas-
sification techniques were used to predict whether a judgmental adjustment
would improve or reduce a forecast’s accuracy. A requirement to document
reasons for contravening this ‘advice’, for example, would be likely to nudge
forecasters away from frivolous adjustments (Goodwin [49]).

16.3.3 Restrictiveness

An alternative to providing advice to people is to restrict their judgments to
circumstances where they are likely to improve accuracy. Research in organ-
isations indicates that forecasters often make small adjustments to statistical
forecasts which tend to slightly reduce accuracy and transparently waste time
(Fildes et al. [38]). This suggests that restricting adjustments to those above
a certain size may be beneficial (see for example, Petropoulos et al. [114]).
However, a study by Goodwin et al. [54] found that this simply encour-
aged forecasters to make larger adjustments to get around the constraint, even
though these were unnecessary, and this further damaged accuracy. Neverthe-
less, there have only been a limited number of studies on the effectiveness of
restrictiveness and it is an area which merits further research.

16.3.4 Decomposition

Decomposition aims to make the judgmental task easier, and hence more
accurate, by breaking down the hard-to-forecast whole into easier compo-
nents before reconstituting the resulting judgments to make the overall
forecast. This also has the advantage that it can yield a documented and
defensible rationale to underpin the forecast.
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MacGregor [94] summarised the evidence in favour of decomposition in
the early 2000s, suggesting that its use should be confined to situations where
uncertainty about the target quantity is high. In other situations, a compo-
nent might have greater uncertainty than the target quantity and lead to a less
accurate forecast than a holistic estimate. Webby et al. [142] found that point
forecasts of the combined effect of multiple special events that were due to
impact on future demand were more accurate when the effect of each event
was assessed individually. Similarly, Lee and Siemsen [89] found that breaking
down newsvendor order quantity decisions into point forecasts, uncertainty
judgments, and service level decisions led to improved performance, espe-
cially when it was accompanied by decision support in the form of advice.
The process also enabled specific issues associated with each type of judgment
to be addressed individually. Decomposition also allows the forecasting task
to be divided into components best performed by algorithmic models and
those where judgment is advantageous (Seifert et al. [124]). For example,
compartmentalising the use of judgment and hard data can be exploited
when event trees are used to obtain forecasts of the probability of rare events
(Goodwin and Wright [58]).

Some research has suggested that the tendency of judgmental forecasters to
estimate overly narrow prediction intervals can be reduced through decom-
position. People are generally better at estimating a probability for a given
interval (e.g. the probability that the interval £300 to £500 units will capture
the unit cost of materials) than they are at estimating a prediction interval
that will have a fixed probability (e.g. a 95% prediction interval for unit
costs) (Teigen and Jørgensen [130]). A simple decomposition method called
SPIES (Subjective Probability Interval Estimates) allows this advantage to be
exploited (Haran and Moore [63]). For example, in a cost forecasting task,
forecasters would first estimate the lowest and highest possible costs. This
range is then divided into subranges and points assigned to each to reflect
their relative probability of including the actual unit cost. Probabilities for
the subranges are obtained by normalising the points so they sum to 100.
SPIES appears to improve the calibration of prediction intervals (Haran et al.
[64]), but can also be used to elicit complete density forecasts. The technique
also forces decision makers to consider the possibility of extreme outcomes
and hence decreases overconfidence (Ren and Croson [118]).

Decomposition can also be applied to obtain density forecasts when
possible outcomes depend on several factors by using Monte-Carlo simula-
tion (Sugiyama [127]). For example, to forecast the demand for a product, a
probability distribution is estimated for each factor for which the outcome is
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uncertain, such as weather conditions, advertising effectiveness and competi-
tors’ actions. Some of these distributions may be obtained empirically while
others will be based on judgment. Outcomes from each distribution are then
sampled and combined to determine the resulting demand. A probability
distribution for the forecast variable is obtained by repeating this process
thousands of times and recording the relative frequency of occurrence of
different levels of demand.

Despite what we judge to be the popularity of decomposition in practice,
for example in new product forecasting, there has been little documentation
and evaluation of its effectiveness since MacGregor’s summary [94]. It offers a
means for overcoming the complexities in any forecasting study and deserves
more attention by researchers.

16.3.5 Correcting Forecasts

Biases caused by motivational or cognitive factors can significantly reduce
the accuracy of forecasts based on judgment. Mean bias occurs in point fore-
casts when they exhibit a systematic tendency to forecast too high or low.
Regression bias is evident where the systematic discrepancy between the fore-
casts and outcomes is associated with the size of the forecast. It occurs where
a unit increase in the judgmental point forecast tends to be systematically
greater or less than a unit increase in the outcome so that, for example, rela-
tively low forecasts may be too high while relatively high forecasts tend to
be too low (Davydenko and Goodwin [21]). Theil [133] showed that both
biases can be removed from a set of past forecasts by fitting the regression
line: At = a + b × Ft , where At = the actual outcome for period t and
Ft is the forecast for that period, and replacing At in the equation with a
corrected forecast, Ct where Ct = a + b × Ft . This equation can be used
to correct future forecasts on the assumption that biases observed in the past
will continue (e.g., see Blanc and Setzer [11]). This process is likely to be
unsuccessful if forecasters react by putting less effort into their forecasts or by
trying to pre-empt the correction.

Where the forecaster is using multiple cues, any inconsistency in their
use can be removed by regressing their past forecasts on to these cues in a
process known as judgmental bootstrapping (O’Connor et al. [103]). The
resulting equation is then used to replace the forecaster in the future. The
success of this strategy depends on knowing which cues the forecaster has
been using, which is particularly problematical in time series extrapolation.
It also depends on the assumption that the forecaster has not been exploiting
non-linear relationships between the forecast variable and the cues. Fildes [34]
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showed that forecasts, where there are biases in the weights attached to cues,
can be corrected by regressing past forecast errors on to the values of the cues
and adjusting future forecasts by the predicted errors. This has been applied
to judgmental adjustments with positive results (Fildes et al. [38]).

Where biases of different departments in an organisation are intentional,
they may act in opposite directions because some groups favour over-
forecasting while others aim to under forecast. Pennings et al. [113] simulated
this situation in a laboratory experiment and found that estimating and
removing ‘constant’ biases could lead to substantial increases in forecast accu-
racy. One key under-researched issue is (again) organisational implementation
of forecast correction.

16.3.6 Other Improvement Strategies

Researchers have tested several other strategies for improving judgmental
forecasts. Theocharis and Harvey [135] found that judgmental time series
extrapolations were more accurate when the time series presented to them
were either very short (even involving just one observation) or relatively long
(20 to 40 observations). Presenting an intermediate number of observations
(such as five) apparently tempted people to see false patterns in the series. In
contrast, one observation forced them to make a naive forecast (i.e., a fore-
cast that equals the most recent observation)—such forecasts can be relatively
accurate in many situations—while over 20 observations allowed them to
discern real patterns within the data. The same researchers found that when
the judgmental extrapolation is required for several periods into the future,
the common bias of underestimating the trend can be overcome by eliciting
the forecast for the most distant horizon first. Judgmental interpolation can
then be used to obtain forecasts for the intermediate periods (Theocharis and
Harvey [134]).

Moritz et al. [100] found that point forecasts of time series could be
improved by constraining the amount of time allowed for making forecasts
between a lower and upper bound. This avoided errors arising from tenden-
cies to either underthink the forecast by making it too quickly or overthinking
it by having too much time available. In another time series forecasting exper-
iment, Kim et al. [82] found that competition between forecasters improved
accuracy for those who were told, truthfully or otherwise, that their accuracy
was inferior to those of other forecasters.

When it comes to estimating probabilities for future events people tend to
produce better calibrated estimates when the elicitation questions are framed
in terms of relative frequencies. This is because such judgments accord with
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the natural way in which people think (Gigerenzer and Hoffrage [45]). For
example, it would be preferable to ask: ‘Out of 100 new restaurants of this
type, how many do you think will still be in business after one year?’ as
opposed to: ‘What is the probability that this new restaurant will still be in
business after one year?’

16.3.7 Improving Forecasts from Groups

Many judgmental forecasts are made by groups of people, particularly those
of strategic importance. Groups have the power to draw on a wider range
of information sources and perspectives than individuals and when people
submit forecasts independently, their average forecast can be relatively accu-
rate because of the so-called wisdom of crowds (Surowiecki [128]). Diversity
among group members is likely to be particularly advantageous even where
some members tend to produce relatively inaccurate forecasts (Brown and
Reade [16]). Competition and feedback to group members can also improve
their individual forecast accuracy and hence improve the group estimate
(Atanasov et al. [4]). However, the advantage of the wisdom of crowds can be
diminished if people are aware of each other’s forecasts and devices designed
to restrict them to their own private information have been found to be effec-
tive (Da and Huang [20]). Where people have access to shared information,
an alternative is to use an approach called pivoting where people are asked
to estimate the average forecast of the group in addition to making their
own forecast (Palley and Soll [111]). This allows an estimate to be made of
the extent to which an individual’s forecast results from shared information,
leading to an adjusted group forecast.

While there are advantages to restricting access to other group members’
information and forecasts, these methods also exclude the potential benefits
of interaction that can be found in meetings, such as learning from others
and exchanging information. Nevertheless, when people meet to agree fore-
casts, pressures to conform and the dominance of some group members can
restrict debate and reduce accuracy. The Delphi method tackles these prob-
lems by ensuring the anonymity of group members while, allowing an, albeit
restricted, interchange of information and discussion (Rowe and Wright
[119, 120]). The method involves carefully selected panellists providing fore-
casts anonymously to a convenor. The convenor then feeds back statistical
summaries (e.g. medians and ranges) of the group’s estimates to the panel
members and asks them to reconsider their original forecasts in the light of
this feedback. The process usually proceeds for two to three rounds and there
is evidence that its use can improve forecast accuracy (e.g., Lin et al. [91]).
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Belton et al. [8] provide guidelines for the effective application of Delphi.
One of the most important is that panellist’s forecasts should be accompa-
nied by an anonymous written rationale, allowing the convenor to circulate
these alongside the feedback. Without this, panellists may have little reason
to adjust their original forecasts.

Where probabilistic forecasts are required, an alternative is to use predic-
tion markets where assets are bought and sold that have a final value
depending on whether a specified event occurs or not (Vaughan Williams
et al. [139]). The current price of the asset is assumed to reflect the market’s
view of the probability that the event will occur. Unlike the Delphi method ,
these markets aim to benefit accuracy by providing incentives for people to
produce accurate forecasts and by allowing the group’s forecasts to instantly
react to new information. However, they have several limitations, including
the fact that the only shared information is the current price of the asset. This
can lead to cascades where small initial price changes lead to large unwar-
ranted larger changes because people believe others have new information
that they are not privy to. They react by buying or selling assets and so amplify
the original price change. Green et al. [61] and Graefe and Armstrong [59]
have provided a detailed comparison of the relative benefits of the Delphi
method and prediction markets.

Atanasov et al. [4] discuss a form of group forecasting for probabilities,
called team polling, that is more open than Delphi. This involves teams, typi-
cally 15 forecasters, working online to share information and views. Team
members encourage each other to update their forecasts when appropriate.
A team is not required to reach a consensus, instead they make individual
predictions and the average of these becomes the group’s forecast. The team
members receive feedback on accuracy in the form of Brier scores. and a
leader board fosters a competitive attitude. This approach was found to lead
to more accurate forecasts than prediction markets, when individuals’ fore-
casts were weighted based on past performance, and how recently the forecast
was made, and then recalibrated.

16.3.8 Integrating Judgment with Algorithm-based
Forecasts

Integrating judgmental and algorithmic forecasts can lead to greater accuracy
when it draws on the complementary strengths of the different methods (e.g.,
Song et al. [125]). It is one of the most common approaches in supply chain
forecasting [126]. As with group forecasting, integrating the approaches also
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allows forecasts to draw on a wider range of information sources. Arvan et al.
[3] have provided an extensive review of integration methods.

Integration can be carried out in several ways. Algorithm-based forecasts
can be judgmentally adjusted; independent judgmental and statistical fore-
casts can be combined, for example through averaging; judgmental forecasts
can be treated as an independent variable in a regression model alongside
other cues; and Bayesian methods can treat judgmental forecasts as priors that
can be updated as statistical data becomes available. In the latter case there
has been relatively little progress where time series forecasts are concerned
since initial developments in the 1980s and evidence for the relative efficacy
of Bayesian methods is sparse (Arvan et al. [3]).

When algorithmic forecasts of time series require judgmental adjustment
because of forthcoming special events, Marmier and Cheikhrouhou [95]
recommended a three-stage structured approach. This involved first removing
nonperiodic events from time series and using statistical methods to forecast
the ‘cleansed’ series. Next, factors that influence the likely future disruption
to the regular time series are identified along with judgmental assessments
of the nature of their effect (e.g., transient or trend change). The forecaster’s
judgments of the size of each effect are then quantified using a formal scale.
These effects are summed in the third stage and added to the statistical fore-
cast. As we saw earlier, Baker [7] has also made proposals for implementing a
process that advises on the circumstances when adjustments should be made,
with conditional recommendations on the direction and size of adjustment.
The accuracy of adjustments is likely to improve with better quality

information. Eksoz et al. [33] conducted a survey of European and North
American food manufacturers and reported that collaboration and informa-
tion sharing both within and between organisations improved accuracy. In
some cases, useful information about forthcoming special events is likely to
be retrievable from the past. In an experiment relating to product promo-
tions, Lee et al. [88] found that a support system that identified the most
similar past promotions, displayed their details and estimated their effect on
demand, enabled people to produce more accurate adjustments for future
promotions.
There is a danger that adjustments to statistical forecasts will suffer from

a tendency of people to anchor on the statistical forecasts and under adjust
from them (de Baets and Harvey [22]; Fildes et al. [39]). Combining inde-
pendent statistical and judgmental forecasts, through averaging for example,
can overcome this problem, and this approach has worked well in areas such
as sales and election forecasting (Blattberg and Hoch [12]; Graefe et al. [60]).
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Combining can be effective where there is tendency for judgmental adjust-
ments to be in the right direction but too large -though it has proved to
be sub-optimal compared to ‘correction’ (Fildes et al. [38]; Goodwin [50]).
However, as judgment should usually be reserved for periods where there
are special circumstances, the indiscriminate application of combining to all
periods does not seem sensible.

Other researchers have investigated the effectiveness of incorporating judg-
mental forecasts as another predictor variable in the statistical forecasting
model. Franses and Legerstee [44] found that this approach worked best
where the model forecasts were poor in an application to the demand fore-
casts of a pharmaceutical company. Baecke et al. [6] found that it improved
demand forecasts for an international publishing company in all circum-
stances they examined. The approach even appears to improve accuracy
where judgmental point forecasts are less accurate than algorithmic forecasts
because the algorithm filters out the inconsistency of the human forecaster
(Ibrahim et al. [73]).

Implementing more effective methods of integration presents problems
in practice in that every procedure posits an authoritative forecaster with
the power to over-ride and modify the initial judgmental input, thereby
down-weighting the individual expert. Yet again, we point out there is no
research as to the feasibility of the various suggestions beyond straightforward
judgmental adjustment.

16.4 Conclusions

Judgment has proved its value in domains as diverse as macroeconomic fore-
casting (Franses et al. [43]), demand planning for the supply chain (Fildes
et al. [38]) and software engineering (Jørrgensen [76], Jørrgensen et al. [77]).
Some researchers have recently argued that, in an era of enhanced artifi-
cial intelligence and machine learning, human judgment will soon have no
role to play in forecasting. However, even if forecasts from these advanced
technologies prove to be generally more accurate than judgment, it seems
unlikely that judgmental forecasters will become redundant any time soon.
In fact, Jørgensen [76] argues that it is the particular circumstances that will
define the relative performance characteristics. Accuracy too is not the only
criterion for the choice of forecasting methods. The need to have a sense
of ownership of forecasts and to display one’s expertise, unwarranted belief
in judgment, scepticism about machine-based forecasts, particularly those
that lack transparency, and a lack of access to advanced software and the
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specialist knowledge needed to apply it-these are all factors that are likely to
sustain a pivotal role for humans in many situations. Moreover, in a turbu-
lent world where historical data has limited predictive potential, it is not
clear that machine-based methods will always have the upper hand when
it comes to accuracy: the Covid-19 pandemic provides a graphic example.
Continuing research to improve the role of judgment in forecasting is there-
fore warranted. In particular, the provision of enhanced forecasting software,
designed to support judgment, is likely to be as desirable in the future as the
development of more sophisticated forecasting algorithms.
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17
Input Uncertainty in Stochastic Simulation

Russell R. Barton, Henry Lam, and Eunhye Song

17.1 Introduction

A stochastic simulator refers to a computer model that takes random inputs
in and generates outputs by following a set of deterministic system rules.
The simulation outputs are collected and used to estimate a performance
measure of interest. For instance, a simple queueing simulator may prescribe
the system rules on how jobs are processed by servers, where the goal is to
estimate the expected waiting time of jobs in the queue. The inputs to the
simulator consist of interarrival times of jobs and service times of the servers.
These inputs are typically generated from probability distributions referred to
as input models. According to the system rules, the simulator calculates each
job’s waiting time in the queue from the inputs and returns it as an output.
Simulating many such jobs, the expected waiting time can be estimated
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by averaging the outputs. Typically, the estimated performance measure is
subject to stochastic error since one can only generate finitely many simu-
lation outputs. As the simulation sample size increases, the hope is that the
estimated performance measure converges to the true performance measure
in some probabilistic sense.

When the simulator is built to mimic a real-world system, the input
models may be estimated from input data (e.g., interarrival and service times)
collected from the system. Then, there is statistical error in estimating the
input models from the finite input data. As a result, any simulation outputs
computed from the inputs generated from these models are subject to the
estimation error. In turn, the performance measure estimate now has addi-
tional uncertainty caused by the input-model estimation error. The latter is
referred to as input uncertainty and is the main focus of this chapter.
To summarize, the two sources of stochastic variability in the performance

measure estimate are: (i) the finiteness of the simulation output sample, and
(ii) the finiteness of the input data used to fit the input models. These two
sources of variability in the simulation literature have been given a number
of different names. Perhaps most intuitive are simulation variability and
parameter variability by Cheng and Holland [26], with the former charac-
terizing uncertainty or error in a (deterministic) function of the simulation
output random variable due to the stochastic nature of the output, and the
latter characterizing uncertainty in estimated input model’s parameters. Other
names for simulation variability include simulation error, Monte Carlo error,
variance error, stochastic uncertainty, sampling error, and intrinsic output uncer-
tainty. Other terms used for parameter variability (and beyond to cover other
errors stemming from input fitting) include input uncertainty, input-model
uncertainty, bias error, and extrinsic error. In the Bayesian setting, structural
uncertainty captures both model uncertainty (probability model forms and
system logic) and probability model parameter uncertainty. See [6, 7, 28, 29,
63, 75, 92, 120] and Chapter 7 of [92] for additional information. For this
chapter we will use Monte Carlo error and input uncertainty to name the two
sources of variability in simulation output.

We distinguish analyzing input uncertainty from uncertainty quantifica-
tion (UQ) of a computer model. For UQ, the computer models typically
are differential equation-based and have deterministic outputs; the uncer-
tainty is in the values of model parameters. For instance, [121] perform
UQ of a fire-spread model, which calculates the spread speed of forest fire
based on a set of differential equations. Here, the source of uncertainty is
the unknown values of wind speed, moisture level in the air, size of the fuel
in the forest, etc. Closely related to UQ is the topic of sensitivity analysis,
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again typically associated with differential equation models. See [107] for an
overview. Examples of this work include [94, 97] and, more recently, [95].
A main distinction of input uncertainty from computer model UQ is the
stochasticity of the considered model, which adds variability on top of real
data noise that complicates estimation. Another distinction is the type of data
used. Input uncertainty often considers the availability of observations that
directly inform the input distributions while UQ can involve output-level
data [11, 33, 70, 124]. The latter, which is sometimes known as calibra-
tion [64, 125, 134] or simulation-based inference [32], has nonetheless been
also considered in the stochastic simulation literature in the context of model
validation [4, 73, 108, 112] and more recently [58, 59, 101], though still
relatively open.

Concepts closely related to Monte Carlo error and input uncertainty
from the UQ setting are named aleatory uncertainty and epistemic uncer-
tainty [114]. Aleatory refers to inherent randomness in the output, and
this variability cannot be reduced by better modeling or using more data.
On the other hand, epistemic refers to lack of knowledge of model param-
eter value and model bias, and can be reduced by modeling or more data.
While these terms have erudite philosophical roots, they are not as widely
known in stochastic simulation and it would benefit to have more systematic
connections.

Another related topic is robust analysis. We review some of robust
analysis methods applied to stochastic simulation. See for example,
[42, 53, 66, 75, 99].

17.2 Characterizing Input Uncertainty

Consider the estimation of a performance measure ψ that depends on
the input distributions P = (P1, . . . , Pm), where P1, . . . , Pm denote the
individual distributions for independent random sources. For instance, in
queueing models, P1 and P2 can denote the interarrival time and service time
distributions, respectively. Sets of dependent random sources can be consid-
ered to be captured by multivariate distribution Pj of P. The performance
measure ψ , given P, can be evaluated with error via simulation runs, i.e., we
can generate ψ

∧

r , r = 1, . . . , R where R is the simulation budget, and output
the average ψ

∧

= (1/R)
∑R

r=1 ψ
∧

r as a natural point estimate of ψ . We call
ψ
∧

− ψ Monte Carlo error.
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Input uncertainty arises when the ground-truth P is not known but only
observed via data. Thus, P needs to be estimated, and this statistical error can
propagate to the output and affect the accuracy of the point estimate of ψ .
Typically, the data set to inform each Pi is assumed independent of others

and comprises i.i.d. observations (though can be generalized to serial depen-
dence with sufficient mixing). In the parametric regime, we assume Pi is from
a parametric family, say Pθ with unknown true parameter vector θ . In this
case, an estimate of Pi reduces to estimating θ . In the nonparametric regime,
no parametric assumption is placed on Pi , and a natural estimate of Pi is the
empirical distribution (or its smoothed variants).

While simulation output analysis in general may consider any characteri-
zation of the probability distribution of simulation output, ψ

∧

, there are two
main, and closely related, approaches to quantify input uncertainty. First is
the construction of confidence interval (CI) on ψ that accounts for both
the input uncertainty and Monte Carlo error. Second is the estimation of
the variance of the point estimate ψ

∧

, which involves decomposition of the
variance into the input uncertainty variance and Monte Carlo error vari-
ance components. The input uncertainty variance component is typically
more difficult to estimate than the Monte Carlo variance, as the latter can
be quite readily estimated by using the sample variance of replicate simula-
tion runs. The former, however, not only involves a variance of a nonlinear
functional, but also can only be evaluated with added Monte Carlo error.
The CI approach and the variance estimation approach are closely connected
as the variance estimate provides the standard error for a variance-based (as
opposed to quantile-based) CI. Note, however, that when ψ is a steady-state
measure such as average queue length or average time in system, ψ

∧

may have
infinite expectation and its variance is undefined [111]. In this case CIs may
still be obtained, but they cannot be variance-based.

17.3 Confidence Interval Construction
and Variance Estimation

A (1 − α)-level CI for ψ is an interval [L, U ] that satisfies

P(ψ ∈ [L ,U ]) ≥ 1 − α
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where P refers to the probability with respect to both input data and Monte
Carlo runs. We say that a CI is asymptotically valid if

lim inf
n→∞ P(ψ ∈ [L ,U ]) ≥ 1 − α

for some scaling parameter n. We call CI asymptotically exact if

lim
n→∞P(ψ ∈ [L ,U ]) = 1 − α.

Besides coverage, the efficiency of the CI measured by the length of the
interval (in expectation) is also important. Obviously, the infinite interval
L = −∞,U = ∞ is asymptotically valid but not useful.
As will be described in further detail in the following sections, we typically

have

Var(ψ
∧

point ) = VIU + VMC (17.1)

where ψ
∧

point is a natural point estimate of ψ , by “plugging in” the point
estimate of the input parameter and conducting simulation runs based on the
resulting input model, and Var refers to the variance from both input uncer-
tainty and Monte Carlo error. (17.1) implies that the variance of the natural
point estimate of ψ can be decomposed into an input uncertainty variance
component, VIU , and a simulation Monte Carlo error variance component
VMC . The variance estimation approach in input uncertainty often refers to
the estimation of this decomposed variance, in particular VIU which is the
more challenging piece as mentioned before.

CIs and variance estimation are closely connected. Under suitable regu-
larity conditions, not only (17.1) holds, but also we have a central limit
theorem (CLT) for ψ

∧

point such that it is approximately N (ψ,Var(ψ
∧

point )).

Thus, to construct a CI for ψ , it suffices to estimate the variance of ψ
∧

point
and then use

[L ,U ] =
[

ψ
∧

point − z1−α/2

√
Var(ψ

∧

point ), ψ
∧

point + z1−α/2

√
Var(ψ

∧

point )

]

where Var(ψ
∧

point ) is plugged in with the variance estimate, and z1−α/2
denotes the (1 − α/2)-level normal critical value, given by the (1 − α/2)-
quantile of standard normal.

In the following, we divide our review into methods that primarily apply
to parametric regimes (i.e., when the input model is specified up to a para-
metric family with unknown parameters), and methods that can handle
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nonparametric settings (which typically are also applicable to parametric
cases). Moreover, we will focus on the problem of CI construction as, in view
of our discussion above, variance estimation often serves as an intermediate
step in obtaining the CI.

17.3.1 Parametric Methods

When the input probability distributions are assumed to have a parametric
form, the uncertainty characterization is simplified. For each Pj , rather than
dealing with an unknown functional form (restricted to the class of proba-
bility distribution functions), the uncertainty is over a finite set of parameters
that define a particular member of the assumed parametric family. While
easier to handle, parametric assumption should be viewed with caution: In
real-world systems, random phenomena rarely follow any parametric distri-
butions (or mixtures) exactly [20], and sometimes this error ignored by the
existing frequentist and Bayesian input uncertainty quantification methods
described below could be substantial.

17.3.1.1 Central Limit Theorem and Delta Method

To highlight the dependence on θ , we denote ψ = ψ(θ) where ψ(·) is
a map from the input parameter to the performance measure value. From
input data, we give an estimate of the ground-truth parameter vector θ given
by θ

∧

. Then, given θ
∧

, we estimate ψ(θ
∧

) by running and averaging R simula-
tion runs, each denoted by ψ

∧

r (θ), to get ψ
∧

(θ
∧

). This point estimate ψ
∧

(θ
∧

) is
contaminated by both the input and Monte Carlo noises, with the two “hats”
indicating the two sources of noises.

From the decomposition

ψ
∧

(θ
∧

) − ψ(θ) = [ψ
∧

(θ
∧

) − ψ(θ
∧

)] + [ψ(θ
∧

) − ψ(θ)]

it can be inferred that

ψ
∧

(θ
∧

) − ψ(θ) ≈ N

(

0,Var(ψ(θ
∧

)) + Var(ψ
∧

r (θ))

R

)

, (17.2)

where Var(ψ(θ
∧

)) is the input variance, with Var on the randomness of input
data, and Var(ψ

∧

r (θ))/R is the variance of the Monte Carlo error, with Var
on the simulation noise in ψ

∧

r (see, e.g., [24, 57]).
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Moreover, by the delta method, asymptotically as the input data size
increases,

Var(ψ(θ
∧

)) ≈ ∇θψ(θ)′ �
n

∇θψ(θ) (17.3)

where �
n is the estimation variance of θ

∧

, typically scaling in a data size param-
eter n (e.g., a parameter linear in all the individual data sizes for different
input models) and ∇θψ is the gradient of ψ with respect to θ , known as
the sensitivity coefficient. If we use maximum likelihood for instance, then
� would comprise the inverse Fisher information matrices.
Thus, when both the input data size and simulation replication size are

large, we have

ψ
∧

(θ
∧

) − ψ(θ) ≈ N

(

0,
∇θψ(θ)′�(θ)∇θψ(θ)

n
+ Var(ψ

∧

r (θ))

R

)

which then can be used to generate [L, U ] in Section 17.3. Note that
∇θψ(θ) needs to be estimated by simulation (as ψ itself also needs to be
estimated by such), via one of the following ways:

Unbiased gradient estimator: ∇θψ(θ) estimated via unbiased methods
such as the likelihood ratio or score function method [55, 103, 106]. This,
however, may have high variance especially for long-horizon problems.

Finite-difference or zeroth-order gradient estimator: ∇θψ(θ) estimated by
using finite difference that requires only unbiased function evaluations [47,
140]. The rate of convergence, however, is subcanonically slow, and a precise
complexity analysis for the use in (17.3) is not available in the literature.

Two-point methods: ∇θψ(θ) estimated by using finite difference, but only
using a couple of “perturbation directions” for the θ vector, judicially chosen
(the “two points”). [25, 26] show some advantages in this approach.
Though the delta method is based on the normality approximation

common in statistics, in the context of input uncertainty its implementation
requires the estimation of a gradient or sensitivity coefficient that may not
always be easy. Moreover, in finite-sample situations this method may under-
cover [8]. This partially motivates the alternatives that are discussed later in
this section.
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17.3.1.2 Bayesian Methods

The delta method and the resulting CI discussed above take the clas-
sical frequentist perspective. In the input uncertainty literature, Bayesian
methods provide an alternate approach. Assume we have data D for a single
input model parametrized by the unknown parameter vector θ , which is
distributed according to p(ξ |θ). In the Bayesian framework, we impose a
prior distribution pprior (θ) on θ , and compute the posterior distribution

ppost (θ |D) ∝ pprior (θ)p(D|θ) (17.4)

where p(D|θ) is the likelihood of the data D, which is often a product of
terms p(ξ |θ) (note that we could have multiple input models each with its
own set of parameters, in which case we multiply these likelihoods together
if the data are all independent). Computing the posterior ppost (θ |D) is a
subject of long-standing interest, where in some cases (e.g., conjugate prior)
it is readily computable, while in other cases more elaborate techniques such
as Markov chain Monte Carlo (MCMC) are required [27]. Compared to
the frequentist interpretation, a commonly viewed advantage of a Bayesian
approach is the flexibility in specifying prior belief about uncertain param-
eters, which can be used to incorporate expert knowledge [63]. Moreover,
Bayesian approaches are especially convenient in handling dynamic prob-
lems where data are sequentially assimilated, since the posterior distribution
can be naturally used as an updating mechanism to reflect all the historical
information.

In translating the above into inference on ψ = ψ(θ), note that, much like
the frequentist case, we encounter two sources of uncertainty, one from the
statistical error in estimating θ , and one from the simulation error. There are
two views in handling this combination of uncertainties:

Direct Combination: This approach uses a distribution to capture the
overall uncertainty that “lumps” the two sources together. More precisely,
the sampling scheme repeatedly draws a sample from the posterior of θ ,
and given this sample that is used to calibrate the input model, a simulation
run is conducted. The distribution of all these simulation outputs comprises
a quantification of the combined input-simulation error. This approach is
conceptually straightforward, and is used in, e.g., [27].

Variance Decomposition: The second approach resembles more closely
the frequentist approach described in the last subsection. It consists of a two-
layer sampling, where at each outer layer, a posterior sample of θ is drawn,
and given this value that calibrates the input model, several (i.e., R ) simula-
tion runs are conducted which forms the inner sampling layer. Then the input



17 Input Uncertainty in Stochastic Simulation 581

variance and the simulation variance can be estimated via methods much like
the analysis-of-variance to be presented in the variance-based bootstrap in
Section 17.3.2.1. This approach is used by [143, 144].

17.3.1.3 Metamodel-Based Methods

The direct bootstrap, whether used to construct variance-based or quantile-
based CIs (to be discussed in Section 17.3.2.1), is corrupted by Monte Carlo
error. When the Monte Carlo error is large relative to the input uncertainty,
the result can be significant overcoverage of CIs, providing the experimenter
with lower precision than what they should be.

For the parametric setting, constructing a metamodel for ψ(θ) can greatly
reduce the impact of Monte Carlo error on the bootstrap distribution of
ψ
∧

(θb), where the bootstrap resamples are indexed by b. This phenomenon
is easiest to see by considering the case where ψ can be modeled with linear
regression (to full fidelity), and then considering prediction in the CLT case.
To further simplify the motivation for metamodeling, assume that ψ includes
a transformation of the simulation output so that ψ

∧

r (θ) has homogeneous
variance with respect to θ .
That is, we have the full-fidelity metamodel:

ψ(θ) = g(θ)′β + ε, ε ∼ N (0,Var(ψ
∧

r/R)) (17.5)

where g is the vector-valued regression function. Denoting the fitted regres-
sion metamodel prediction by ψ

∧

mm , the approximate variance decomposition
of ψ

∧

mm(θ
∧

)−ψ(θ) can be compared with (17.2), where Var(ψr/R) in (17.2)
is multiplied by

(g(θ)′(G′G)−1g(θ)), (17.6)

andG is the design matrix of g values used to fit the metamodel. This assumes
that the design matrix has one row per different design condition, which
would result in R replications of each row in G. The multiplier will be smaller
than one for θ values inside the design space. For simple linear regression
with θ ∈ R

d , design region scaled to (+/ − 1)d and a 2d factorial design,
the largest value for θ ′(G′G)−1θ occurs at the corners of the hypercube, with
value (d + 1)/2d . This provides one motivation for metamodeling: using
metamodel-predicted bootstrap estimates for ψ

∧

can have greatly reduced
Monte Carlo error. The second motivation is that the bootstrap resamples
of θ each requires an inexpensive evaluation of the metamodel, rather than
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several replications of the expensive simulation model. If the metamodel
fitting design has fewer runs than the bootstrap, the computational effort
will be less.

Linear regression metamodels are essentially identical to the delta method
reviewed in Chapter 17.3.1.1. Here we focus on the use of nonlinear
metamodels with the bootstrap to characterize the distribution of ψ(θ

∧

).
When the input data is limited, the potential for highly nonlinear response

of the simulation as a function of θ makes low-order polynomial regres-
sion less attractive, since Taylor’s Theorem is less likely to apply. Further, the
assumption of homoscedastic variance (independence of Var(ψ

∧

r/R) from θ )
is harder to support.

In a series of papers [9, 137, 138], Xie, Nelson, and Barton employed
stochastic kriging [1] to provide metamodel-based bootstrap CIs for input
uncertainty. The work covers frequentist, Bayesian, and dependent input
variable cases.

Key to the method was the experiment design strategy. Unlike linear
regression, prediction error for stochastic kriging models increases when the
prediction point is far from any experiment design point. In this setting,
space-filling designs are preferred to traditional factorial experiment designs.
Since the metamodel is used to evaluate bootstrap-resampled θb values, the
design should focus on the bootstrap-resample space. The design proposed by
the authors had two phases. In the first phase, a large number of bootstrap
sample θb values were generated (without simulating the resulting perfor-
mance), then a hyperellipse enclosing a high fraction (e.g., 99%) of the θb
values was fitted. In the second phase, a space-filling design for a hypercube
(e.g., Latin hypercube design) was transformed to cover the fitted ellipsoid.
The experiment design was executed (with replications) for specified θ

values to fit a stochastic kriging metamodel. Then bootstrap-resampled θb
values were used with the metamodel to generate approximate bootstrap
ψ(θb) values to assess input uncertainty.

Metamodel-assisted bootstrapping has two advantages over direct boot-
strapping. It makes efficient use of simulation budget by assigning simulation
effort through a designed experiment that evenly covers the uncertain θ input
space. The direct bootstrap over-emphasizes simulation effort in the design
region of the most commonly occurring realizations of θb, which are unlikely
to contribute much to confidence interval or quantile estimation. Second, the
metamodeling approach produces the reduction in Monte Carlo uncertainty
described above. This makes bootstrapping not only efficient but also robust
to Monte Carlo error.
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But metamodel-assisted bootstrapping may have disadvantages over the
direct bootstrap when θ is high-dimensional. The number of simulation
experiment runs required to fit a high-fidelity metamodel can increase rapidly
with the dimension of θ . Thus, for a simulation model with many input
parameters, the number of runs for the metamodel fitting experiment may
exceed the number of direct bootstrap simulation model runs required for
adequate input uncertainty characterization.

17.3.1.4 Green Simulation

Green simulation is an application of the likelihood ratio method, where
simulation replications made to estimate ψ(θ) are reused to construct an
estimator of ψ(θ ′) for θ ′ �= θ [44, 45].

Green simulation has been applied to reduce the computational cost
of input uncertainty quantification. We focus on the Bayesian setting in
this section, although the same approach can be applied in the frequen-
tist setting as well. Suppose θ1, θ2, . . . , θB are sampled from the poste-
rior, ppost (θ |D). At each θb, 1 ≤ b ≤ B, R simulation replications,
ψ
∧

1(θb), ψ
∧

2(θb), . . . , ψ
∧

R(θb), are made and let ψ
∧

(θb) denote their sample
mean. Moreover, let ζ b

r be the vector of input random variables gener-
ated within the r-th replication given θb and f (·|θb) denote the probability
density function of ζ b

r . Thus, ψ
∧

r (θb) is a deterministic function of ζ b
r .

The following change of measure allows us to reuse the inputs and outputs
generated from the R replications made at θb to estimate ψ(θb′) for θb′ �= θb:

ψ(θb′) = E

[

ψ
∧

r (θb)
f (ζ b

r |θb′)

f (ζ b
r |θb)

]

=
∫

ζ

ψ
∧

r (θb)
f (ζ |θb′)

f (ζ |θb) f (ζ |θb)dζ.

Here, an implicit assumption is that the support of the input vector does not
depend on θ . Therefore, ψ̃b(θb′) below is an unbiased estimator of ψ(θb′):

ψ̃b(θb′) = 1

R

R∑

r=1

ψ
∧

r (θb)
f (ζ b

r |θb′)

f (ζ b
r |θb) .

Using this trick, [43] propose pooling all BR replications to estimate each
ψ(θb) to improve computational efficiency. However, this approach should
be taken with caution; although ψ̃b(θb′) is unbiased, its variance may be
unbounded. The exact derivation of Var(ψ̃b(θb′)) cannot be obtained in
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general, but it can be estimated. Thus, one can choose not to pool replications
made at some θb to estimate θb′ , if the estimated variance is large.

Expanding on the idea, [46] study an experiment design scheme to mini-
mize the total number of replications so that the resulting pooled estimators
have (approximately) the same variances as the original two-layer design that
requires BR replications. The experiment design can be optimized prior to
running any replications as long as f (·|θb) is known. For a special case, they
show that the minimized simulation budget is O(B1+ε) for any ε > 0, which
is a significant reduction from BR.

17.3.2 Nonparametric Methods

We now turn to methods that apply to nonparametric regimes in which the
input distribution is not assumed to follow any parametric family. Following
Section 17.2, we write ψ = ψ(P), where P = (P1, . . . , Pm) is a collection
of m input distributions. Suppose we have a collection of data sets D =
(D1, . . . , Dm), where each Di = (ξi1, . . . , ξini ) is the data set of size ni
distributed under Pi . Suppose the data are all independent. Then, naturally
we construct empirical distributions P

∧

= (P
∧

1, . . . , P
∧

m) from these data sets,
where

P
∧

i (·) = 1

ni

ni∑

j=1

δξi j (·)

for Dirac measure δξi j (·). With these input distributions, we generate R
simulation runs to obtain

ψ
∧

(P
∧

) = 1

R

R∑

r=1

ψ
∧

r (P
∧

)

where ψ
∧

r , r = 1, . . . , R are independent simulation runs.
Under regularity conditions, we have a CLT

ψ
∧

(P
∧

) − ψ(P) ≈ N

(

0,Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

)

(17.7)

much like the parametric case in Section 17.3.1.1 [57].
Though conceptually similar, a main difference between the nonpara-

metric and parametric setups is the representation of the input variance
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Var(ψ(P
∧

)). In particular, to specify this quantity, we would need to
employ the nonparametric delta method, which involves the notion of func-
tional derivatives. More specifically, the so-called influence function [61]
I F(ξ ;P) = (I F1(ξ1;P), . . . , I Fm(ξm;P)), which maps from the image
of random variable ξ = (ξ1, . . . , ξm) to R

m , is a function satisfying the
property

ψ(Q) ≈ ψ(P) +
∫

I F(ξ ;P)d(Q − P) + remainder (17.8)

where Q = (Q1, . . . , Qm) is a sequence of independent distributions Qi
each defined on the same space as Pi ,

∫
I F(ξ ;P)d(Q − P) is defined as

∫

I F(ξ ;P)dQ =
m∑

i=1

∫

I Fi (ξi ;P)d(Qi − Pi ),

and the remainder in (17.8) goes to zero at a higher order than Q − P
(which can be rigorized). Note that we can replace

∫
I F(ξ ;P)d(Q − P)

by
∫
I F(ξ ;P)dQ, by redefining I F(ξ ;P) as I F(ξ ;P)−EP[(ξ ;P)]. Thus,

without loss of generality, we can use a canonical version of IF that satis-
fies (17.8) and also the mean-zero property (under P). From (17.8), we see
that the influence function dictates the linearization of ψ(P) as P perturbs
to Q, and plays a distributional analog of the derivative in Euclidean space,
which leads to the notion of Gateaux, Frechet or most relevantly Hadamard
derivatives [128].

With the influence function IF , it turns out that the input variance
Var(ψ(P

∧

)) is given by

Var(ψ(P
∧

)) =
m∑

i=1

Var(I F(ξi ;P))

ni
(17.9)

where the variance in the RHS is on the random variable ξi generated from
Pi . This formula is a nonparametric analog to (17.3).
A major challenge in the nonparametric case that distinguishes from para-

metric is that the influence function generally requires more effort to estimate
than the sensitivity coefficient for parametric input models. Efficient estima-
tion of the variance of influence function is potentially doable [84], but quite
open in the literature, and the input uncertainty literature has focused on
resampling, cancellation methods or nonparametric Bayesian approaches, as
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we describe below. We also note that many of these approaches, by design,
also apply naturally for parametric settings.

17.3.2.1 Bootstrap: Elementary Schemes

The bootstrap method in input uncertainty can be roughly categorized into
two frameworks, quantile-based and variance-based.

Quantile-based bootstrap: The bootstrap approach is principled on the
observation that the variability of a statistic, under the data distribution, can
be approximated by the counterpart of a resampled statistic, conditioned on
the realized data [34, 40]. To be more precise, suppose we have a point esti-
mate of ψ(P) given by ψ(P

∧

), and we want to construct a (1 − α)-level
CI. This problem can be recast as the search of [q, q] such that P(q ≤
ψ(P

∧

) − ψ(P) ≤ q) = 1− α which then gives [ψ(P
∧

) − q, ψ(P
∧

) − q] as the
CI. The bootstrap stipulates that

P∗(q ≤ ψ(P∗) − ψ(P
∧

) ≤ q) ≈ P(q ≤ ψ(P
∧

) − ψ(P) ≤ q) (17.10)

where P∗ is a resampled distribution, namely the empirical distribution
formed by sampling with replacement from the data with the same size (or,
in the case of m independent input distributions, the resampling is done
independently from each input data set), and P∗ denotes the probability
conditional on the data. Thanks to (17.10), we can use Monte Carlo to
approximate q and q, say q∗ and q∗, which then gives [ψ(P

∧

) − q∗, ψ(P
∧

) −
q∗] as our CI.

The above principle has been used in constructing CIs for ψ(θ) under
input uncertainty. A main distinction in this setting compared to conven-
tional usage of the bootstrap is that the performance function ψ itself needs
to be estimated from running many simulation runs. Thus, applying the
bootstrap in the input uncertainty setting typically requires a nested simula-
tion, where in the first layer, we resample the input distributions B times, and
then given each resampled input distribution, we draw in the second layer a
number, say R, of simulation runs driven by the resampled input distribution.
The overall simulation complexity is BR.

The basic bootstrap method gives precisely the interval [ψ
∧

(P
∧

)−q∗, ψ
∧

(P
∧

)−
q∗], where ψ

∧

(P
∧

) is a point estimate that uses the empirical distribution
and enough simulation runs, and q∗ and q∗ are obtained as described
above, using R large enough to approximate ψ sufficiently accurately in each
resampled performance measure ψ

∧

(P∗).
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On the other hand, (Efron’s) percentile bootstrap uses the interval [q∗, q∗]
directly, where q∗ and q∗ are defined as in the basic bootstrap above. This
approach does not require computing the point estimate, and is justified
with the additional assumption that the limiting distribution of the statistic
(centered at the true quantity of interest) is symmetric, which is typically
true because this limiting distribution in many cases is a mean-zero normal
distribution. Barton [10, 5] studies this approach.

Variance-based bootstrap: Instead of using quantiles q and q to construct

CI, we can also estimate Var(ψ(P
∧

)) directly and then use the CLT (17.7) to
deduce the interval

⎡

⎣ψ
∧

(P
∧

) ± z1−α/2

√

Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

⎤

⎦ (17.11)

where z1−α/2 is the 1− α/2-level normal critical value. Note that in (17.11)
the simulation variance Var(ψ

∧

r (P)) is typically easy to estimate by simply
taking the sample variance of all simulation runs in the experiment, and the
difficulty, as noted in the introduction, is the input variance.
To estimate Var(ψ(P

∧

)) using the bootstrap, we once again invoke the
approximation principle of resampling distribution for the original distribu-
tion of a statistic, that

Var∗(ψ(P∗)) ≈ Var(ψ(P
∧

)) (17.12)

where Var∗ is the variance of the resampling randomness conditional on
the data. Note that in the simulation setting, ψ has to be estimated from
an enough number, say R, of simulation runs for each resampled input
distribution P∗. Thus, once again, this approach typically requires a nested
simulation like in the quantile-based method.

Note that the accuracy of estimating Var∗(ψ(P∗)) can be improved
by using analysis-of-variance (ANOVA) to debias the effect coming from
finite simulation runs. To explain, note that a naive approach to estimate
Var∗(ψ(P∗)), with B first-layer resampling and R second-layer simulation is

1

B − 1

B∑

b=1

(ψ
∧

(P∗b) − ψ(P∗))2 (17.13)

where P∗b denotes the b-th resample distribution, ψ
∧

denotes the sample
mean from R runs, and ψ(P∗) denotes the sample mean of B resample
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performance measures. Viewing the resample simulation experiment as a
random-effect model, where each resample corresponds to a group and the
simulation per resample corresponds to the sample within a group, we can
readily see that the mean of (17.13) is actually

Var∗(ψ(P∗)) + E∗[Var(ψ
∧

r (P
∗)|P∗)]

R
(17.14)

where ψ
∧

r refers to the r-th inner simulation run, and E∗ refers to the expec-
tation on the resampling randomness of P∗ conditional on the data. Thus,
since we are interested in estimating the between-group variance in (17.14),
we can use

1

B − 1

B∑

b=1

(ψ
∧

(P∗b) − ψ(P∗))2 − 1

BR(R − 1)

B∑

b=1

R∑

r=1

(ψ
∧

r (P
∗b)

− ψ
∧

(P∗b))2 (17.15)

to remove the within-group variance. The formula (17.15) is used in, e.g.,
[117].

Note that both quantile-based and variance-based frameworks can be
applied to the case when the parametric bootstrap is adopted. In parametric
bootstrapping, an input model and its parameter vector θ

∧

are first fitted from
the data, then bootstrap samples are generated by sampling from the input
model.

17.3.2.2 Bootstrap: Computational Enhancements

The bootstrap methods discussed above, though natural and straightforward
to understand, unfortunately require high-computational load in general.
This computational load arises from the need of running nested simula-
tion (resampling at the outer layer, and simulation runs per resampled input
model at the inner layer), which requires a multiplicative amount of simu-
lation runs where, in order to control the overall error that is convoluted by
both the input and simulation noises, the sampling effort in each layer has to
be sufficiently large. To explain more concretely, consider the variance-based
bootstrap where we use B outer samples and R inner samples. Under suitable
assumptions and using [123], we obtain that the variance (conditional on the
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data as we are using the bootstrap) of (17.15) is

O

(
1

Bn2
+ 1

BR2

)

(17.16)

where n is a scaling for the data size (i.e., the input data ni for each input-
model i is assumed to scale proportionally with n for some proportional
constant). Now, note that the target quantity that (17.15) estimates is the
input variance given by (17.9), which is of order 1/n. Since this input vari-
ance shrinks to 0 as n increases, if we want to get a good input variance
estimator, a basic requirement is relative consistency, which means the ratio
of (17.16) and 1/n2 needs to go to 0. This in turn means, from the first term
in (17.16), that B needs to go to ∞ and, from the second term, that R needs
to be at least order n, which then gives a total required effort of strictly larger
order than the data size n. [82] calls this a simulation complexity barrier for
using naive variance-based bootstrap.

Some methods that improve the computational complexity motivated
from the barrier above include subsampling, which has been used in the
variance-based bootstrap framework, and shrinkage, which has been used in
the quantile-based framework.

Subsampling: On a high level, the difficulty in using nested simulation
to accurately estimate Var∗(ψ(P∗)), or subsequently Var(ψ(P

∧

)), is due to
the small magnitude of these quantities that are in the order of 1/n. This
small magnitude requires one to wash away the noise coming from the inner
sampling and necessitates the use of a large inner sample size. This issue
manifests explicitly when we analyze the variance of the variance estimator
in (17.16).

[82, 83] proposes to use subsampling to reduce sampling effort. Their
main insight is the following. Suppose we had a smaller data size, say with a
scale s, to begin with. Then, from our discussion above, this becomes an easier
problem and in particular we would only need a larger order than s (instead
of n) total simulation effort to ensure relative consistency. Of course, s is not
the original scale of the sample size. However, we can utilize the reciprocal
form of the input variance in terms of data size shown in (17.9) to rescale
our estimate in the s-scale back to the n-scale.
To make the argument above more precise, denote the bootstrap input

variance as

Var∗(ψ(P∗
n))
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where we introduce a subscript n in P∗
n to explicitly denote the data size in

the resample. From (17.9) and (17.12), we know

Var(ψ(P
∧

)) ≈ Var∗(ψ(P∗
n)) ≈

m∑

i=1

Var(I F(ξi ;P))

ni
(17.17)

Now, if we use a resample size of scale s, or more precisely we use si = ρni
for some factor 0 < ρ < 1, then the bootstrap input variance becomes

Var∗(ψ(P∗
s )) ≈

m∑

i=1

Var(I F(ξi ;P))

si
(17.18)

which now requires order larger than s effort instead of n effort due to
(17.16). Now, comparing (17.17) and (17.18), we see that we have

ρVar∗(ψ(P∗
s )) ≈

m∑

i=1

ρVar(I F(ξi ;P))

si

=
m∑

i=1

Var(I F(ξi ;P))

ni
≈ Var∗(ψ(P∗

n)) (17.19)

So, by subsampling input distributions using a size scale s, running the nested
simulation to estimate the bootstrap input variance, and then multiplying
back by a factor of ρ gives rise to a valid estimate of the input variance,
now with a total computational effort controlled by s instead of n. We could
choose s to be substantially smaller than n, in principle independent of the
data size.

Shrinkage: The principle of quantile-based bootstrap relies on the close-
ness between the distribution of a resampled estimate ψ(P∗) (conditional on
data) and the original estimate ψ(P

∧

), when suitably scaled and centered. In
other words,

ψ(P∗) − ψ(P
∧

) ≈ ψ(P
∧

) − ψ(P)

where ≈ denotes approximation in distribution, conditional on data for the
LHS, which then gives rise to (17.10) as a way to generate CI for ψ(P).
When ψ(·) needs to be computed via simulation, then the point estimate
becomes ψ

∧

(P
∧

), and we would use

ψ
∧

(P∗) − ψ(P
∧

) ≈ ψ
∧

(P
∧

) − ψ(P)
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where each ψ
∧

(·) is estimated from a number of simulation runs. To use the
basic bootstrap, we would use the quantiles of the LHS above to approximate
the quantiles of the RHS. Unfortunately, this means we also need to estimate
the “center" quantity ψ(P

∧

) in the LHS via simulation. Moreover, we need to
use enough simulation to wash away this noise so that

ψ
∧

(P∗) − ψ
∧

(P
∧

) ≈ ψ
∧

(P
∧

) − ψ(P) (17.20)

In other words, we need a large simulation size, say R0, to get a point esti-
mate ψ

∧

(P
∧

) that has negligible simulation error. And if we do so, then the
bootstrap-resample estimate ψ

∧

(P∗) in (17.20) would each require a matching
simulation size R0, and at the end the computation load is R0B where B is
the bootstrap size, which could be very demanding.
The shrinkage method proposed by [8] is an approach to reduce the

simulation size in each bootstrap-resample estimate, while retaining the
approximation (17.20). The approach is inspired from a similar concept to
adjust for variances in statistical linear models [34]. Suppose each bootstrap-
resample estimate ψ

∧

(P∗) uses R < R0 runs (while the point estimate ψ
∧

(P
∧

)

uses R0 runs), then the quantity

ψ
∧

(P∗) − ψ
∧

(P
∧

) (17.21)

has a larger variance than

ψ
∧

(P
∧

) − ψ(P).

To compensate for this, we scale down the variability of the outcomes of
(17.21) by a shrinkage factor

S =
√
√
√
√
√

Var(ψ(P
∧

))

Var(ψ(P
∧

)) + Var(ψ
∧

r (P))

R

which comes from the ratio between the standard deviation of (17.21) when
ψ
∧

(P∗) is estimated using R0 simulation runs (which is assumed so large
that the simulation noise becomes negligible) and R simulation runs. To
execute this shrinkage, we can either scale the resample estimate, i.e., multiply
each ψ

∧

(P∗) by S before applying the basic bootstrap, or scale the quan-
tile obtained from the basic bootstrap directly. The shrinkage factor itself is
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estimated using ANOVA described in Section 17.3.2.1. Moreover, a similar
shrinkage approach can be applied to the percentile bootstrap.

17.3.2.3 Batching, Sectioning, and Sectioned Jackknife

Recall the CLT in (17.7) that, when combined with (17.9), gives

ψ
∧

(P
∧

) − ψ(P) ≈ N

(

0,
m∑

i=1

Var(I F(ξi ;P))

ni
+ Var(ψ

∧

r (P))

R

)

(17.22)

The batching method studied by [57] utilizes a pivotal t-statistic constructed
from asymptotic normal variables in (17.22) to efficiently generate a CI.
Divide the input data for each input-model i into say K batches, each of size
mi (so that Kmi = ni , ignoring integrality). For each batch (which includes
the data corresponding to all input models), we construct the empirical distri-
bution Fk and run R simulation runs to obtain the k-th batched estimate
ψ
∧

(Fk). When K is a fixed, small number (e.g., K = 5), then as ni → ∞
we have the CLT

(
ψ
∧

(P
∧k

) − ψ(P)
)

k=1,...,K

≈
(

N

(

0,
m∑

i=1

Var(I F(ξi ;P))

mi
+ Var(ψ

∧

r (P))

R

))

k=1,...,K

(17.23)

where the normal variables are all independent. Thus, we can form a t-statistic

ψ̄ − ψ(P)

S/
√
K

where

ψ̄ := 1

K

K∑

k=1

ψ
∧

(P
∧k

), S2 = 1

K − 1

K∑

k=1

(ψ
∧

(P
∧k

) − ψ̄)2

which is distributed as tK−1, the t-distribution with degree of freedom K−1.
This gives a CI

[

ψ̄ − tK−1,1−α/2
S√
K

, ψ̄ + tK−1,1−α/2
S√
K

]
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where tK−1,1−α/2 is the (1− α/2)-quantile of tK−1. This idea resembles the
batch means method commonly used in steady-state analysis [56, 109, 110],
but here as a means to generate a CI capturing input uncertainty. The main
strength of this approach is its light computation effort. To use batching with
K number of batches, we need a simulation effort KR, and K in principle can
be as small as 2. The caution here is that a small K would give a long interval
(note the critical value tK−1,1−α/2 is large when K is small). Nonetheless, as
K increases from 2, the decrease in interval width is steep and then stabilizes
quickly [109]. In general, K equal to 5 would already reasonably approach
the limiting critical value, i.e., the normal critical value z1−α/2.

If we have a point estimate ψ
∧

(P
∧

) constructed from using all the input
data, then we can also use the interval

[

ψ
∧

(P
∧

) − tK−1,1−α/2
S√
K

, ψ
∧

(P
∧

) + tK−1,1−α/2
S√
K

]

.

where now the simulation effort for each sectioned estimate needs to be
1/K of the effort used for the point estimate ψ

∧

(P
∧

) to elicit a proper
self-normalization. This corresponds to the sectioning method.
The above can also be generalized to the jackknife, resulting in a sectioned

jackknife method [2] for constructing CI under input uncertainty. The
roadmap for deriving such a CI is similar in that a pivotal statistic is proposed,
the difference being that due to the leave-one-section-out estimates in jack-
knife the cancellation needed in the pivotal statistic becomes more delicate
to analyze. The benefit of sectioned jackknife, however, is that its resulting
point estimate has a lower-order bias [2, 88], and that it is less sensitive, or
more robust, against the adverse effect of a small batch size, because it uses
all data except the batch.

17.3.2.4 Mixture-Based and Nonparametric Bayesian

When the sample size of the input data is relatively small, selecting a single
parametric input model may be difficult. Instead of taking a purely nonpara-
metric approach, Zouaoui and Wilson [144] propose to apply the Bayesian
model averaging (BMA) scheme to construct a mixture of candidate input
distributions and account for parametric as well as model uncertainties in
their input uncertainty quantification framework.

Recall the Bayesian framework for modeling uncertainty about θ discussed
in Section 17.3.1.2. The posterior update in (17.4) implicitly assumes that
the distribution family is known. In BMA, in addition to imposing a prior
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distribution for each candidate distribution’s parameter vector, a prior is
assumed for the weights that determine the mixture. Given the real-world
data, both priors are updated to their posteriors. Using both posteriors,
Zouaoui and Wilson [144] propose variance decomposition method that
accounts for Monte Carlo error and estimation error in θ as well as uncer-
tainty about the parametric distribution family, which they refer to as model
uncertainty.

Although BMA provides flexibility in choosing the parametric family, one
must come up with a set of candidate distributions. Bayesian bootstrap [105],
on the other hand, is a Bayesian analog to the frequentist’s bootstrap method.
For the (nonparametric) bootstrap scheme discussed in Section 17.3.2.1,
recall that P∗ is an empirical distribution of resampled observations from
the original data set, say, D = {ξ1, ξ2, . . . , ξn}, with replacement. Therefore,
P∗ can be written as a n-dimensional probability simplex assigning a prob-
ability mass to each ξ j in D. For P∗, each ξ j is assigned with a multiple of
1/n, e.g., 0, 1/n, 2/n, · · · . In Bayesian bootstrap, the probability simplex is
modeled as a realization of a Dirichlet distribution whose density function is
proportional to

n∏

j=1

p
δ j−1
j 1

⎧
⎨

⎩

∑

j

p j = 1

⎫
⎬

⎭
,

where p j is the probability mass assigned to ξ j and {δ1, δ2, . . . , δn > 0}
are the concentration parameters. Therefore, the Bayesian bootstrap allows
more flexibility in modeling P∗ than the frequentist’s bootstrap. The Dirichlet
distribution is a conjugate prior for the multinomial distribution with prob-
abilities {p j }; the resulting posterior distribution of {p j } is still Dirichlet.

In the input uncertainty context, [10] show their uniform resampling
method to be a kind of Bayesian bootstrap, [116] and [130] include nonpara-
metric input models in their stochastic kriging metamodels by sampling
the probability simplex from the Dirichlet posterior given data, and [136]
study the use of Dirichlet process mixture to construct credible intervals for
simulation outputs.

17.3.2.5 Robust Simulation

In recent years, an approach based on (distributionally) robust optimization
has been studied to quantify input uncertainty. Robust optimization [15, 16]
is a framework that originated from optimization under uncertainty, in which
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the decision-maker uses a worst-case perspective, i.e., makes a decision that
optimizes the worst-case performance over the unknown or uncertain param-
eter in the optimization problem. This uncertain parameter is postulated to
lie in a so-called uncertainty set or ambiguity set that reflects the belief of
the modeler which, roughly speaking, is a set where the truth is likely to lie
in. The approach thus typically results in a minimax optimization problem,
where the outer optimization is over the decision and the inner optimization
computes the worst-case scenario constrained within the uncertainty set.

Distributionally robust optimization (DRO) [35, 60, 133] can be viewed
as a branch of robust optimization when the uncertain parameter is the
underlying probability distribution in a stochastic optimization. The uncer-
tainty set can take a variety of forms, but mainly falls into two categories.
The first consists of neighborhood balls surrounding a baseline distribution,
where the ball size is measured by statistical distance such as ϕ-divergence
[12, 14, 68], which includes for instance Kullback-Leibler (KL) and χ2-
distance, and Wasserstein distance [19, 23, 41, 48]. The second class consists
of distributional summary constraints including moments and support [50,
62], marginal information [22, 36, 37], and distribution shape such as
unimodality [79, 89, 102, 127].
The DRO approach, when applied to input uncertainty, can be viewed as

a nonparametric approach, since the uncertainty sets can be created nonpara-
metrically. The goal of this approach, much like the methods described above,
is to construct intervals that cover the truth. This can be attained by imposing
a worst-case optimization problem over the uncertainty set. Here, we use the
term DRO broadly to refer to worst-case optimization, not necessarily having
a decision to determine but only standard output analysis. More concretely,

max /minψ(Q) subject to Q ∈ U (17.24)

where max /min refers to a pair of maximization and minimization, and U
is the uncertainty set in the probability space, and the decision variable is the
unknown input distribution Q. When the uncertainty set U is a confidence
region on the unknown input distribution, then the worst-case optimization
pair above would output an interval covering the true target quantity with
at least the same confidence level. This implication can be readily seen and
forms the basis of data-driven DRO [14, 17].

Regarding the construction of CIs, a main benefit of DRO is the flexi-
bility to capture certain types of uncertainties beyond traditional statistical
methods. For instance, in some problems, the modeler might be concerned
about the misspecification of, say, i.i.d. assumptions, but is confident about
the marginal distribution specification of the input process. In this case, the
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modeler can constrain the marginal information in the uncertainty set, but
leave the dependence structure open to some extent. Then the resulting values
of the optimization pair (17.24) would give the worst-case interval subject to
this level of uncertainty or information. As another example, in other prob-
lems with little knowledge or very few data on the input distribution, one
cannot fit a distribution and needs to rely on expert knowledge or crude a
priori information. In this situation, the modeler can impose an uncertainty
set on the first-order moments only.

In general, the DRO problems (17.24) need to be solved via simulation
optimization, since the objective function is the target performance measure
that can be only be approximated via the simulation model. (17.24) is thus
a constrained stochastic optimization where the constraints are built from
the uncertainty set, and moreover the decision variable is probability distri-
bution, i.e., constrained by probability simplex constraints. When ψ(·) is
a linear function in Q, i.e., an expectation, the problem can be solved by
sample average approximation [53, 54, 66, 67]. In more general cases such
as discrete-event systems where ψ(·) is nonlinear in the input distributions,
[51, 52, 85] devise approaches using stochastic approximation to iteratively
solve these problems, which involve stochastic Frank-Wolfe or mirror descent
that specializes to a variety of uncertainty sets.

Another perspective that has been taken to utilize (17.24) is to conduct
local sensitivity analysis. In this context, the modeler imposes an uncer-
tainty set whose size signifies the deviation of some model parameters away
from a baseline value, with auxiliary constraints in the uncertainty set that
capture the model structure or quantity that is kept unchanged. When the
size shrinks, the values of the worst-case optimization (17.24) are express-
ible as a Taylor-type expansion around the baseline value in terms of the
ball size, with the coefficients representing the worst-case sensitivity of the
performance measure due to these input model changes subject to the auxil-
iary constraints. [76] develops these expansions when the balls are measured
in KL, and [77] further develops expansions under auxiliary constraints on
p-lag serial dependency and when the ball size is measured by Pearson’s
ϕ2-coefficient.

17.3.3 Empirical Likelihood

Relating to the last subsection, when U is set as the neighborhood ball
measured by a statistical distance surrounding the empirical distribution,
the optimization (17.24) has a close connection to the empirical likelihood
(EL) method [96]. The latter is a nonparametric analog to the celebrated
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maximum likelihood estimator (MLE) in parametric inference, and oper-
ates with the nonparametric MLE that turns out to equate to the (empirical,
reverse) KL distance. EL uses a so-called profile likelihood that is the optimal
value of an optimization problem with objective being this reverse KL
distance and constraint being the quantity to be estimated, and conducts
inference based on an analog to the classical Wilks’ theorem.

It can be readily seen that when U uses the reverse KL distance, then
(17.24) becomes the dual of the EL in the sense that the roles of objective
and constraint in the profile likelihood are now reversed. This implies that the
optimal value of (17.24) gives rise to CI that matches those generated from
EL, when we choose the ball size of U to be a suitable χ2-quantile [39, 87].
In other words, (17.24) provides an alternate approach to construct asymp-
totically exact CIs that is different from the delta method and the bootstrap.
Notably, this interpretation goes beyond the rationale of data-driven DRO
presented in Section 17.3.2.5 [78]. Lastly, it is notable that the statistical
distance in U does not have to be reverse KL, but can also be any of a wide
class of ϕ-divergence, and more recently Wasserstein distance [18].

Lam and Qian [80, 81] use the EL, in the form of the DRO (17.24),
to construct CI under input uncertainty. More precisely, [81] use a tractable
approximation of (17.24), via linearization, to obtain solution of the worst-
case distributions encoded in terms of probability weights on the data points.
They then run simulation using input distributions that are weighted by these
worst-case probability weights to obtain upper and lower bounds. Compared
to the delta method, this approach demonstrates better finite-sample perfor-
mance because its bound construction does not rely on linearization directly,
which can give poor coverage especially for performance measures that
are close to some “natural boundaries” (e.g., small probability estimation).
Compared to the bootstrap, it does not involve nested simulation whose
configuration can be difficult to optimize, but instead replace the resampling
with solving a pair of optimization problems derived from (17.24).

17.4 Other Aspects

In addition to the construction of CIs and variance estimation, there are a
few other aspects regarding the handling of input uncertainty.
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17.4.1 Bias Estimation

Input uncertainty affects not only the variance of ψ
∧

, but also its bias relative
to ψ as well. With small input data samples and highly nonlinear simulation
response, this bias can be substantial. Morgan [91] employs a quadratic linear
regression metamodel to compute a bias estimate:

b
∧

= 1

2
tr(�

∧

H
∧

(θ
∧

)), (17.25)

where �
∧

is the estimated covariance matrix of the MLE θ
∧

and H
∧

approxi-
mates the Hessian of ψ(θ), computed via a quadratic regression metamodel.
In addition to providing a bias estimate, the authors construct a hypothesis
test to identify statistically significant bias.

17.4.2 Online Data

Zhou and Liu [141] first study an online input uncertainty quantification
problem, where additional real-world observations are sequentially made
available and the posterior distribution on θ , ppost (θ |D), is updated at each
stage. They apply green simulation techniques (see Section 17.3.1.4) to reuse
replications made at the parameters sampled from a previous stage in the
current stage.

17.4.3 Data Collection vs Simulation Expense

In some applications, additional data collection is feasible at a cost. A natural
question in this setting is how to allocate the finite resource for data collection
among a number of data sources so that input uncertainty can be minimized.
Ng and Chick [93] study this problem for a parametric Bayesian setting
where all input distributions are independent. They also consider a joint
resource allocation problem among simulation and data collection when the
cost of a simulation replication is relatively expensive. Xu et al. [139] expand
this framework to the case with correlated inputs.

Relatedly, Song and Nelson [117] focus on decomposing the total input
uncertainty into each input distribution’s contribution when there are m
independent input distributions; note a nonparametric version of such
decomposition is shown in (17.9). They also propose a sample-size sensi-
tivity measure that indicates how much input uncertainty can be reduced
by collecting an extra observation from each data source.
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17.4.4 Model Calibration and Inverse Problems

While the input uncertainty literature has focused on situations where the
input models are observable from direct data, in some applications the
output-level instead of input-level data are observed. In these cases, calibrating
the input model becomes an inverse problem where the unknown parameters
or input distributions can only be observed through the input-output relation
described by the simulation model, which is usually analytically intractable
but evaluatable only via noisy simulation runs. This problem resembles the
UQ literature in computer experiments [64, 70, 125, 134], but now with
additional stochastic noise in the simulator (recall our introduction). In
discrete-event simulation, the problem of informing input parameter values
through output data falls traditionally under the umbrella of model valida-
tion and calibration [4, 73, 108, 112], in which a modeler would compare the
simulation model output with real output data using statistical tests or Turing
tests, re-calibrate or enhance the model if the test concludes a mismatch, and
iterate the process.

Recently, some approaches have been suggested to directly calibrate the
input unknowns by setting up (simulation) optimization problems. In partic-
ular, [59] use entropy maximization, and [3, 58] use DRO with an uncer-
tainty set constructed from a statistical distance between simulated and
real output data. Furthermore, [86, 101] study the correction of output
discrepancies between the simulated and real data at the distribution level.

17.5 Simulation Optimization under Input
Uncertainty

Thus far, the focus was on quantifying input uncertainty of a simulation
model. In this section, we discuss how one can formulate and solve a simu-
lation optimization problem in the presence of input uncertainty. We first
define the generic simulation optimization problem with the following form:

x∗ = argmaxx∈X ψ(x,P), (17.26)

where X is a feasible solution set, and P and ψ are as before. The parametric
form is:

x∗ = argmaxx∈X ψ(x, θ). (17.27)
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The performance measure is parameterized by both solution x and input
parameter vector θ . What makes (17.26) and (17.27) “simulation” optimiza-
tion problems is that ψ(x, θ) must be estimated by running simulations.
When ψ(x, θ) is replaced with its estimate, ψ

∧

(x, θ), Monte Carlo error is
introduced. Therefore, as long as the simulation budget is finite, we cannot
find x∗ with certainty in general. Instead, a simulation optimization algo-
rithm aims to provide an estimate x

∧∗ of x∗ with some statistical guarantee
on closeness of x

∧∗ to x∗. One such guarantee may be

P{|ψ(x
∧∗, θ) − ψ(x∗, θ)| ≤ ε} ≥ 1 − α

for some ε > 0 and 0 < α < 1, where the probability is taken with respect
to the Monte Carlo error in simulation. This implies that the probability that
the optimality gap between x

∧∗ and x∗ is within a tolerable level (< ε) is at
least 1 − α.

In the traditional simulation optimization setting, P or θ is assumed
to be given. Thus, the only source of stochasticity is Monte Carlo error
in estimating ψ

∧

(x, θ), which can be reduced by running more simulation
replications. The problem becomes more complex once input uncertainty is
considered in conjunction with Monte Carlo error.

One may be tempted to solve the “plug-in” version by replacing the input
distributions with their “best estimates” given the data. For instance, in the
parametric case, θ may be replaced with its point estimate θ

∧

in (17.27) to
find

x∗(θ
∧

) = argmaxx∈Xψ(x, θ
∧

),

which is the conditional optimum given θ
∧

. In general, x∗(θ
∧

) �= x∗ as
x∗(θ

∧

) depends on the random vector, θ
∧

. However, when a generic simulation
optimization algorithm is applied to the plug-in problem, it provides a statis-
tical guarantee for finding x∗(θ

∧

), not x∗. Therefore, to properly account for
the effect of input uncertainty in simulation optimization, one must explic-
itly consider dependence of ψ(x, θ) on θ when designing the simulation
optimization algorithm to provide a statistical guarantee for finding x∗.

Once again, consider the delta method:

ψ(x, θ
∧

) ≈ ψ(x, θ) + ∇θψ(x, θ)′(θ
∧

− θ).

If this linear model is exact for all x and the gradient, ∇θψ(x, θ), does not
depend on x, then x∗(θ

∧

) = x∗. However, this is an unrealistic assumption
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for many practical problems as ψ(x, θ
∧

) tends to have an interaction effect
between x and θ

∧

.
Suppose we compare performance measures at x and given x∗θ

∧

. We have
from the delta method,

ψ(x∗, θ
∧

) − ψ(x, θ
∧

) − {
ψ(x∗, θ) − ψ(x, θ)

}

≈ [∇θψ(x∗, θ) − ∇θψ(x, θ)
]′
(θ
∧

− θ). (17.28)

The distribution of (17.28) lets us infer the value of ψ(x∗, θ) − ψ(x, θ)

from that of ψ(x∗, θ
∧

)−ψ(x, θ
∧

). Here, ∇θψ(x∗, θ)−∇θψ(x, θ) quantifies
how differently the performance measures at x∗ and x are affected by a small
change in the parameter vector. [118] refer to the right-hand side of (17.28)
as the common-input-data (CID) effect since it captures the impact of input
uncertainty caused by the same set of real-world data in comparing x∗ and
x . Notice that the CID effect is random due to the uncertainty in θ

∧

. If θ
∧

is a
maximum likelihood estimator, then from the asymptotic distribution of θ

∧

,
(17.28) is approximately distributed as

N

(

0,
[∇θψ(x∗, θ) − ∇θψ(x, θ)

]′ �(θ)

n

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]
)

.

(17.29)

Observe that uncertainty about θ
∧

measured by �(θ)/n is amplified or
reduced by the gradient difference. For instance, if the gradient difference
is near 0 along a dimension of θ

∧

, then even if its marginal variance is large, it
may have very little impact on the variance of the CID effect. On the other
hand, if the gradient difference is large, then the variance of (17.29) becomes
large, which makes it difficult to infer that ψ(x∗, θ) − ψ(x, θ) > 0.

In fact, we do not observe ψ(x∗, θ
∧

) − ψ(x, θ
∧

), either. Suppose ψ(x, θ
∧

)

is estimated by a sample average of noisy simulation outputs, i.e., ψ
∧

(x, θ
∧

) =
1

R(x)

∑R(x)
r=1 ψr (x, θ

∧

), where R (x ) is the number of replications run at
x. Assuming that all simulations are run independently, the variance of
ψ
∧

(x∗, θ
∧

) − ψ
∧

(x, θ
∧

) − {ψ(x∗, θ) − ψ(x, θ)} is approximately

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]′ �(θ)

n

[∇θψ(x∗, θ) − ∇θψ(x, θ)
]

+ Var(ψr (x∗, θ
∧

))

R(x∗)
+ Var(ψr (x, θ

∧

))

R(x)
.

(17.30)
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Clearly, the latter two terms can be reduced by increasing R(x∗) and R (x ),
whereas the first term may be reduced only by collecting more real-world
data.

In the following subsections, we first discuss the case when the data size, n,
is fixed (17.5.1 and 17.5.2) and when streaming data are available (17.5.3).

17.5.1 Selection of the Best under Input Uncertainty

In this section, we consider the case when the set of feasible solutions, X ,
contains a finite number of solutions. In particular, when |X | is relatively
small, say k, we are able to simulate them all and compare their estimated
performance measures to select the best (ranking and selection) or return a
set of solutions that contains the best (subset selection). We refer the readers
to Kim and Nelson [72] for foundations of ranking and selection, subset
selection, and related work. Our main focus in this section is integration of
input uncertainty into these methodologies.

17.5.1.1 Ranking and Selection

A classical problem formulation for ranking and selection (R&S) is

k∗ = argmax1≤k≤Kψ(k, θ) (17.31)

where θ is assumed known. Notice that we replaced x with its index k given
that the total number of alternatives in comparison is K . Typically, ψ(k, θ) is
assumed to be the expectation of a stochastic simulation output, ψr (k, θ). A
R&S procedure controls the numbers of replications assigned to each alterna-
tive in comparison given the total budget, N , so that it achieves the statistical
guarantee that it is designed to provide upon termination. Depending on
how the allocation is made, R&S procedures can be categorized into single-
stage [13], two-stage [104], or sequential [71] procedures. Upon termination,
an estimate of k∗, k

∧∗
, is returned. Typically, k

∧∗
is the alternative that has

the best sample mean given the simulation replications made throughout the
procedure, namely,

k
∧∗ = argmax1≤k≤Kψ

∧

(k, θ),

where ψ
∧

(k, θ) = 1
R(k)

∑R(k)
r=1 ψr (k, θ) and R (k) is the number of replica-

tions allocated to the k-th alternative.
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To provide a statistical guarantee for selecting k∗, R&S procedures typically
control the probability of correct selection (PCS)

PCS = P{k
∧∗ = k∗}

to be at least 1/K < 1−α < 1. Equivalently, one may control the probability
of false selection (PFS)

PFS = P{k
∧∗ �= k∗}

to be lower than 0 < α < 1 − 1/K . There are two main approaches to
provide the PCS guarantee: one is to control the exact PCS given finite simu-
lation budget N and the other is to control the asymptotic convergence rate
of PFS assuming N is sufficiently large.

For the former, most procedures assume the simulation outputs are
normally distributed to get a handle on the distribution of ψ

∧

(k, θ) and its
variance estimator is given finite R (k). Moreover, the procedures adopt the
indifference zone (IZ) assumption, which states that all suboptimal alterna-
tives have performance measures that are at least δ less than the best for some
known δ > 0. Mathematically, this can be written as

ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗. (17.32)

First introduced by Bechhofer [13], the IZ assumption turns out to be crucial
for providing the finite-sample PFS guarantee; without the assumption, any
suboptimal alternative’s performance measure can be arbitrarily close to the
best solution so that they may not be distinguished given finite N . The PCS
under the IZ assumption is denoted as

PCSδ = P{k
∧∗ = k∗|ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗}

to differentiate it from the PFS. Under the normality assumption, several
procedures have been designed to guarantee PCSδ ≥ 1 − α after spending a
finite amount of simulation budget, N , for any chosen δ > 0.

When input uncertainty is considered, Problem (17.31) must be reformu-
lated as θ is unknown. As discussed for the generic simulation optimization
problem, one can construct the “plug-in” version of (17.31) by replacing
θ with its point estimate θ

∧

. The corresponding optimum of the plug-in
problem, k∗(θ

∧

), is then conditional on θ
∧

. Song et al. [119] propose to
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consider the following average PCS

PCSδ = E
θ
∧[P{k

∧∗
(θ
∧

) = k∗|θ
∧

}|ψ(k∗, θ) − ψ(k, θ) ≥ δ, ∀k �= k∗],

where the outer expectation is with respect to the distribution of θ
∧

. In words,
PCSδ evaluates the probability that k∗(θ

∧

) is indeed k∗. Of course, we have
a single realization of θ

∧

computed from the set of real-world observations.
Nevertheless, if PCSδ ≥ 1 − α can be guaranteed, then in expectation
(over both Monte Carlo error and input uncertainty), the PCS guarantee is
achieved.

From the definition of k
∧∗
, PCSδ can be rewritten as

PCSδ = E
θ
∧[P{ψ

∧

(k∗, θ
∧

) > ψ
∧

(k, θ
∧

), ∀k �= k∗|θ
∧

}|ψ(k∗, θ) − ψ(k, θ)

≥ δ, ∀k �= k∗].

Thus, computing PCSδ requires characterizing the joint distribution of

{
ψ
∧

(k∗, θ
∧

) − ψ
∧

(k, θ
∧

) − [ψ(k∗, θ) − ψ(k, θ)]
}

∀k �=k∗ . (17.33)

Applying the delta method as in the beginning of Chapter 17.5, the joint
distribution of (17.33) can be approximated with a multivariate normal
distribution whose mean is the (K − 1)-dimensional zero vector and the
elements of its variance-covariance matrix can be computed similarly as
in (17.30). Under some additional assumptions on the variance-covariance
matrix, Song et al. [119] derive the expression for PCSδ for a single-stage
R&S procedure.

However, unlike any δ > 0 is allowed for the generic R&S problem, the
values of α and δ may not be chosen as desired when there is input uncer-
tainty. To see this, consider the minimum indifference zone parameter, δα

min,
given α defined as

δα
min = inf

{
δ : limN→∞ PCSδ ≥ 1 − α

}
.

Loosely speaking, δα
min is the smallest performance measure difference one

can detect with desired precision (1−α) in the presence of input uncertainty
captured by estimation error of θ

∧

. Note that δα
min is an increasing function

of α and may be strictly positive when the input data sample size, n, and α

are small. For any δ smaller than δα
min, we cannot guarantee PCSδ ≥ 1 − α

even with an infinite simulation budget. Such a positive lower bound on the
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IZ parameter is a result of input uncertainty. Derivation of δα
min depends on

the specific R&S procedure; Song et al. [119] derive the expression for a
single-stage R&S procedure.
This challenge motivates one to consider formulations other than the plug-

in version of (17.31). One popular variant studied by Fan et al. [42] is the
distributionally robust R&S problem:

k = argmax1≤k≤K minθ∈U ψ(k, θ), (17.34)

where U is the uncertainty set that contains the possible values of θ . Specifi-
cally, they consider when U has a finite number of candidate θ values; namely,
U = {θ1, θ2, . . . , θB}. The inner problem of (17.34) finds the worst-case
input parameter θb in U for each alternative k, whereas the outer problem
selects the alternative with the best worst-case performance. Similar to the
generic R&S problem, k is estimated by

k
∧

= argmax1≤k≤K minθb∈U ψ
∧

(k, θb),

where the number of replications allocated to each (k, θb) is determined by
the procedure. Under this formulation, the probability of correct selection is
modified to

PCS = P{k
∧

= k}. (17.35)

A benefit of Formulation (17.34) is that the input uncertainty is completely
characterized by solving the inner minimization problem. By limiting θ to
be among a finite number of candidates in U and simulating all alternative-
parameter pairs, it eliminates the need to model the effect of θ

∧

to ψ(k, θ
∧

) for
each k. Thus, one only needs to control the Monte Carlo error in ψ

∧

(k, θb)
for each (k, θb) to achieve correct selection.
To provide a finite-sample probability guarantee for solving (17.34),

Fan et al. [42] extend the IZ formulation in classical R&S procedures.
First, they relabeled the performance measures at solution-parameter pairs
{ψ(k, θb)}1≤k≤K1≤b≤B such that ψk,1 ≤ ψk,2 ≤ · · · ≤ ψk,B for all
1 ≤ k ≤ K and ψ1,1 > ψ2,1 ≥ · · · ≥ ψK ,1. Therefore, k = 1. The IZ
formulation is modified to

ψk,1 − ψ2,1 > δ (17.36)

for given δ > 0. That is, the worst-case performance measure of k is at least
δ better than those of other k − 1 alternatives. Instead of providing the PCS
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guarantee under the IZ assumption, they guarantee the following probability
of good selection (PGS):

P{ψk,1 − ψ
k
∧

,1
≤ δ} ≥ 1 − α. (17.37)

In words, (17.37) grants that the selected solution’s worst-case performance
is within δ from that of k. If (17.36) holds, then (17.37) is equivalent to
(17.35) ≥ 1 − α. Therefore, δ here can be interpreted as the allowable error
tolerance.

Fan et al. [42] further split δ to δI = δO = δ/2, where δI is the allowable
error in solving the inner-level minimization problem of (17.34). Specifically,
they aim to achieve

ψk,bk − ψk,1 ≤ δI , ∀1 ≤ k ≤ K ,

where bk = minθb∈U ψ
∧

(k, θb). Assuming the IZ assumption holds, this
implies that to make a correct selection at the outer level, ψk,bk and ψ1,b1

must be at least δ − δI = δO apart for all 1 ≤ k ≤ K . Similarly, they also
split the error level α for inner-level and outer-level comparisons so that the
overall probability error is no larger than α. Based on these parameters, Fan
et al. [42] propose two-stage and sequential R&S procedures that provide
PGS guarantee (17.37) after spending a finite number of replications.

We close this subsection by mentioning that Gao et al. [49] also study
(17.34). Instead of creating a R&S procedure with a finite-sample guarantee,
they develop an optimal computing budget allocation scheme for (17.34)
aiming to maximize the convergence rate of 1 − PCS as the simulation
budget increases. Shi et al. [115] further extend Gao et al. [49] to solve
stochastically constrained version of (17.34).

17.5.1.2 Subset Selection and Multiple Comparisons
with the Best

The objective of a subset selection procedure is to return a set of alternatives
I that contains k∗ defined in (17.31) with probability 1 − α:

P{k∗ ∈ I} ≥ 1 − α. (17.38)

A subset selection procedure does not necessarily guarantee |I| = 1, but
when |I| = 1, then the element of I is indeed k∗ with probability of at least
1 − α.
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Corlu and Biller [30] first consider accounting for input uncertainty in a
subset selection procedure aiming to guarantee (17.38) under the IZ assump-
tion (17.32). Similar to Song et al. [119], they also find that there is a positive
lower bound to δ to guarantee (17.38) when there is input uncertainty. Corlu
and Biller [31] take an approach to average out both input uncertainty and
Monte Carlo error when they define the optimum. That is, their subset I
contains

k̄ = argmax1≤k≤KEθ [ψ(k, θ)] (17.39)

with probability no less than 1−α, where the expectation is taken with respect
to the posterior distribution of θ conditional on the input data. A benefit of
this approach is that one is guaranteed to have |I| = 1 for sufficiently large
simulation budget. However, this formulation may be misleading when the
size of the input data is small as no warning is given regarding the risk caused
by uncertainty about θ .
The multiple comparisons with the best (MCB) procedure provides simul-

taneous confidence intervals [Lk,Uk] for all 1 ≤ k ≤ K such that

P{ψ(k, θ) − ψ(k∗, θ) ∈ [Lk,Uk], 1 ≤ k ≤ K } ≥ 1 − α, (17.40)

where {Lk,Uk}1≤k≤K can be constructed from the confidence intervals of
the pairwise difference between performance measures [65]:

P{ψ(k, θ) − ψ(�, θ) ∈ [ψ
∧

(k, θ) − ψ
∧

(�, θ) ± wk�],∀k �= �} ≥ 1 − α.

(17.41)

In words, the intervals in (17.40) cover the difference between each alterna-
tive’s performance and the optimum’s. By design, either Lk or Uk is equal
to 0 for each k and if we define S = {k : Uk > 0}, then we have
P{k∗ ∈ S} ≥ 1 − α.

With input uncertainty, θ is unknown. Thus, ψ
∧

(k, θ) in (17.41) is
replaced with ψ

∧

(k, θ
∧

) for each k. As a result, wk�, ∀k �= � that satisfy (17.41)
comes down to estimating (17.30) under a normality assumption on the
simulation outputs for each alternative and regularity conditions on θ

∧

.
Focusing on the case that all K alternatives’ simulators share the same
input models, Song and Nelson [118] propose to split wk� into two parts,
where one covers the difference in the CID effects for solutions k and
�, {∇θψ(k, θ) − ∇θψ(�, θ)}′(θ

∧

− θ), and the other covers the stochastic
error difference in ψ

∧

(k, θ
∧

) − ψ
∧

(�, θ
∧

) conditional on θ
∧

. Upon choosing the
coverage error appropriately for each interval, they show that the resulting
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{wk�}1≤k �=�≤K provide MCB intervals with asymptotically correct coverage
probability.

17.5.2 Global Optimization under Input Uncertainty

Continuous optimization in the stochastic simulation setting is also affected
by uncertainty in input distributions used to drive the simulation model.
Both searching for the optimal solution and characterizing its error should
take input uncertainty into account.

Consider the continuous optimization problem (17.26) where X is a
nonempty subset of R

n . Zhou and Xie [142] provided one of the first
approaches for this setting by defining a risk measure, ρ (e.g., expected value,
mean-variance, Value-At-Risk). For the parametric case, this can be written
ρPθ |ξ where Pθ |ξ is the posterior distribution for P (i.e., for θ ) given the
observed input data ξ . Their approach replaces the optimization in (17.27)
with Hρ(x) = ρPθ |ξ (ψ(x |P)). Although the development was for the para-
metric case, the authors suggested that the approach could be applied in a
nonparametric setting using a Dirichlet process prior. Under general condi-
tions, as the input data sample size goes to infinity, they show that the
risk-based objective using posterior ψPθ |ξ converges in probability to the risk-
based objective using P. A stochastic approximation method for this approach
and associated stochastic gradient estimators are presented in [21].

When the performance measure ψ can be modeled as a Gaussian process
(GP) over x, θ space, Bayesian methods can be employed to include input
uncertainty in the GP model optimization process given a prior distribu-
tion G for the unknown θ . Then the optimization is of EG(θ)(ψ(x, θ)). In
[98] efficient global optimization (EGO—see [69]) and knowledge gradient
(KG—see [113]) sequential optimization methods were modified to include
input uncertainty. Also in the GP setting, [74] proposed a robust opti-
mization method based on Kullback-Leibler distance with a modified EGO
criterion.

Wang et al. [131] modified the method of Pearce and Branke [98] to
determine the next x, θ pair sequentially (x then θ ) rather than simulta-
neously. The θ value is selected by minimizing IMSE or IMSE weighted
by the posterior distribution for θ . They showed somewhat better results
for KG search with small data samples and similar results in EGO and
other KG settings while reducing computational time. In addition to EGO
and KG, they also incorporated the two-stage search with Informational
Approach for Global Optimization (IAGO—[129]) and Expected Excursion
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Volume (EEV—[100]) metrics for selecting search points in the GP-based
optimization.

Bayesian optimization has also been employed for handling the nonpara-
metric optimization case posed in (17.26). In two recent papers, Wang et al.
[130, 132] approached the simulation optimization problem similarly to
[98] but employed Bayesian updating of the unknown input distribution,
beginning with a (presumably diffuse) Dirichlet process prior.

When there is the option to collect more input-model data or continue an
optimization, Ungredda et al. [126] suggest an extension to the approach in
Pearce et al. [98] that they call Bayesian Information Collection and Opti-
misation (BICO). The decision is based on a Value of Information (VoI)
measure for an additional simulation evaluation (at cost c f ) vs. the VoI for
an additional input data sample (at cost cs).

17.5.3 Online Optimization with Streaming Input Data

Thus far, our discussion in Section 17.5 has focused on the case when a batch
of finite input data is available, but no additional data can be collected. In
many practical problems, however, a stream of input data may be collected
continuously. Assuming that the input data-generating process is stationary,
Wu and Zhou [135] propose a R&S framework to solve Problem (17.39)
by continuously updating the posterior distribution of θ from the sequence
of incoming data. They also consider the case when there is a trade-off
between real-world data collection versus simulation replication and study
a computational budget allocation scheme.

Song and Shanbhag [122] study a simulation optimization problem with
continuous variables when a sequence of streaming data is made available at
each period. Their propose to update θ

∧

at each period using the cumulative
data and solve the plug-in version of (17.27) given θ

∧

using stochastic approx-
imation (SA). Under a strong convexity assumption, they derive an upper
bound on the expected optimality gap of the solution returned from SA for
the original problem (17.27) as a function of number of SA steps taken as
well as the sample size of accumulated data in the period. From the upper
bound, they propose a stopping criterion for SA at each period, i.e., they
take SA steps until the error rate of SA matches that from the finite-sample
size.

Both work mentioned here assume that the streaming data are independent
and identically distributed. A framework that can account for a nonstationary
data-generating process will broaden the applicability of the online simulation
optimization schemes.
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17.6 Future Research Directions

As computation resources increase in power with decreasing cost, simula-
tion analysis has evolved from accepting the point estimate of the input
distribution as the truth to incorporating the estimation error in uncer-
tainty quantification and in simulation optimization. However, many open
questions remain to be addressed.

First, the majority of work introduced in this chapter assumes the collected
data are i.i.d. observations from real-world distributions that do not change
over time. In many applications, such assumptions fail to hold due to
dependence among the sequence of observations or nonstationarity of the
data-generating process. Also, even if the real-world distribution can be
characterized as generating i.i.d. input vectors, only marginal observations
may be available so that the dependence structure cannot be estimated in
a straightforward way. Among the tools that have been investigated in the
input uncertainty literature, robust optimization and robust simulation come
closest to handling such issues, but there remains much work to be done
including: (i) making the methodology computationally efficient, (ii) quanti-
fying the reliability when facing nonstationarity in a rigorous statistical sense,
and (iii) exploring alternative methods to tackle these challenges.

In some cases, the input data themselves are unobservable and we can
only access the “output data” from the real-world system. For instance, in
a queueing system, we may observe the departure times of the jobs, but not
their arrival times nor service times. In this case, finding the “right” input
model for the simulator can be viewed as a calibration problem. However,
unlike a typical calibration problem in the computer experiment literature
that calibrates the model parameter so that the model output matches a
given benchmark, here, we need to choose the input model so that the
sequence of outputs generated from the simulator matches the real-world
output data. This can be a high-dimensional inference problem that faces
difficult statistical challenges, including the unavailability of the likelihood
function, non-identifiability issues for over-parametrized models (i.e., more
than one set of parameter values give the simulation-real output match),
and model bias (i.e., the best fitting model in the class has parameter values
bearing a discrepancy with reality). Both traditional model validation tools
and more recent approaches on this problem require further developments.
Moreover, there are several other open questions, including what metric
should be adopted to measure the discrepancy between real and simulation
outputs, and how to incorporate uncertainty from both input and output
data.
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Lastly, creating more application-specific methods and addressing chal-
lenges in these areas will enrich the literature. Although input uncertainty
appears ubiquitous in simulation applications, there has been little work
in applying input uncertainty methods to support decision-making. For
instance, a company may run a market simulation study where the key input
being the utility parameters that customers use to decide which product
to buy (if any) among the competing offers. One way to estimate the
utility parameters is to survey (often a very small fraction of ) the customer
basis. Thus, the estimation error of the utility parameters may cause signifi-
cant uncertainty in the sales prediction obtained from the simulation study.
Without quantifying input uncertainty, the company may face a significant
risk. How to quantify and mitigate the uncertainty, both statistically and in
a computationally efficient way, is an important question to resolve.
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18
Fuzzy multi-attribute decision-making:

Theory, methods and Applications

Zeshui Xu and Shen Zhang

18.1 Introduction

When it comes to fuzzy multi-attribute decision-making (MADM), we firstly
need to briefly introduce the fuzzy sets. The concept “fuzzy” was proposed
by L.A. Zadeh [1] in 1965. It means that the denotation of a concept is
uncertain, or its denotation is not clear. Instead, it is fuzzy. For example,
the connotation of the concept “youth” is clear to us. But for its denotation,
that is, at what age a person is young, it is difficult to make it clear. Because
there is no definite boundary between “young” and “not young”, it is a fuzzy
concept. There are a few other things to note about fuzzy: (1) When people
try to understand fuzziness, they are allowed to have subjectivity. That is to
say, everyone is not exactly the same on the boundary of fuzzy things. To
recognize a certain subjectivity is a characteristic of fuzzy understanding. For
example, if we ask 100 people to name the age range of “young”, we may get
100 different answers. Even so, when we use the method of fuzzy statistics
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to analyze, the distribution of the age limit of “young” has a certain regu-
larity; (2) Fuzzy is the opposite of accuracy, but it should not be understood
as a negative representation of backward productivity. On the contrary, we
often resort to fuzzy when dealing with objective things. It is not difficult, for
example, to find a “tall old man” in a room full of people. The words “old”
and “tall” here are fuzzy concepts, but we can quickly find a person in a crowd
by analyzing these fuzzy concepts in our minds. If we ask a computer to do
such a search, we have to put the exact data of the ages and heights of all the
people into the computer, and then we can find such people from the crowd;
(3) Fuzziness is often confused with randomness, but there is a fundamental
difference between them. Randomness itself has a clear meaning, but due to
the occurrence of insufficient conditions, there can be no definite causal rela-
tionship between the conditions and the event, so that the occurrence of the
event shows an uncertainty. The fuzziness of things means that the concept of
things we want to deal with is itself fuzzy, that is, it is difficult to determine
whether an object conforms to this concept. It is the uncertainty caused by
the fuzzy concept denotation.

Since the birth of fuzzy sets, scholars have done a lot of research on the
basis of it, and put forward a lot of extension forms. Among them, intuition-
istic fuzzy sets (IFS) [2, 3], hesitant fuzzy sets (HFS) [4, 5] and probabilistic
hesitant fuzzy sets (P-HFS) [6, 7] are widely used in the field of decision-
making. It is worth mentioning that the concept of fuzzy has also been
applied to linguistic decision-making, forming tools such as the hesitant fuzzy
linguistic set (HFLS) [8] and the probabilistic linguistic term set (PLTS)
[9]. Following the previous introduction to fuzzy, we will continue to briefly
introduce the fuzzy set and its several extended forms and their applications
in decision-making.
The core idea of fuzzy set theory is the concept of membership degree.

It uses the membership function to express the degree to which something
belongs to a set. That’s a good solution to the problem of young people that
we talked about earlier. In fact, using the concept of membership, we can
use a real number between 0 and 1 to express the extent to which a person
belongs to the youth. However, generally speaking, this kind of evaluation has
strong subjectivity. Moreover, many evaluators are not entirely sure of their
estimates. At this point, they can use an interval instead of a precise value as
the membership, or they can set a hesitant degree for their assessment. The
former can obtain interval-valued fuzzy sets, while the latter can obtain IFS.
IFS adds a hesitant degree to the fuzzy set, which means that the evaluator
is not entirely sure about his or her own evaluation. The greater the degree
of hesitation, the greater the degree of the uncertainty. IFS can better express
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the real thoughts of decision-makers, and is more in line with the process
of people’s judgment. With the increasing complexity of practical decision-
making problems, we gradually need to integrate multiple evaluation values
into a single information unit. At this point, the former information expres-
sion tools are difficult to sustain. HFS can meet this need very well. HFS
is essentially the consolidation of multiple membership degrees into a single
set. It can include more information in the decision-making process. But it
also has the problem of missing information. It pays more attention to the
difference between membership degrees but ignores the weight information
behind different membership degrees. P-HFS preserves the weight infor-
mation behind different membership degrees by adding the corresponding
probability after each membership degree in the elements, which effectively
improves the HFS. It is the latest research result of fuzzy decision-making
development and it is an important supplement of fuzzy decision-making.
The emergence of the fuzzy set and its extension forms provides very

important tools for decision-making science and greatly promotes the devel-
opment of decision-making theory. You could even say that, strictly speaking,
most of today’s decision-making problems require fuzzy decision-making
methods. In fuzzy decision-making, fuzzy MADM is undoubtedly the one
with the fastest development and widest application.

MADM refers to the decision-making problems of choosing the best alter-
native or ranking the schemes under the condition of considering multiple
attributes. Its theories and methods have been widely applied in many fields.
The main problems of MADM are evaluation and selection. It can be seen
that MADM is to comprehensively consider the performance of a finite
number of alternative schemes under multiple attributes, and select the best
or give a ranking among them. Then, how do you evaluate the quality of each
alternative in terms of each attribute? Is each one good or bad? How good are
the good ones, and how bad are the bad ones? At this time, the application of
fuzzy information to answer these questions is very appropriate. The appli-
cation of the fuzzy set and its extended forms in MADM is usually based
on the following forms: (1) information integration; (2) distance measures;
(3) preference relations. (They will be discussed in more detail later). In the
past few decades, many scholars have done in-depth research on the related
fuzzy theory. With the development of fuzzy theory, fuzzy MADM has been
evolving. Every new achievement of fuzzy set theory can bring many new
methods to solve the problem of MADM. Of course, this is not to say that
as new methods come into being, the old ones become completely ineffec-
tive. In fact, the old methods, while less applicable, can still solve a lot of
practical problems in the areas where they are applicable. Moreover, they are
also the basis of new methods and can provide important inspirations for
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the research of new methods. At the same time, even if the new method
has higher accuracy and wider application range, it may also have prob-
lems of complex calculations and unstable mathematical properties, etc. In
many practical decision-making problems, the effect is not as good as the old
methods. Therefore, we need to understand that the actual decision-making
problems are very complex and there is no perfect decision-making method.
What we have to do is to choose the appropriate decision-making method
under every different decision-making condition.
The purpose of this paper is to introduce the research process, the research

content, the differences between different methods and the scope of appli-
cation of fuzzy MADM in detail. We hope our work can provide an
effective reference for scholars in related fields, and can also help people with
decision-making needs.

18.2 Literature Review of Fuzzy MADM

In this chapter, we will give a brief description of the literature under the
topic “fuzzy MADM”, so that we can see the research status more intu-
itively. We use the data on the “Web of Science” as a reference. By inputting
the topic “fuzzy multi-attribute decision-making”, we can get the following
search results. Figures 18.1 and 18.2 describe the number of articles published
and cited on the topic “fuzzy MADM”.

Figures 18.3 and 18.4 describe the number of document types of the search
results and source titles on the topic “fuzzy MADM”:

Fig. 18.1 The number of articles published on the topic “fuzzy MADM” every year
since 2002
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Fig. 18.2 The number of articles cited on the topic “fuzzy MADM” every year since
2002

Fig. 18.3 Document types of the search results on the topic “fuzzy MADM”

Fig. 18.4 Source titles of the search results on the topic “fuzzy MADM”
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Table 18.1 Retrieval and citation of fuzzy MADM-related literatures

Results found 1685
Sum of the Times Cited 27716
Average Citations per Item 16.45
h-index 78

The following table 18.1 describes the retrieval and citation of fuzzy
MADM-related literatures:

As you can see from the figures and table above, among the 1685 articles
retrieved, most of them are regular articles or conference articles. The total
number of citations of these articles is 27716, with an average of 16.45 cita-
tions per article, and the h-index is as high as 78. The number of citations in
2020 is more than 6000. Moreover, the number of articles published in this
field continues to rise every year. Especially in the last five years, the growth
has been extremely rapid except for a slight decrease in 2020, which may be
due to the influence of COVID-19 epidemic. In addition, quite a number
of articles have been published in such authoritative journals as Journal of
Intelligent & Fuzzy Systems, Expert Systems with Applications and Informa-
tion Sciences in the field of fuzzy decision-making and computer science. The
above data show that the research results in this direction are very rich and of
high quality. Moreover, the research of fuzzy MADM has a bright future.

We can continue refining the search results by inputting “aggregation”:
Through similar operations, we can get the following two tables by

inputting “preference” and “measure”:
It can be seen from Table 18.2, Table 18.3 and Table 18.4 that there are

589 articles on aggregation with 10952 citations; 489 articles on preference
with 9914 citations; and 400 articles on measure with 6407 citations. A total
of 1478 articles in three directions were cited 27273 times. There is, of course,

Table 18.2 Retrieval and citation of the topic “fuzzy MADM + aggregation”

Results found 589
Sum of the Times Cited 10952
Average Citations per Item 18.59
h-index 52

Table 18.3 Retrieval and citation of the topic “fuzzy MADM + preference”

Results found 489
Sum of the Times Cited 9914
Average Citations per Item 20.27
h-index 49
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Table 18.4 Retrieval and citation of the topic “fuzzy MADM + measure”

Results found 400
Sum of the Times Cited 6407
Average Citations per Item 16.02
h-index 40

a small amount of repetition. However, these data are enough to illustrate the
three directions “aggregation”, “preference” and “measure” account for the
vast majority of the related researches of fuzzy MADM. This is also in line
with the general law of decision-making science. Therefore, we will elaborate
the research of fuzzy MADM from these three perspectives in the rest of this
paper.

18.3 Fuzzy MADM Based on the Information
Integration

18.3.1 Information Integration and Fuzzy MADM

Information integration is a concept of organically integrating and optimizing
the use of related multiple information. In today’s society, the era of big data
is gradually coming, and we need to generate and acquire massive amounts
of information every day. In this case, information integration appears more
and more frequently and gradually occupies an important position in our life.
At the same time, research on its application in decision-making processes is
increasing. So why do we need information integration in decision-making?
It stems from the fragmentation of information. This means that it is not
enough to judge a person or an event from only one or a few aspects of infor-
mation, we need to integrate information from multiple perspectives, and
then make an evaluation of the whole. This kind of integration is not a simple
accumulation of information, but a dynamic process of organically inte-
grating and optimizing multi-dimensional information resources according to
the needs of a specific user in a specific field. Based on the above description,
it can be seen that information integration is an indispensable tool for solving
MADM problems. For every alternative solution, we need to integrate their
evaluation values under all attributes. The method of information integration
can effectively consider all attributes and enable the MADM problems to get
more reasonable decision-making results.
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Fuzzy set theory is an important foundation of information integration.
The fuzzy set uses a real number on the interval [0, 1] to represent the
membership degree, which allows uncertainty in the integration process
of many aspects of information to be directly expressed in the calculation
process. If some systematic methods are used to model the uncertainty in
the process of information integration, consistent fuzzy inference can be
obtained. The actual value of fuzzy set theory for information integration
lies in its extension to fuzzy logic, which is a kind of multi-valued logic.
And membership degree can be regarded as an inaccurate representation of
the truth value of data. In the process of information integration, the uncer-
tainty can be directly represented by fuzzy numbers, and then the data from
different angles can be combined according to various calculation methods
of fuzzy set theory, and then the information integration can be realized.
Compared with traditional probability and statistics methods, the expres-
sion and processing of information by fuzzy reasoning are closer to the way
of thinking of human beings. Therefore, information integration based on
fuzzy information is very suitable for application in the social sciences such
as MADM. There is much research on the application of fuzzy information
integration in MADM, the most common being the study of aggregation
operators.

As an important information integration tool, aggregation operators can
fuse different information together. It is mostly used for sorting. Aggregation
operators actually evolved from common practices in real life. For example,
five judges grade a contestant. When calculating a player’s final score, we often
remove the highest score, remove the lowest score and then average the rest.
From this method, Prof. Yager [10–12] extracted the OWA operator. Actu-
ally, aggregation operators are widely and deeply used in decision-making.
Compared with the aggregation operators of real numbers, fuzzy aggrega-
tion operators can integrate fuzzy information. This can better express the
real thinking of decision-makers. There are many kinds of fuzzy integration
operators, each of which has its own characteristics and specific scope of
application. Next, we will make a detailed introduction to fuzzy aggregation
operators.

18.3.2 Fuzzy Aggregation Operators

Based on the properties of fuzzy information and the advantages of aggre-
gation operators, fuzzy aggregation operators are widely used in MADM.
Among them, different operators have different characteristics. In terms of
the types of fuzzy information, fuzzy aggregation operators can be divided
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into fuzzy integration operators, intuitionistic fuzzy integration operators,
hesitant fuzzy integration operators, probabilistic hesitant fuzzy integration
operators and so on. These operators are produced with the development
of fuzzy theory and more and more complex decision-making requirements.
Fuzzy aggregation operators use the concept of membership degree to better
express the decision-makers’ initial ideas. Intuitionistic fuzzy integration
operators give decision-makers a space of hesitation. Hesitant fuzzy inte-
gration operators allow multiple membership degrees to appear in the same
element at the same time. The probabilistic hesitant fuzzy integration oper-
ator adds a corresponding probability value for each membership degree,
which can completely express the importance of each membership degree.
However, the structure of aggregation operators based on each kind of fuzzy
information is similar. Therefore, this paper introduces fuzzy aggregation
operators from another perspective, that is, the types of operators themselves.

Firstly, we look at the fuzzy weighted average (FWA) operators [5, 13].

FW Aω(α1, α2, · · · , αn) = ω1α1 ⊕ ω2α2 ⊕ · · · ⊕ ωnαn , (18.1)

where αi , i = 1, 2, · · · , n can be fuzzy numbers, they can also be intuition-
istic fuzzy numbers, hesitant fuzzy elements, etc. The core of this operator is
to assign a weight to each part of information in a specific way, and then inte-
grate the corresponding information. The calculation process of this operator
fully considers the importance of each part of the information. Therefore, in
MADM, it is more applicable to the problem that the importance degree of
each attribute is relatively balanced. If one or more properties are particularly
important, the fuzzy geometric average (FGA) [5, 14–17] operator is needed.

FWGω(α1, α2, · · · , αn) = α1
ω1 ⊗ α2

ω2 ⊗ · · · ⊗ αn
ωn , (18.2)

Compared with FWA, the biggest feature of FGA operator is that it can
highlight the status of one or several attributes, such as the very familiar
one-vote system. The FWA and FGA are like brothers, so to speak. FWA
applies to the situation where the importance of all attributes is balanced,
while FGA applies to the situation where a few attributes have significant
importance. Another typical kind of aggregation operator is the fuzzy ordered
average/geometric [5, 13, 14, 18–22] operator.

FOW Aω(α1, α2, · · · , αn) = ω1ασ(1) ⊕ ω2ασ(2) ⊕ · · · ⊕ ωnασ(n) ,

(18.3)

FOWGω(α1, α2, · · · , αn) = ασ(1)
ω1 ⊗ ασ(2)

ω2 ⊗ · · · ⊗ ασ(n)
ωn ,

(18.4)
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Where (σ (1), σ (2), · · · , σ (n)) is substitution of (1, 2, · · · , n). For any j,
there holds ασ( j−1) > ασ( j). This operator first sorts the elements partici-
pating in the integration by size, and then integrates. The essence of this kind
of operator is the integration of locations, not each element. The scoring
method just mentioned, which removes the highest and lowest scores, is a
typical application of it. The above are four basic fuzzy aggregation opera-
tors. It can be said that most of the subsequent operators are derived from
the generalization of these four operators.

As you can see, FWA and FGA focus only on the importance of each piece
of data, while FOWA and FOGA focus only on the importance of different
locations. In fact, in many cases, we need to focus on the weight of both. In
this case, we need some fuzzy hybrid (FHWA/FHGA) operators [5, 13, 14,
23–27].

FH Aω,w(α1, α2, · · · , αn) = w1α̇σ (1) ⊕ w2α̇σ (2) ⊕ · · · ⊕ wnα̇σ (n) ,

(18.5)

FHGω,w(α1, α2, · · · , αn) = α̇
w1

σ(1) ⊗ α̇
w2

σ(2) ⊗ · · · ⊗ α̇
wn

σ(n) ,

(18.6)

where w = (w1, w2, . . . , wn) is the weight vector of the corresponding oper-
ator. α̇ j = nω jα j , α̇σ ( j) ≥ α̇σ ( j+1). ω = (ω1, ω2, . . . , ωn) is the weight
vector of α j . In essence, the fuzzy hybrid operator can be seen as a two-step
integration, in which different elements and different positions are integrated
respectively. This type of operator takes into account the importance of both
data and location and is more comprehensive than the previous operators.
We can use these operators flexibly in practical decision-making problems.

With the development of society, the decision-making environment is
becoming more and more complex, and scholars have been deepening their
research on decision-making theory and methods. In addition to the most
basic aggregation operators mentioned above, some newer and more complex
operators have been proposed to deal with more complex decision-making
scenarios. The fuzzy Bonferroni average (FBM) operator [28–34] can be used
for the integration between the Max operator and the Min operator, as well
as the logical “or” and “and” operator. Its biggest advantage is that it can
describe different relationships between different elements by adjusting the
value of parameters. None of the above operators restrict the weight condi-
tions. In the application of these operators, we usually give the corresponding
weights directly. In fact, in many cases, there is often correlation between
various attributes, that is to say, the weights of some attributes are also related.
Therefore, after considering this situation, many scholars have given some
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fuzzy aggregation operators based on the idea of derivation [35, 36]. The
typical ones are fuzzy Choquet integral operator [37–39], fuzzy Dempster-
Shafer operator [40, 41], etc. When we encounter decision-making problems
with obvious correlation between attributes, we can consider applying these
operators to solve them. It is worth noting that almost all fuzzy aggregation
operators currently are based on algebraic T-norm and T-conorm, which are
determined by their operation methods. Therefore, given a fuzzy weighted
average operator based on Archimedean T-norm and T-conorm (ATS-FWA)
[42] and a fuzzy geometric average operator based on Archimedean T-norm
and T-conorm (ATS-FGA)[42], almost all fuzzy aggregation operators can be
regarded as special cases of them. Of course, there are exceptions. One such
operator is the fuzzy-precedence “or” operator [43–45], which we will look at
below. In MADM problems, if all attributes have the same priority level, that
is to say, we allow mutual compensation among attributes. Then the opera-
tors mentioned above can solve the problem. However, in many cases, we do
not allow compromises between attributes. That is, there are priority differ-
ences between attributes. For example, if someone buys a piece of clothing,
no matter how beautiful it is, he will not consider buying it if there is no
suitable size for him. Thus, the fuzzy-precedence “or” operators are needed
for this kind of MADM problem.

18.3.3 Supplementary Instruction

In this chapter, we introduce fuzzy information integration and its application
in MADM. Fuzzy information integration is a very big research field, and
there are thousands of related literatures. It is impossible for us to introduce
it in great detail due to the lack of space. Therefore, in this paper, we do not
distinguish fuzzy sets and their extended forms in detail, such as FS, Type-2
FS, IFS, HFS, P-HFS, etc. On the contrary, we only introduce the charac-
teristics and application environment of different fuzzy aggregation operators.
Readers can refer to the corresponding references for specific formulas in each
kind of fuzzy environment.

In addition to being the basis of many fuzzy MADMmethods, fuzzy aggre-
gation operators can also be directly used to solve practical decision-making
problems. The application of aggregation operators in MADM is very simple
and clear. We only need to determine the decision-making matrix and select
the appropriate aggregation operator to integrate the evaluation information
of each attribute. Finally, we should calculate the score value of the final result
of each scheme after integration and rank them. We describe this process in
detail with the following flow chart (Fig. 18.5):
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Fig. 18.5 Flow chart of the fuzzy-aggregation-operator-based MADM method

18.4 Fuzzy Measures andMADM

18.4.1 Fuzzy Measures

As a mathematical concept, fuzzy measures can express the relationship
between different fuzzy sets. Based on this feature, it is widely used in
MADM. It is also an important basis for many MADM methods. At present,
the research on fuzzy measures mainly includes distance and similarity
measures, correlation measures and entropy measures.

Distance measure and similarity measure are a pair of concepts, which
express the distance between two fuzzy sets or fuzzy elements. In general, the
greater the distance, the lower the similarity. This pair of concepts is often
applied in MADM, such as the famous TOPSIS method. The research on
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fuzzy distance measure is mainly based on some classical distance formulas,
such as Euclidean distance, Manhattan distance and so on.
The first is fuzzy Euclidean distance [46–52]. The most straightforward

way to understand Euclidean distance is to find the straight-line distance
between two points (in two or three dimensions). Because of its similar form,
it is often used to calculate the distance between two fuzzy sets (or elements).
Here is the formula for the Euclidean distance between two hesitant fuzzy
elements:

d(A1, A2) =
[
1

n

n∑
i=1

(
1

lxi

lxi∑
j=1

∣∣∣hσ( j)
A1

(xi ) − h
σ( j)
A2

(xi )
∣∣∣2

)] 1
2

, (18.7)

And it’s important to note that the Euclidean distance here is the normal-
ized Euclidean distance. In the original Euclidean distance, each coordinate
contributes equally to the Euclidean distance. Taking the hesitant fuzzy
element (HFE) as an example, in the process of MADM, if we use each
membership degree in HFE to represent different attributes, then in the
traditional Euclidean distance, it means that each attribute has the same
contribution to the decision result, which is obviously not in line with the
reality. The standardized Euclidean distance is weighted to coordinates. When
each component is a quantity of different nature, the magnitude of the “dis-
tance" is related to the unit of the index. It improves the original formula
by treating the differences between different attributes of samples (i.e. each
index or variable) differently to some extent.

Now let’s look at the fuzzy Manhattan distance [46–52]. We still use
Manhattan distance formula of HFEs as an example:

d(A1, A2) = 1

n

n∑
i=1

(
1

lxi

lxi∑
j=1

∣∣∣hσ( j)
A1

(xi ) − h
σ( j)
A2

(xi )
∣∣∣
)

, (18.8)

As you can see, the fuzzy Manhattan distance is different from the fuzzy
Euclidean distance. Imagine you’re driving from one intersection to another
in Manhattan. Is that the distance as the crow flies between the two points?
Obviously not, unless you can get through the building. The actual driving
distance is this “Manhattan distance”. This is where the name Manhattan
distance comes from (also called City Block distance). Note that the formula
for the Manhattan distance given above is also standardized. Compared with
Euclidean distance, the calculation of Manhattan distance is simpler but more
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likely to cause confusion, especially in a fuzzy environment because it’s always
more intuitive to calculate the straight-line distance between two points.

In general, the research direction of fuzzy distance measure is to generalize
some commonly used distance measure in measure theory to different types
of fuzzy sets, so as to deal with fuzzy information better and solve fuzzy deci-
sion problems. In these research results, the above two kinds are the most
commonly used. Of course, there are other types of fuzzy distance measures.
We don’t need to go into details here. Readers can refer to the related work
for more specific studies.

Another tool used to describe the relationship between fuzzy elements is
the fuzzy correlation coefficient [53–59]. Unlike the distance measure, which
focuses on the distance between two elements, the correlation coefficient
calculates the “included angle” between two elements. It measures the degree
of correlation between two fuzzy elements. The greater the correlation coef-
ficient, the greater the correlation between the two elements, and vice versa.
The common fuzzy correlation coefficient is mainly based on the Pearson
correlation coefficient in the fuzzy environment, such as the hesitant fuzzy
correlation coefficient below:

c(h1, h2) =
∑l

i=1

(
hσ(i)
1 hσ(i)

2

)
(∑l

i=1

(
hσ(i)
1

)2 ∑l
i=1

(
hσ(i)
2

)2) 1
2

, (18.9)

In MADM, the fuzzy correlation coefficient can be used to test the correla-
tion between different attributes, making it a very practical tool. The fuzzy
entropy and cross entropy measures [60–64] are also very commonly used
in fuzzy decision-making. Entropy is originally a thermodynamic concept
that describes how messy things are. In the field of decision-making, entropy
measure and cross entropy measure can also be used to compare the corre-
lation degree between fuzzy elements. It can be said that entropy measure is
a bridge between thermodynamics and decision-making science. At present,
there are also many scholars in the relevant research.

In general, fuzzy measures are mainly used to measure the distance or
correlation between fuzzy elements. We look at their use in MADM in more
detail in the next section.
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18.4.2 Application of Fuzzy Measures in MADM

The application of fuzzy distance measures and similarity measures in
MADM is mainly in some decision-making methods. The most important
and most widely used method is TOPSIS. TOPSIS (Technique for Order
Preference by Similarity to an Ideal Solution) was first proposed by C.L.
Hwang and K. Yoon in 1981 [65]. TOPSIS is a method to rank limited
evaluation objects according to their proximity to the idealized target, and it
is used to evaluate the relative merits of existing objects. There are two ideal
solutions, one is the positive ideal solution (PIS), the other is the negative
ideal solution (NIS). The best object should be the closest to the PIS, while
the farthest from the NIS. The calculation of distance can use the commonly
used Euclidean distance or Manhattan distance, etc.
TOPSIS method is a sequential optimization technique of ideal target

similarity, and it is a very effective method in multi-attribute decision anal-
ysis. It finds out the optimal target and the worst target (represented by
PIS and NIS, respectively) in multiple targets through the normalized data
normalization matrix. And then, the distance between each evaluation target
and PIS and NIS is calculated, respectively, and the closeness degree of each
target and the ideal solution is obtained. The closeness degree of each target
and ideal solution is sorted according to the closeness degree of ideal solution,
which is used as the basis for evaluating the merits and demerits of the target.
The closeness degree is between 0 and 1, and the closer this value is to 1,
the closer the corresponding evaluation target is to the optimal level. On the
contrary, the closer the value is to 0, the closer the evaluation target is to the
worst level. TOPSIS has been successfully applied in many fields such as land
use planning, material selection and evaluation, project investment, medical
and health care, and has significantly improved the, accuracy and operability
of MADM.

In order to make readers better understand the fuzzy TOPSIS method, we
take the hesitant fuzzy TOPSIS as an example to elaborate in more detail. For
TOPSIS methods in other fuzzy environment, readers can refer to relevant
literature [66–69]. Hesitant fuzzy TOPSIS is proposed by Xu and Zhang
[70]. Its main idea is to use the distance between each alternative and the
hesitant fuzzy positive and negative ideal solutions (HF-PIS and HF-NIS) to
rank the alternatives. The HF-PIS and HF-NIS can be defined as follows:

A+ =
{
x j ,maxi 〈γ σ(λ)

i j 〉| j = 1, 2, · · · , n
}

(18.10)
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After that, the distances between the alternatives and the HF-PIS and HF-
NIS can be calculated through the using of the hesitant fuzzy Euclidean
distance [70]. And then we can get:
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Next, the relative closeness coefficient of an alternative and the HF-PIS is
defined as follows:

Ci = d−
i

d+
i + d−

i

, (18.16)

Finally, alternatives can be sorted with the relative closeness coefficients.
According to the previous introduction, the higher the relative closeness
coefficient Ci , the closer the distance is to the HF-PIS.

A similar method is the fuzzy VIKOR method [36, 71–73]. It is a method
to solve the MADM problem with conflicting attributes, which is based on
the special measure of the paste progress from alternative to ideal solution.
The basic measure for compromise ranking in this method is derived from
the integration function L p- metric used in compromise programming. In
this method, we first need to find the ideal solutions. For the profit type
attribute, the ideal solution is the maximum value of each column of the
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fuzzy decision matrix. On the contrary, for cost attributes, the ideal solu-
tion is the minimum value of each column of the fuzzy decision matrix. The
operation of this step is very simple. However, ideal solutions are usually
infeasible solutions because conflicting properties cannot be satisfied at the
same time. Fuzzy VIKOR integrates the maximum “group utility” and the
minimum “individual regret” in the process of mutual concession, so as to
find the optimal compromise solution.

Fuzzy correlation measures and entropy measures are usually used in fuzzy
clustering algorithms. The method of fuzzy cluster analysis originates from
introducing fuzzy mathematics method into cluster analysis. Fuzzy clus-
tering analysis methods can be roughly divided into two kinds: one is fuzzy
clustering method based on fuzzy relation. It is also called systematic clus-
tering analysis. The other method is called non-systematic clustering method,
which first divides the samples roughly, and then classifies them according to
their optimal principle. After several iterations, the classification is relatively
reasonable. This method is also called step-by-step clustering method. Fuzzy
clustering analysis usually requires the following four steps :

1. Determining the complete set of clustering units;
2. Determine clustering criteria and clustering factors;
3. Survey and collate data according to clustering criteria and factors;
4. Meta-dimensional processing of statistical data, also known as normaliza-

tion.

Fuzzy clustering analysis is widely used in MADM, especially in large-
scale MADM. In large-scale MADM, the amount of data is very large. There
are some problems in the decision-making process, such as dimensionality
confusion and information complexity. This makes information very difficult
to use. At this time, the fuzzy clustering method can classify the alternative
schemes or attributes, which makes the initial decision-making information
more concise and easier to use, thus greatly simplifying the decision-making
problem. It can be said that cluster analysis is a necessary step for most
large-scale decision problems. At present, there is much research on fuzzy
clustering. In terms of clustering methods, it can be classified into algorithms
based on condensed hierarchical clustering [74, 75], algorithms based on K-
means clustering [76], clustering algorithms based on graph theory [77] and
so on [78–81]. When we are faced with large-scale MADM problems, we can
choose the appropriate fuzzy clustering method to deal with the decision-
making information, and lay a solid foundation for the decision-making
processes.
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Fig. 18.6 Research trend of Fuzzy measures

In general, the application of fuzzy measure theory in fuzzy MADM is
a relatively new kind of research. The application of thermodynamics prin-
ciple and cluster analysis to decision analysis is also a decision model that has
gradually emerged in recent years. Since 2018, there has been an explosion
of the related research about fuzzy measures. We can see the research trend in
Fig. 18.6 below:

We believe that in the next few years, the study of fuzzy measure theory
and its application in MADM will definitely become a hot direction.

18.5 Fuzzy Preference Relations andMADM

18.5.1 Fuzzy Preference Relations

In many cases, it is difficult for decision-makers to give a specific evaluation
of an alternative. But it is easy to compare the two schemes. Of course, using
fuzzy information to express this preference is more in line with the subjec-
tive thinking of decision-makers. This is the fuzzy preference relation. There
are two kinds of fuzzy preference relations: fuzzy additive preference relation
(complementary judgment matrix) and fuzzy multiplicative preference rela-
tion (reciprocal judgment matrix). The main difference between the two is
scale. The additive preference relation uses 0 − 1 scale, while the multiplica-
tive preference relation uses 1/9 − 9 scale. Fuzzy preference relation is an
important part of fuzzy decision-making. At present, there are many related
researches. The research on it can be divided into the following four parts:

1. direct derivation of alternative ranking or weight vector from judgment
matrix [82–85];

2. consistency of judgment matrix [86–89];
3. consensus process [90–93];
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4. analytic hierarchy process (AHP) [94–97].

Among them, consensus process is to study how to make multiple
decision-makers reach consensus, which is mainly applied to group decision-
making (GDM). Therefore, the application of preference relation in MADM
is mainly the other three.

In MADM, if we want to get the ranking of alternatives directly from a
set of judgment matrices, we need to integrate the scores of each alternative
in all attributes with the help of fuzzy aggregation operators. Finally, we get
the ranking result according to the comprehensive score of each scheme. This
idea is very simple and direct, and it is the most basic application of fuzzy
preference relation in MADM.
The research on the consistency of fuzzy preference relations generally

follows the following steps. Firstly, for a new kind of fuzzy information, such
as IFS and HFS, we need to give a definition of its consistency, which must be
well defined. Secondly, the definitions are generally complex and obscure. We
need to give some sufficient and necessary conditions to obtain ways to judge
whether a certain preference relation is consistent. Then, for those incon-
sistent preference relations, we need to give some adjustment algorithms to
make them consistent. For some complex preference relations which satisfy
the consistency, we need to use their good properties to degenerate them into
simple preference relations by some methods. In a word, the research on the
consistency of fuzzy preference relations is essentially to lay a good founda-
tion for the subsequent derivation of weight or ranking results based on these
preference relations, and do a good job of “quality inspector". The judgment
matrix without testing cannot be used.

18.5.2 Fuzzy Analytic Hierarchy Process

The analytic hierarchy process (AHP) first takes a complex multi-objective
decision-making problem as a system, decomposes the objective into multiple
objectives or criteria, and then decomposes it into several levels of multiple
indicators (or criteria, constraints). Then, the single rank (or weight) and
the total rank are calculated by the fuzzy quantitative method of qualitative
index. It decomposes the decision-making problem into different hierarchies
according to the order of general objective, sub-objectives of each level, eval-
uation criteria and specific alternatives. Then, by solving the eigenvector of
judgment matrix, the priority weight of each element of each level to a certain
element of the upper level is obtained. Finally, the method of weighted sum
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is used to merge the final weight of each alternative to the general objective
hierarchically. The best scheme is the one with the largest final weight.

From the perspective of decision-makers, fuzzy information can better
express their ideas. As a classical decision-making method, AHP has been
extended to fuzzy environments by many scholars, which forms fuzzy AHP. It
is a typical example of comprehensive application of fuzzy preference relation,
which uses approaches such as the construction of preference relation, consis-
tency test and weight derivation. Fuzzy AHP is mainly used to derive weights
and ranking results, and it is widely used in GDM, MADM and other
decision-making problems. Next, we briefly introduce the decision-making
process of fuzzy AHP (Fig. 18.7).

Step 1 Determine the objectives, attributes, sub-attributes and alternatives
of the decision-making problem, and construct the hierarchical
structure of the decision-making problem.

Step 2 Determine the type of fuzzy set to be used through the analysis
of decision-making information, and then construct the corre-
sponding fuzzy preference relations through the pairwise comparison
of attributes or sub attributes. At the same time, compare each alter-
native under each attribute, and construct the corresponding fuzzy
preference relation. The relative importance of these attributes or
schemes is represented by corresponding fuzzy elements.

Step 3 Check the consistency of each fuzzy preference relation is by the
corresponding criterion. If all fuzzy preference relations have accept-
able consistency, go to step 5, otherwise go to step 4.

Step 4 Use the corresponding algorithm to modify the inconsistent fuzzy
preference relations. Or return them to the relevant decision-makers
for re-evaluation until they have acceptable consistency.

Fig. 18.7 Flow chart of fuzzy AHP
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Step 5 Select the corresponding method to calculate the priority of each
fuzzy preference relationship.

Step 6 Use the operation method of corresponding fuzzy elements to fuse
all the weight information from the bottom to the top, and then
compare the comprehensive weight and select the optimal scheme
in the end.

18.6 Some Other Classical Synthetic Fuzzy
MADMMethods

In the previous chapters, we introduced some basic knowledge and methods
of fuzzy MADM. In addition, there are some MADM methods, which inte-
grate the knowledge of fuzzy decision-making, and provide more and more
suitable choices for MADM problems in different situations. In this chapter,
we mainly introduce these methods.

18.6.1 Fuzzy PROMETHEE

The main idea of PROMETHEE method is to derive the partial order or
complete order of alternative schemes according to outgoing flow, entering
flow and net flow of schemes. In recent years, this method has been
extended to various decision-making environments to solve MADM prob-
lems in different information forms. The first generation of PROMETHEE
method was characterized by partial order and the second generation of
PROMETHEE method was characterized by complete order, first proposed
by Brans and Mareschal [98]. Subsequently, various versions were produced
one after another, and they were also applied to many fields, such as envi-
ronmental management [99], business and financial management [100],
information technology [101], project management [102] and so on. For
details, please refer to reference [103]. The PROMETHEE method is mainly
used to deal with the problems with difficulties on pairwise comparison. It
considers two kinds of additional information, that is, information within
and between attributes. It considers the deviation degree of the evaluation
value of every two pairs of alternatives on a specific attribute. The smaller
the deviation, the decision-maker will assign a smaller preference to the
alternative.
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Many scholars applied different kinds of fuzzy information to
PROMETHEE and established fuzzy PROMETHEE methods. They allow
decision-makers to apply fuzzy elements when giving evaluation values for
each alternative with respect to different attributes. Then, the preference
degrees between every two alternatives with fuzzy elements can be obtained
and FPR can be established. They can avoid the deviation of decision-making
results caused by the DMs forcibly giving accurate evaluation values under
uncertain conditions.

Fuzzy PROMETHEE can be roughly summarized as the following steps:

1. For a certain given decision-making problem, generate the set of alter-
natives X = {X1, X2, · · · , Xm} and determine the set of attributes
A = {A1, A2, · · · , An};

2. The decision-makers give evaluation values of all alternatives in
X = {X1, X2, · · · , Xm} with respect to the attributes in C =
{A1, A2, · · · , An}, respectively, with corresponding information form.
At the same time, determine the relative weight vector of all attributes,
ω = (ω1, ω2, · · · , ωn)

T , where
∑n

j=1 ω j = 1;
3. Calculate the deviation degrees of each pair of alternatives with respect

to different attributes A = {A1, A2, · · · , An}. And then, determine
the decision-makers’ preference functions, that is, determine the no-
difference-threshold q and the strict-preference-threshold p. And then,
compute the preference degree μk

i j between alternatives Xi and X j

with respect to the attribute Ak through the linear preference function
(V-shape) [98], and get the preference matrix Uk(k = 1, 2, · · · , n);

4. Establish the FPR Fk = (μk
i j )m×m with respect to the attributes Ak(k =

1, 2, · · · , n);
5. Establish the overall FPR F = (ri j )m×m ;
6. Calculate the outgoing flows and entering flows of all alternatives Xi (i =

1, 2, · · · ,m), denoted as ϕ+(Xi ) and ϕ−(Xi );
7. Compare the sizes of all ϕ+(Xi )(i = 1, 2, · · · ,m) and ϕ−(Xi )(i =

1, 2, · · · ,m) to get the final preference orders of all alternatives.

The above is just a rough explanation of fuzzy PROMETHEE. In fact, the
details of the method are slightly different in different fuzzy environments.
Please see the detailed algorithm and formulas in Ref. [104–107].
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18.6.2 Fuzzy ELECTRE

The ELECTRE method plays an important role in scheme ranking. It was
first proposed by Benayoun et al [108]. Subsequently, Roy proposed the
ELECTRE I method and improved it continuously [109]. Then, many
scholars continue to improve and expand this method, and apply it to many
different fields, such as project selection [110], transportation [111], energy
management [112] and so on. The ELECTRE method mainly constructs
the consistent set and inconsistent set of attributes to get the corresponding
dominant matrix and the final ranking results. Compared with traditional
ELECTRE method, fuzzy elements applied in fuzzy ELECTRE method can
contain more decision information than real information. We can use score
value and deviation degree to further divide consistent set and inconsistent
set. Thus, we can avoid forcing the decision-makers to take the average prefer-
ence. Therefore, the fuzzy ELECTRE method is more suitable for the actual
decision-making processes. Next, we take hesitant fuzzy ELECTRE as an
example to briefly introduce the steps of fuzzy ELECTRE:.

1. Establish the hesitant fuzzy decision-making matrix. And then, deter-
mine the weight vector of all attributes ω = (ω1, ω2, · · · , ωn)

T and
the attitude weight vector of different kinds of hesitant fuzzy concordance
(discordance) set w = (wc, wc′, wD, wD

′)T ;
2. Calculate the score values and the deviation degrees of all alternatives

under every attribute;
3. Construct the hesitant fuzzy concordance (discordance) set and the weak-

ened hesitant fuzzy concordance (discordance) set;
4. Calculate the hesitant fuzzy concordance (discordance) index and the

weakened hesitant fuzzy concordance (discordance) index. And then,
establish the hesitant fuzzy concordance (discordance) matrix and the
weakened hesitant fuzzy concordance (discordance) matrix;

5. Determine the consistent dominant matrix and the inconsistent dominant
matrix;

6. Establish the dominant aggregation matrix;
7. Draw the decision-making map and choose the best alternative.

The above is a brief process of hesitant fuzzy ELECTRE I. The purpose of
our introduction is to help readers better understand this method. In fact,
the specific steps of ELECTRE . are different in different fuzzy environ-
ments. And there are some other kinds of ELECTRE, such as ELECTRE
II, ELECTRE III, ELECTRE TRI, etc. If you want to know more about
other content, you can refer to the corresponding literature [113–117].
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18.6.3 Hesitant Fuzzy TODIM

In most decision-making processes, decision-makers usually do not have
complete rationality [118]. This means that the psychological behavior of
decision-makers will fundamentally have a significant impact on the decision-
making processes and results. Unfortunately, most MADM methods,
including the famous TOPSIS and ELECTRE, assume that the decision-
makers are completely rational. In this way, in many practical decision-
making problems, the reliability of these methods is questionable. TODIM
considers the bounded rationality of decision-makers. Next, we will take the
hesitant fuzzy TODIM method [119] as an example to introduce the specific
content of this method in detail:

Let’s start with a new measure of HFEs. Let h = {γ1, γ2, · · · , γn} be an
HFE, Zδ(h) of h can be defined as follows:

Zδ(h) = Zδ(γ1, γ2, · · · , γn) =
(

(γ1)
δ + (γ2)

δ + · · · + (γn)
δ

n

) 1
δ

,

(18.17)

where δ is a parameter given by decision-makers. It can be changed with
different problems, and is in the range 0 < δ ≤ 1. In particular, if δ = 1,
then Zδ(h) reduces to the score function [5] of HFEs.

After that, we can get a new way to compare two HFEs.

1. If Zδ(h1) > Zδ(h2), then h1 is superior to h2, denoted as h1 > h2;
2. If Zδ(h1) < Zδ(h2), then h1 is inferior to h2, denoted as h1 < h2;
3. If Zδ(h1) = Zδ(h2), then h1 is equivalent to h2, denoted as h1 ∼ h2.

Based on the above measure function and the HFE-ranking method, in
the following, the hesitant fuzzy TODIM will be introduced as follows:

At first, the attribute with the highest weight Ai0 is considered as the refer-
ence attribute. Then, we can calculate the relative weight of each attribute Ai
which is relative to the reference attribute Ai0 with:

wi i0 = wi

wi0
, i = 1, 2, · · · , n , (18.18)

Benefitting from the above information, the gain and loss values of the
alternative Xi relative to X j with respect to different attributes can be
calculated. Let A = {A1, A2, · · · , An} be the attribute set, and X =
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{X1, X2, · · · , Xm} be the alternative set. hik is used to denote the eval-
uation value of the alternative Xi with respect to the attribute Ak , the
weight vector of A is w = (w1, w2, · · · , wn)

T , and largest one among
wk(k = 1, 2, · · · , n) is wk0 . Then, the perceptual function value of Xi
relative to X j on Ak is:

ϕk(Xi , X j )

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
wkk0d

(
hik, h jk

)
/
∑n

k=1
wkk0, i f Zδ(hik) − Zδ(h jk) > 0

0, i f Zδ(hik) − Zδ(h jk) = 0

− 1
θ

√(∑n

k=1
wkk0

)
d
(
hik, h jk

)
/wkk0, i f Zδ(hik) − Zδ(h jk) < 0

,

(18.19)

where θ denotes the attenuation factor of the losses, d(hik, h jk) is the
Euclidean distance measure of hik and h jk . If Zδ(hik) − Zδ(h jk) > 0, the
ϕk(Xi , X j ) represents “gain"; If Zδ(hik) − Zδ(h jk) = 0, the ϕk(Xi , X j )

represents a “nil"; If Zδ(hik) − Zδ(h jk) > 0, the ϕk(Xi , X j ) represents
“losses".

Next, the perceptual function of Xi relative to X j under all attributes in
A = {A1, A2, · · · , An} can be calculated as follows:

ϑ(Xi , X j ) =
n∑

k=1

ϕk
(
Xi , X j

)
, i, j = 1, 2, · · · ,m , (18.20)

Finally, the overall perceptual function values of Xi (i = 1, 2, · · · ,m) can be
calculated by:

�(Xi ) =
∑m

j=1 ϑ
(
Xi , X j

) − mini
{∑m

j=1 ϑ(Xi , X j )
}

maxi
{∑m

j=1 ϑ(Xi , X j )
}

− mini
{∑m

j=1 ϑ(Xi , X j )
} ,

i = 1, 2, · · · ,m , (18.21)

It can be seen that 0 ≤ �(Xi ) ≤ 1. Thus, we can rank the alternatives
Xi (i = 1, 2, · · · ,m) by their overall perceptual function values.
In different fuzzy environments, the decision-making methods are

different. Readers can refer to the relevant literature [120–123] to further
understand TODIM methods in other fuzzy environment and their applica-
tion scenarios.
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Fig. 18.8 The proportion of the research of fuzzy TOPSIS, AHP, VIKOR and other
methods

We introduce three fuzzy MADM methods above. In fact, there are many
fuzzy MADM methods, in addition to the above three, there are also fuzzy
LINMAP [124–126], fuzzy QUALIFLEX [127–130], fuzzy COPRAS [131]
and other classic methods. The following Figs. 18.8 and 18.9 describe the
research status of those fuzzy MADM methods in recent decades:

It can be seen from the above two figures that TOPSIS, AHP and
VIKOR are the three most commonly used methods in fuzzy multi-attribute
decision-making. And since 2016, the number of related studies has increased
dramatically. The number of articles published each year is several times
higher than before.

18.7 Prospects for Future Research Directions

From the earliest FS to IFS, HFS, until the recent P-HFS, fuzzy theory has
been developing. At the same time, fuzzy MADM has been making progress.
We believe that in the future, the development direction of fuzzy MADM
is mainly the combination of fuzzy and probability. At present, it is P-HFS.
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Fig. 18.9 The proportion of the research of some other fuzzy MADM methods

Of course, there may be more perfect fuzzy information expressions in the
future.

At present, the research on probabilistic hesitant fuzzy MADM has begun
to take shape. The research of P-HFS in information fusion [7, 132, 133],
distance measures [134–136] and preference relations [137–142] has formed
a basic system, and some scholars have also proposed some related MADM
methods [143–149]. However, it is far from IFS and HFS. In fact, since Zhu
[6] put forward the concept of P-HFS in 2014, the follow-up research has
been carried out. However, for a long time, the related research work has
been stagnant for a long time. The reason is that the structure of P-HFS is
complex, which makes it very difficult to deal with. In this regard, we think
that the future research on probabilistic hesitant fuzzy MADM should focus
on the following points:

1. Operation and integration: the operation and integration of P-HFEs is
the basis of all subsequent research. Firstly, compared with other fuzzy
elements, the difficulty of P-HFEs’ operation lies in the processing of
probability information. Therefore, we should find some reasonable and
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concise ways to deal with the probability information, so as to simplify
the operation of P-HFEs as much as possible. In this aspect of research,
we think that continuity is a good idea. In fact, probability information
brings us not only trouble, but also some good properties. For example, if
we make rational use of probability distribution, we can make P-HFEs
continuous. After that, we can use computer-based methods and the
knowledge of statistics to carry out subsequent operations. If the method
is appropriate, it can greatly improve our computational efficiency. We
believe that this is a good research direction.

2. Distance measures: from the previous description, we can know that
distance measure is the basis of many MADM methods. Therefore, it
is very important to study the distance measure of probabilistic hesitant
fuzzy information. However, it is difficult to define the distance measure
of probabilistic hesitant fuzzy information for the same reason that it is
difficult to deal with the probability information. At present, there is no
perfect distance measure. Therefore, this is also a key research direction in
the future.

3. The MADM methods: the former two directions are both basic research,
and they also limit the development of probabilistic hesitant fuzzy
MADM method. After solving the above two problems, we should
improve the original MADM method based on the advantages of proba-
bilistic hesitant fuzzy information, and construct some new methods. And
then we can establish a more perfect MADM method system, so as to
better solve the actual MADM problems.
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Importance Measures in Reliability

Engineering: An Introductory Overview

Shaomin Wu and Frank Coolen

19.1 Introduction

Modern technical systems are complex and composed of multiple compo-
nents. The failures of such systems may cause various types of consequences,
such as loss of healthy life and well being, economic losses or environmental
damage. This requires engineers to design their products with high reliability
and maintain them in a good condition to ensure good availability.

In the reliability literature, many approaches have been presented to
support system engineers in their tasks to fulfil these requirements. These
include, at the product design stage, the optimisation of reliability alloca-
tion under constraints on e.g. budget and weight, and at the operation stage,
optimal scheduling of preventive and corrective maintenance activities. These
approaches can be guided by a widely studied general concept: importance
measures.
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Importance measures in the reliability literature aim to provide a list of
priority rankings for a given task. For example, if the system has failed, a list of
probabilities of which components may have caused the system to fail can be
helpful for the engineers to diagnose the system and ascertain the cause of the
failure; if preventive maintenance is carried out on the system, then a ranking
which indicates the improvement of the system reliability resulting from
maintenance activity on each particular component will be useful. There are
many other examples where various types of component importance measures
can be applied. That is, importance measures are proposed from different
perspectives and can be used for different purposes. The reader is referred to
[1] for a monograph and to [2–4] for review papers relating to importance
measures. This chapter aims to provide practitioners with an introduction to
importance measures in reliability engineering.

19.2 Basic Concepts of Reliability

In many applications, time to the occurrence of an event is a main concern.
For example, the event can be the failure of a product or system, or death
or recovery of a patient who has been given newly developed medication.
While such events seem to be very different, the mathematical methods for
quantification of the uncertainty involved are very similar. Hence, while this
chapter discusses importance measures from an engineering perspective, the
concept is relevant and applicable in many other fields.

19.2.1 Reliability Function

British Standard gives the following definition of reliability [5]:

Definition 19.1 (Reliability) [5] Reliability is the ability of an entity to
perform a required function under given conditions for a given time interval.

It should be highlighted that, in this definition, required function, given
condition, and given time interval are very important. Accordingly, failure is
the termination of the ability to perform the required function.

Let T be the time to failure, then the reliability function R(t) = P(T >

t), with t ≥ 0, is of central interest in reliability theory. R (t ) is also referred
to as the survival function, mainly so in medical applications. So reliability
is the probability that an item, which can be a component, a subsystem or a
system, works without failure during a time interval (0, t ) under given usage
intensity and operating environment.
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For engineering scenarios, we normally assume the following properties of
R (t ):

• R(t1) ≥ R(t2) if t1 < t2. That is, R (t ) is a non-increasing function of t .
With time progressing, the reliability of an item becomes smaller;

• R(0) = 1. That is, at time t = 0, the reliability of the item under study is
1; and

• R(∞) = 0. That is, when time approaches infinite, the item will definitely
fail.

19.2.2 System Reliability Analysis

Assume that a system consists of multiple components and the reliability of
each component is known. Then we will be able to obtain the reliability
of the system, given the assumption that the failure times of the compo-
nents are statistically independent, and assuming that the system structure
function, which describes the system state as function of the component
states, is fully known. The assumption of independence will be applied in
this chapter for simplicity. It should be remarked that there are impor-
tant scenarios where component lifetimes are naturally dependent, and this
will also affect the important measures. Examples of such scenarios include
common failure modes and cascading failures, but also in cases of load-
sharing between components, the failure of one component can increase the
load on other components, and hence their failure times will not be depen-
dent. The simplest system structures are series systems, parallel systems and
k-out-of-n systems, which are briefly introduced.

Definition 19.2 (Series system) Suppose a system consists of multiple compo-
nents. If the failure of any of the components causes the system to fail, then
the system is called a series system.

For example, a car has four tyres. If one of the tyres deflates, then the tyre
system stops working and the deflated tyre needs to be fixed or replaced with
one that functions. As such, the tyre system can be regarded as a series system.

Assume a series system is composed of n components with statistically
independent failure times. Denote the cumulative distribution function of
the failure time distribution of component i by Fi (t), for i = 1, 2, . . . , n,
and the corresponding reliability functions by Ri (t) = 1 − Fi (t). The reli-
ability function of the series system is given by Rs(t) = ∏n

i=1 Ri (t) =∏n
i=1(1 − Fi (t)).
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Definition 19.3 (Parallel system) Suppose a system consists of multiple
components and that the system fails only if all of the components in the
system fail. Then the system is called a parallel system.

For example, a human body has two kidneys. Only if both kidneys fail,
the kidney system will fail. As such, the kidney system can be regarded as a
parallel system composed of two components.

Assume a parallel system is composed of n components, with statistically
independent failure times. Then the failure time distribution of the system is
given by Fs(t) = ∏n

i=1 Fi (t), and the reliability function of the system is
Rs(t) = 1 − Fs(t) = 1 − ∏n

i=1(1 − Ri (t)).

Definition 19.4 ( k-out-of-n system) Suppose a system consists of n compo-
nents. Assume that the system functions only if at least k components
function. Then the system is called a k-out-of-n system.

Clearly, if k = n then such a system is a series system, and if k = 1 then it
is a parallel system. A real-world example is a V8 engine, which works if and
only if four or more of its eight cylinders work, so this is a 4-out-of-8 system.

For the special case that all n components have the same reliability
function R (t ), the reliability function of a k-out-of-n system is Rs(t) =
∑n

i=k

(
n
i

)

(R(t))i (1 − R(t))n−i .

Many real-world systems are more complex as they are composed of
subsystems, each of which may have different structures. For example, Fig
19.1 illustrates a system composed of five components: component 1, compo-
nent 2 and the subsystem composed of components 3, 4, and 5 are structured
in series; components 3, 4 and 5 in the subsystem are structured in parallel.

If we denote the reliability functions of the five components in Fig 19.1
by Ri (t), for i = 1, 2, 3, 4, 5, respectively, then the reliability function of
the system is given by Rs(t) = R1(t)R2(t)[1− (1− R3(t))(1− R4(t))(1−
R5(t))].

Fig. 19.1 A typical example of a complex system
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19.3 Importance Measures

The concept of importance measures was first introduced by Birnbaum [6].
Importance measures are metrics that can be used to rank the components
in a technical system from a given perspective. For example, one may need
to identify and rank the most important components within a system, and,
specifically, to identify where investments should be made to increase the
overall system availability, subject to a budget constraint [7]. In such cases,
component importance measures are useful decision support tools.

A recurrent theme of interest in reliability theory is to define reliability
importance. Importance measures have deep ramifications for researchers in
reliability theory. Suppose that a system contains n components, whose reli-
ability functions are R1(t), R2(t), . . . , Rn(t), and assume that components
failures are independent. The reliability of the system at a given time point
t may be expressed as a function of the component reliabilities at that time,
say by

Rs(t) = f (R1(t), R2(t), . . . , Rn(t)).

Importance measures can be categorised into technology-based or utility-
based measures. We briefly describe these.

19.3.1 Technology-Based Measures

The technology-based criterion reflects the impact of a reliability-related index
of a component on its system. In this category, importance measures may
be categorised into three classes: structure importance, reliability importance
and lifetime importance [6].

19.3.1.1 Structure Importance

Structure importance measures evaluate the importance of the position of
a component in the system. As such, the structure importance is evaluated
with the knowledge of the position of each component, but reliability-related
information of each component is not needed.

A component is critical in a state vector if its failure will cause system
failure. The structure importance of component i in binary-state systems is
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obtained from the following index

I Si =
The total number of di f f erent state

vectors in which component i is cri tical

2n−1 (19.1)

It is easily seen that all components in a series (or parallel or k-out-of-
n) system have the same structure importance. However, components in a
series-parallel system may have different structure importance. For example,
components 1 and 2 in Fig 19.1 are structured in series, and therefore they
have the same structure importance. Similarly, components 3, 4 and 5 have
the same structure importance, but components 1 and 3 (or components 4
and 5) have different structure importance.

As can be seen from the definition 19.1, there is no need to use any infor-
mation about the reliability of each component in the system to calculate the
structure importance.

19.3.1.2 Reliability Importance

Reliability importance measures evaluate the importance of a component in
the system when the knowledge of the position of each component is known
and the reliability function of each component is also known or assumed.
This enables the importance of a component for the system functioning to be
measured at any specific time. A well-known importance measure which takes
time into account is Birnbaum’s importance measure, as discussed below.
The Birnbaum measure of the importance of component i is the rate of

change of system reliability with respect to component reliability [6]:

I Bi (t) = ∂Rs(t)

∂Ri (t)
. (19.2)

Assuming there is a given amount �R of the reliability improvement which
can be conducted on any given component, then it can easily be proved that
the largest Birnbaum importance for a series system is assigned to the compo-
nent with the smallest reliability, and for a parallel system it is the component
with the largest reliability that has the largest Birnbaum importance. That is,
if one is able to improve a component with a given amount of reliability
�R, then one should choose to improve the weakest component in a series
system in order to maximise the improvement of the system reliability, while
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in a parallel system it is optimal to improve the reliability of the strongest
component.
The improvement of the system reliability due to replacing component i

with reliability Ri (t) by a component with reliability R̃i (t) > Ri (t), is given
by

I I
Ri→R̃i

(t) = f (R1(t), R2(t), . . . , R̃i (t), . . . , Rn(t))

− f (R1(t), R2(t), . . . , Ri (t), . . . , Rn(t)). (19.3)

I I
Ri→R̃i

(t) is called the improvement potential of component i at time t . In

some publications, when defining the improvement potential, the R̃i (t) in
(19.3) can be set to 1. Nevertheless, we should note that in practice the reli-
ability of component i is unlikely to be perfect (i.e, R̃i (t) = 1). As such, the
definition shown in Eq. (19.3) fits better with practice. Apparently, one can
easily derive the relationship between the Birnbaum importance measure and
the improvement potential [8].

19.3.1.3 Lifetime Importance

Lifetime importance measures evaluate the importance of a component in
the system, considered over the full lifetime of the system, when the knowl-
edge of the position of each component is known and the reliability of each
component is a function of time. The examples of reliability importance
measures aforementioned can be extended to their counterparts that fall in
this category, for example, the Birnbaum time-dependent lifetime importance
measure and the criticality time-dependent lifetime importance measure.
The Barlow-Proschan (BP) importance is defined under the condition that

the system is a coherent system and the component lifetimes are independent.
It measures the probability that the failure of a given component causes the
system to fail [9]. The BP importance measure is defined by

IBPi =
∫ +∞

0
I Bi (t) fi (t)dt, (19.4)

where fi (t) is the probability density function (pdf ) of the failure time of
component i.
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19.3.2 Utility-Based Importance Measures

The utility-based criteria are set to compare, in monetary terms, the relevant
economic impact of an event caused by a component on its system. Such an
event can be the failure of a component, the repair upon a failure, or a preven-
tive maintenance action. For example, the cost-based importance, introduced
by Wu & Coolen [10], is a utility-based importance measure which considers
the costs incurred due to maintaining a system and its components within a
finite time horizon.

Wu & Coolen[10] assume that the total cost of maintaining a system
within time period (0, t ) includes costs CS(t) incurred due to system failure
and costs Ci (t) for maintaining component i during this period. Hence, the
total cost within time interval (0, t ) is given by

C(t) = Cs(t) +
n∑

i=1

Ci (t) (19.5)

The cost-based importance of component k is defined as

I Ci (t) = − ∂C(t)

∂Ri (t)
. (19.6)

where the negative sign in the definition is in order to align I Ci (t) with
conventional importance measures, so that larger importance measures imply
more cost savings.

It should also be noted that a system can be coherent or non-coherent.
A system is coherent if its reliability function is nondecreasing in terms of
the values of its components reliabilities, otherwise it is non-coherent. The
above importance measures were proposed for coherent systems but they can
be extended to the non-coherent systems. For example, Birnbaum’s impor-
tance is extended to non-coherent systems by Andrews & Beeson [11] and
Beeson & Andrews [12].

19.3.3 Importance Measures Based on the Survival
Signature

Importance measures are typically defined per component in a system.
However, for large systems, the information required to compute such impor-
tance measures may not be available, mainly because a full system structure
function may not be available. If a system has many components, but these
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are only of a few types, then the system reliability computations, and hence
importance measures computations, can be simplified through the use of the
survival signature, which was introduced by Coolen & Coolen-Maturi [13].
The survival signature is a summary of a system structure function which,
together with the probability model for the components’ failure times, is
sufficient for computing the reliability function of the system failure time.
The survival signature can be used to assess the importance of components

of a specific type instead of the importance of each specific component, as
presented by Feng et al. [14]. For several practical decision problems, the
importance of a component type may be the most relevant information, for
example if one needs to decide on immediate availability of spare components
in case the system fails, then it may not be crucial to know which specific
component is likely to fail next and to lead to system failure, but the type
of component to fail next could be sufficient information in order to prepare
for a possible maintenance action. Eryilmaz et al.[15] considered marginal
and joint component importance for dependent components, based on the
survival signature.

In order to make a system more resilient, one may have the opportunity
to swap components of the same type within the system. Quantifying the
effect of such swaps on the system reliability proved relatively straightfor-
ward with the use of the survival signature. Najem & Coolen [16] showed
that such possible swaps can also greatly affect the importance of compo-
nents of specific types. Huang et al.[17] presented a survival signature for
phased mission systems, with the possibility that not all components need to
function in each phase. Component importance measures in this setting were
presented by Huang et al. [18].

19.3.4 Importance Measures and Some Important
Concepts

Risk and resilience are crucial concepts in reliability mathematics and engi-
neering. The relationships of these concepts with importance measures are
briefly considered next.

19.3.4.1 Importance Measures and Risk

Vesely et al. [19] gives two risk related importance measures: risk achievement
worth and risk reduction worth , which are defined as follows. If Rs(t) is
the reliability of a system, then 1 − Rs(t), or the unreliability of the system,
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can be seen as the risk level at given time t . Denote R−
i (t) as the reliability

of the system in which component i is assumed to have failed by time t ,
then, 1−R−

i (t) is the increased risk level with component i not functioning.
Risk achievement worth (RAW), which relates to risk increase potential, is
defined as

I RAW
i (t) = 1 − R−

i (t)

1 − Rs(t)
; (19.7)

I RAW
i (t) measures the importance of maintaining the current level of
reliability for component i at time t .

Denote R+
i (t) as the reliability of the system in which component i is

assumed to be functioning at time t . The risk reduction worth (RRW), which
relates to risk decrease potential, is defined as

I RRW
i (t) = 1 − Rs(t)

1 − R+
i (t)

. (19.8)

IRRWi (t) measures the decrease in risk if the system is assumed to be func-
tioning. The reader is referred to [20] for more detailed discussion on risk
importance measures in the design and operation of nuclear power plants,
and to [21] for the use of importance measures for risk-informed decision
support.

19.3.4.2 Importance Measures and Resilience

Research on reliability theory and engineering traditionally concentrates on
single individual systems such as an engine or a car, or a fleet of identical
systems. In the last two decades, research on resilience management has
received increasing attention. Tierney & Bruneau [22] define resilience as
both the inherent strength and ability to be flexible and adaptable after envi-
ronmental shocks and disruptive events. Resilience is normally studied for
large-scale systems such as critical infrastructure systems, including electric
power systems, water supply systems, transportation systems, and telecom-
munication systems, which are the building blocks of the modern society and
economy. A large-scale system (or a network) is normally composed of many
subsystems, which are connected by components, normally called links.

Barker et al. [23] proposed two importance measures to assess the poten-
tial adverse impact on system resilience from a disruption affecting a link,
and the potential positive impact on system resilience when a link cannot
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be disrupted. Baroud et al. [24] proposed two stochastic resilience-based
component importance measures to highlight the critical waterway links that
contribute to waterway network resilience. Uday & Marais [25] proposed
importance measures that rank the constituent systems based on their impact
on the performance of systems-of-systems, which are large-scale integrated
networks of systems.

19.4 Information Needed for Importance
Measures

Since the level of information needed to evaluate the different importance
measures becomes more demanding, we can use Fig 19.2 to summarise the
information required for different measures. That is, from left to right, the
required information is increasing. Importance measures can be categorised
into time-independent and time-dependent importance measures [6]. Life-
time importance measures and cost-based importance measures are functions
of time and can therefore be categorised into time-dependent importance
measures, while structure importance and reliability importance are functions
of component reliabilities that are normally regarded as constants, and can
therefore be seen as time-independent important measures [26].

If an item (component or system) has only two states, functioning or
failed, then it is called a binary item. If an item has more than two states,
then it is called a multi-state item. A power plant which has states 0, 1, 2, 3, 4
that correspond to generating electricity at 0%, 25%, 50%, 75%, 100% of its

Fig. 19.2 Information needed for different types of importance measures
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full capacity, is an example of a multi-state system that has ordered multiple
states [27]. Unlike a binary item that has only one functioning state, which
implies that its level of performance does not need to be measured when it
is functioning, a multi-state item has different performance levels. This can
be used to define more general importance measures than for binary systems
with binary components. For example, the utility importance of a component
can be defined as the proportion of the contribution a multi-state component
makes to the system’s performance [28].

19.5 Applications of Importance Measures

In reliability engineering, three approaches are commonly used for reliability
improvement:

• Assuring reliability through material selection. The approach of compo-
nent selection aims to select components with certain levels of reliability
to assure the reliability of the entire system. Normally, component selec-
tion is subject to some constraints such as the cost, weight or volume of
the components.

• Achieving the reliability target through adding component redundancy and
reliability optimisation.

• Reliability and availability improvement through preventive or corrective
maintenance.

The first two approaches are typically implemented at the design stage,
while preventive and corrective maintenance are performed at the operation
stage, although they are also frequently considered at the design stage, and
aspects of possible maintenance may influence the design. In each of these
approaches, component importance measures play an important role.

We refer to a component, a set of components, or a subsystem, as an
object. In the literature, importance measures of an object are introduced
based mainly on three factors:

• The location of the object in the system.
• The technical index of the object in question, where the technical index

may be reliability, availability, and repair rates, etc.
• The consequence of an event on the object, where the consequence can,

for example, be cost, and the event may be failure, repair, etc.
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Below we discuss importance measures for different stages in the lifetime
cycle, although in practice these measures may be used at various stages.

Importance measures for the design stage. At the design stage, engineers
aim to design their products to achieve the reliability goals, which may
be defined by their customers. Reliability allocation and optimisation are
commonly used techniques.

Adding a new component onto an active redundant system (such as
a parallel system) can increase the reliability of the system. One may use
importance measures to find the increment in system reliability by adding a
spare component [29]. For example, the structure importance may be used
to find the importance index of a given position; the Birnbaum importance
measure may be useful for component selection in order to meet a pre-
specified reliability target. That is, when only a given amount of reliability
of each component in a system can be improved, the engineer may use the
Birnbaum importance to prioritise the components in order to maximise
the reliability improvement of the system.
Importance measures for the operation stage. At the operation stage, the main
focus is to ensure that the system operates at a specific level of availability.
At this stage, maintenance plays an important role. As such, importance
measures that can be used to help in fault diagnosis and the magnitude of
reliability improvement after maintenance are helpful.

For example, Fussell-Vesely’s importance measure for a component is the
probability that at least one minimal cut set that contains this component
has failed by time t , given that the system has failed by time t ; the criti-
cality importance measure is the probability that a component has caused
the system to fail, when we know that the system fails at time t ; and the
credible improvement potential measure evaluates the difference between
the system reliabilities with a component before and after repair.

Another importance measure that is worth mentioning is the compo-
nent maintenance priority (CMP), introduced byWu et al. [30]. Assuming
that a component in a system has failed and is being repaired, one may use
the repair time to preventively maintain other components in the system.
The CMP can be used to prioritise components for preventive mainte-
nance. For example, for the system shown in Fig 19.1, if component 3
fails and if preventive maintenance on a component needs the system to
stop operating, then either component 4 or component 5, but not both,
can be selected for preventive maintenance. However, if component 1 or
component 2 fails, preventive maintenance can be conducted on any of
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the other components. The CMP can be extended to multi-state systems,
as discussed in [31].

19.6 Concluding Remarks

Reliability engineering and mathematics is an important research field
involving many methods from operational research and applied statistics.
High levels of system reliability and availability are required in many indus-
tries such as the railway industry, the aviation industry, and many modern
production processes. To assure that a system operates at a specific level
of availability requires collaborative work of many people, in particular the
design engineers and maintenance engineers, and importance measures can
be useful tools to support them in their tasks. This chapter provided a brief
introductory overview on the main ideas of reliability importance measures.

We should include some warnings with regard to importance measures.
There is a risk that they may lead to over-simplification of complex issues.
It is very easy to interpret such measures wrongly, in particular for managers
who may lack detailed understanding of (conditional) probability and engi-
neering insight. It may be tempting to think that one importance measure is
sufficient to understand the risks in often complex engineering situations, but
it is rarely the case that such simple one-dimensional quantities provide an
adequate summary to support complex decisions. One may consider several
importance measures as input to decision problems, but that also requires
deeper understanding as these will not be independent measures. In many
scenarios, risks due to single components failing may be well understood,
but the results of several components failing simultaneously may be harder to
assess, and the likelihood of simultaneous failure of multinomial components
may be particularly hard to assess. With new technology, it is also often diffi-
cult to foresee all possible failure modes and their likelihood of occurring,
making it even harder to provide the required input to derive importance
measures. In particular for well designed critical systems, failures frequently
occur with unforeseen causes, which would typically not be reflected in any
importance measures beyond basic measures based only on the structure of
the system. Hence, importance measures should always come with a warning
to not use them without detailed insight into their meaning and how they
can be used, and how they should not be used.

Reliability engineering is a huge topic area with challenges for both
researchers and practitioners. New scenarios of system reliability keep
emerging due to ever more advanced techniques, for example increased use
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of sensors provides more information (which may not be without errors).
This opens up opportunities to develop new importance measures, where the
actual aim for their use should always be the starting point.
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20
Queues with Variable Service Speeds: Exact

Results and Scaling Limits

Moeko Yajima and Tuan Phung-Duc

20.1 Introduction

In classical queueing models, the arrival process, the service time distributions
and the number of servers are fixed. However, in many real-world situations,
models with variable service capacity are more flexible and are used to balance
the performance and the operating cost. In this chapter, we attempt to make a
thoughtful survey on recent advances of queues with variable service speeds.
In Section 20.2, we investigate literature on queues with vacation or setup
time which are used to optimize the operating cost of servers, i.e., power
consumption, etc. Vacation models are characterized by the feature that a
server takes a vacation once it completes a service. In the single vacation
policy, the server returns to the normal mode after the vacation regardless
whether or not there are waiting customers, while in multiple vacation policy,
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the server returns to the normal mode only if there are waiting customers
otherwise it takes another vacation.

Setup time is a similar concept to vacation, where the server is turned
off upon the completion of a service. When customers arrive, an off server is
activated to serve waiting customers but it takes some setup time for a server
to change to the active state so as to serve waiting customers.

Section 20.3 is devoted to models with infinitely many servers. In this
model, customers are served immediately upon arrivals. The quantity of
interest is the number of busy servers which is also the number of customers
in the system. In simple cases, the service speed of the system is proportional
to the number of jobs in the system which allow various analytical results.
These models are challenging when customers arrive in batches for which the
stability condition becomes nontrivial. These models also become difficult
when the arrivals and services are modulated by a background process such
as a Markov chain. In these cases, analytic results are rarely obtained and the
main focuses are the fluid/diffusion limits .

20.2 Queues with Vacation/setup time

Queues with variable service speeds naturally arise from various applica-
tions. In an energy-saving computer, the CPU adjusts its speeds according to
the workload to save energy. In data centers, servers are turned on and off
according to the number of jobs in the system. Idle servers are turned off
to save energy. However, when there are a certain number of waiting jobs,
off servers are turned on to process these jobs. A server needs some setup
time to become active. We will review some major results on vacation models
in Section 20.2.1 and models with workload-dependent service speeds in
Section 20.2.2. Models with setup time are presented in Section 20.2.3 and
some open problems are discussed in Section 20.2.4.

20.2.1 Vacation Models

First of all, we start with the M/G/1 vacation queue. In this model, the server
goes for a vacation once it becomes empty. After the vacation time if there
are waiting customers, the server is active and serve these customers. Upon
returning from vacation, if the system is empty, the server takes another vaca-
tion (multiple vacations) or becomes active (single vacation). In single server
queues with vacation, one of the most important result is the stochastic
decomposition in which, the queue length is decomposed into the sum of
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two independent random variables. The first one is the queue length in the
corresponding model without vacation and the second one is the number of
arrivals during the residual life of the vacation [15]. A similar theorem for
sojourn time is also obtained via the distributional Little’s law [25]. For more
results on the decomposition in single server queues can be found in [12].

Vacation models are then extended to working vacations ones, where
during vacation the server instead of completely stopping its service provides
the service at a different speed. After the vacation period, the server returns
to the normal mode. Servi and Finn [51] are the first to propose the working
vacation M/M/1 queue as a model for optical networks. The model was then
extended to M/G/1 with multiple vacations using generating function and
Laplace transform in Wu and Takagi [56] and to models with exponential
working vacations by matrix analytic methods in Li et al. [29]. Further-
more, the extension to the GI/M/1 working vacation model is presented by
Baba [3].

In working vacation models, the queue length is also decomposed into the
sum of two independent random variables. The first one is the queue length
of the standard model without vacation and the second one is a random vari-
able related to not only the vacation time but also other system parameters
for even the M/M/1 settings (See e.g., Servi and Finn [51]).

Multiserver vacation queues are studied by many authors since the pioneer
paper by Levy and Yechiali [28]. Generating function and matrix analytic
method are the main tools for analyzing these models. Some recent compre-
hensive surveys and results are presented in a survey by Ke, Wu and
Zhang [24] and a book by Tian and Zhang [53]. The main results are
that these models are formulated by a quasi-birth-and-death process (QBD)
whose phase has a special transition structure allowing explicit solution of the
rate matrix. As a result, these models are analytically tractable. Working vaca-
tion versions of multiserver queues are also studied and their analysis is the
same as the models with vacation.

Similar to the models with working vacation, an important result of the
multiserver vacation/working vacation models is the conditional decomposi-
tion [52]. In this model, under the condition that all the servers are busy
serving customers, the number of waiting customers is decomposed into
the sum of two random variables. The first one is the number of waiting
customers in the M/M/1 model with the same arrival rate and the service
rate being the sum of those of all the servers. The second random variable
depends on the vacations in a complex manner which has not a physical
interpretation [52].
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20.2.2 Models
with Workload /Queue-Length-Dependent
Service

Motivated by the balance of power saving and performance trade-off in data
centers, models with queue length-dependent service rates are studied. Yajima
and Phung-Duc [58, 60] study single server models with queue length-
dependent service rates and setup time . In particular, when the server is
in the active mode, the service rate of the server is the same as that of an
infinity server system, i.e., the service rate is proportional to the number of
customers in the system. Once the system becomes empty, the server is turned
off and the first customer in the busy period activates the server and after the
setup time the server becomes active again to serve waiting customers. In
these models, customers arrive in batch and an interesting observation is that
the stability condition is the finiteness of the expectation of the logarithm of
the batch size. Furthermore, a special feature is that the sojourn time of a
customer not only depends on the number of customers in the system upon
arrival but also the customers who arrive later. In [58], the authors derive the
LST (Laplace-Stieltjes transform) of the sojourn time distribution.

Sakuma et al. [49] study an M/G/1 vacation model in which the service
rate of the server is a function of the workload in the system. Once the system
becomes empty, the server takes a vacation and after the vacation the server
becomes active if a threshold of positive workload is exceeded, otherwise the
server takes another vacation. The distribution of the workload is obtained
in this study in an integral form. In some special cases such as exponential
service time distribution or linear service rate function, the distribution of
the workload is obtained in a closed form. Sakuma et al. [50] further extend
their study to the case that the service rate is a piece-wise constant func-
tion of the workload and the service time follows the phase-type distribution.
They derive a matrix representation solution for the workload distribution. In
this line, Yazici and Phung-Duc [61] study a related M/M/1 vacation model
where the service rate is a piece-wise constant function of the workload. They
obtain the workload distribution using the theory of fluid queues.

As a related model, we mention the one with cross selling [1] in which
upon the completion of a service, the server will initiate a cross selling activity
if the number of customers in the system is lower than a threshold. The
service time of this model can be considered to be dependent on the number
of customers in the system.
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20.2.3 Models with Setup Time

Recently, motivated by applications in power-saving data centers, queues with
setup time have been extensively studied. In single server queues with setup
time, the server is immediately switched off once the system becomes idle.
When the first customer of the busy period comes, the server needs some
setup time to be active and serve customers [27]. In multiserver setting,
the number of servers in setup depends on the number of customers in
the system. Because of this property, the underlying Markov chain has an
in-homogeneous structure which is a different point from models with vaca-
tions. Roughly speaking, models with setup time is different from that of the
ones with vacations in the sense that in the former the servers are activated
based on the number of jobs in the system while in the latter the servers
return to the normal mode after their predetermined vacation period.

Because of the memory-less property of exponential distributions, an
M/M/1 queue with exponential setup time is identical to that of the
corresponding model with multiple vacations.

20.2.3.1 Multiserver Model with Setup Time

Multiserver queues with setup time are used as models for data centers
where each server in a data center corresponds to a server in the queueing
model. In the most basic model, a server is turned off if it completes a service
and there is not a customer waiting job to process. When jobs arrive, off
servers are turned on to process waiting jobs. For an easy explanation, we
consider the simplest cases where we have c servers; the arrival process is
Poisson process with rate λ; the service times of all servers follow the same
exponential distribution with mean 1/μ and the setup times follow the expo-
nential distribution with mean 1/α. There are various setup policies but we
consider two representative ones. Let C (t ) and N (t ) denote the number of
active servers (serving a job) and the number of jobs in the system (including
the ones in service), respectively. As usual, the quantity of interest is the joint
stationary distribution πi, j = P(C(t) = i, N (t) = j).
The first setup policy is the staggered setup policy in which only one server

can be in the setup process at a time, i.e., the number of setup servers at time
t is given by min(1, N (t) − C(t)). The second policy is that the number
of setup servers depends on the number of waiting jobs, i.e., the number of
setup servers at time t is given by min(N (t) − C(t), c − C(t)).
The staggered setup is first studied by Artalejo et al. [2] who derived the

joint stationary distribution of C (t ) and N (t ). Later, Gandhi et al. [17]
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derive a simpler solution for this model and proved that the waiting time of
jobs in the staggered setup is decomposed into that of the model without
setup time (M/M/c model) and the setup time . The same decomposi-
tion also holds for the number of waiting jobs. It is also turned out that

N (t)
d=N0(t)+ S(t), where N (t ) is the number of jobs in the corresponding

M/M/c model without setup time and S (t ) is the number of jobs that arrive
during the remaining setup time [41]. The feature that allows simple solution
for the staggered policy is that as long as there are waiting jobs the number
of setup servers min(1, N (t) − C(t)) = 1 does not depend on the number
of waiting jobs. As a result, the number of boundary states is only (i, i ).

In the second case mentioned above (the number of setup servers is given
by min(N (t) − C(t), c − C(t)), the transition structure is more compli-
cated. In particular, when the number of jobs in the system is smaller than
the number of servers, the number of setup servers depends on the number
of jobs in the system. The Quasi-Birth-and-Death (QBD) structure is only
observed when the number of jobs in the systems is greater or equal to c. This
QBD part has a special structure that the phase C (t ) has transition in only
one direction (C (t ) only increases when N (t) > c). This allows us to obtain
the explicit expression of the rate matrix. This property is also exploited in the
recursive renewal reward approach [16]. However, the boundary parts (states
that N (t) ≤ c) has a more complex structure where C (t ) can both increase
or decrease. Thus, the complexity of a naive algorithm is O(c6) for finding
all the boundary probabilities. Phung-Duc [43] considers the same problem
using the matrix analytic method and the generating function approach.
Phung-Duc [43] derives a procedure to compute the joint stationary distri-
bution (including the boundary part) with the complexity of only O(c2). In
particular, explicit expressions are obtained for the partial generating func-
tion of homogeneous part �i (z) = ∑∞

j=c πi, j z j−c. The probabilities πi, j
(i = 0, 1, . . . , c; i ≤ j ≤ c,) are calculated recursively in the following
order.

π0,0 → π0,1 → · · · → π0,c−1 → π0,c

→ π1,1 → π1,2 → · · · → π1,c−1 → π1,c

...
...

→ πc−1,c−1 → πc−1,c

→ πc,c.

.
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It should be noted that the same decomposition property as in [17] does
not hold for the model with multiple setup servers. However, if we restrict
on the number of waiting jobs when all the servers are busy, a conditional
stationary decomposition property holds. In particular, we are interested in
the following distribution P(Q(c) = j) = P(N (t) = c+ j |C(t) = c), where
Q(c) represents the conditional number of waiting jobs when all the servers
are active. Phung-Duc [43] shows that

Q(c) d=Q(c)
ON−I DLE + QRes, (20.1)

where Q(c)
ON−I DLE is the number of jobs in an M/M/1 queueing system

with arrival rate λ and service rate cμ respectively. Furthermore, QRes repre-
sents the number of extra jobs incurred by the setup time and has a clear
physical interpretation. In fact, it is shown in [43] that QRes represents the
number of waiting jobs before an arbitrary customers in the setup model
under the condition that c − 1 servers are active. It should be noted that
QRes is expressed in terms of πi, j . From this point of view, the conditional
decomposition is not an explicit but an implicit one. The proof of (20.1) is
simply obtained by showing that the generating function of the left hand is
the same as that of the right hand side.

Phung-Duc [41] studies the staggered setup model with batch arrival,
where only one server can be in setup mode at a time. The author
derives recursive formulae for the partial generating functions �i (z) =∑∞

j=i πi, j z j−i . Furthermore, the conditional decomposition property (20.1)

is also established in which the Q(c)
ON−I DLE represents the number of jobs

in an MX/M/1 queue without setup time with the same arrival process and
the service rate is given by cμ. It should be noted that the same conditional
decomposition is also established for the model with vacation [52].

In practice, data center traffic often has peak-on and peak-off nature
meaning that the arrival of jobs to data centers is time-dependent. Taking
this into account, a multiserver setup queue with nonstationary input and
service capacity is studied in [39]. In [39], jobs arrive according to nonsta-
tionary Poisson process and the number of servers varies with time. The
authors obtained the fluid limit of the model which can be used to obtain
approximate results for the cases where the number of servers is large enough.

Models with block setup, i.e., a group of servers is turned on and off at a
time are also studied [19, 31]. In Mitrani [31], setup time was not considered
while in Hu and Phung-Duc [19] a block of servers is turned on at a time
but each server has its own service time. These models can be analyzed using
generating function or matrix analytic methods. Furthermore, setup models
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with finite buffer are also studied for which efficient numerical procedures
are proposed [40, 42]

20.2.3.2 Retrial Model with Setup Time

Retrial queues are characterized by the feature that arriving customers who see
all the servers being occupied join the orbit. Each blocked customer stays in
the orbit for a random time before trying to occupy a free server again until
he/she successfully occupies one. Retrial queues with always-on servers are
extensively studied. When the servers are turned on and off, the possibility
for customers to be blocked increases. The analysis of retrial models with
vacation and/or setup is more challenging because we need to keep track of
not only the number of active servers, the number of customers in the servers
but also the number of customers in the orbit.

It is widely confirmed that the stability condition of a retrial queueing
system (at least for the ones with classical retrial rate) is identical with that of
the corresponding model with an infinite buffer [32]. Intuitively, when the
number of jobs in the orbit tends to infinity, the time for a job in the orbit
to find an idle server approaches to zero. Thus, there is no loss of capacity. In
particular, the stability condition for an M/M/c /c retrial queue with arrival
rate λ and service rate μ is given by λ < cμ and is independent of the retrial
rate.

In the non-retrial models with vacation or setup, the stability condition is
the same as that of the ones without vacation/setup. Intuitively, when there
are infinite number of customers in the system, eventually all the servers will
be active. Thus, the vacation/setup system behaves the same as conventional
queue without these features.

From these observations, it is also expected that the retrial model with
setup time also has the same stability condition with the corresponding one
without retrials. Surprisingly, Phung-Duc and Kawanishi [47] find that the
stability condition for the retrial model with setup time is more strict than the
corresponding one without retrials for the case of more than one server. In
particular, we consider an M/M/c /c retrial queue in which arriving customers
are blocked and join the orbit if they see all the servers are either busy serving
a customer or in setup process to serve a waiting customer. The arrival rate,
the service rate and the setup rate are given by λ, μ and α, respectively. Each
blocked customer stays in the orbit for an exponentially distributed time with
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mean 1/σ . The stability condition is given as follows.

λ

cμ
<

(c − 1)μ + α

cμ + α
. (20.2)

It should be noted that in the case c = 1, this stability condition is the same
as that of the corresponding model without setup time [44].

Nazarov et al. [33] study the asymptotic behavior of the number of jobs in
the orbit for an M/M/c /c retrial queues with setup time. In particular, they
consider the regime where the retrial rate is extremely small. In this regime,
the number of jobs in the orbit i (t ) explodes. It is proved in [33] a fluid
limit that σ i(t) = σ i(τ/σ ) converges to a deterministic process x(τ ) which
is the solution of a differential equation of the following form.

x ′(τ ) = a(x(τ )),

where

a(x(τ )) = λE1R − x(τ )E2R. (20.3)

Here R is a matrix of x(τ ) whose elements represent the stationary distribu-
tion of the finite Markov chain of the number of busy servers and that of
setup servers for the dynamics of the corresponding M/M/c /c system with
setup time with the arrival rate given by λ+ x(τ ) (See Figure 1 in [33]). The
first term in the right hand side of (20.3) represents the arrival flow that is
blocked and joins the orbit (E1 is the operator that adds all the probabilities
that an arrival is blocked, i.e., all c servers are either busy or in setup). The
second term in the right hand side of (20.3) represents the repeated flow from
the orbit that successfully enters the servers (E2 is the operator that adds all
the probabilities that at least one server is idle upon retrial) [33].

Furthermore, it is also proved in [33] a diffusion limit that
√

σ(i(τ/σ ) −
x(τ )/σ ) converges in distribution into a diffusion process, where the drift
coefficient is given by a(x(τ )) and the diffusion coefficient b(x(τ )) is given
in terms of x(τ ) and other given parameters. The fluid limit and the diffusion
limit can be interpreted as a functional law of large number and a functional
central limit theorem for the number of jobs in the orbit, respectively.

As a related model, retrial queue with two-way communication is studied
in [46], where after a service completion, the server is idle for a while before
making an outgoing call. For this model, the stability condition is the same
as that of the corresponding model without outgoing calls, i.e., λ/cμ < 1.
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Similarly, the fluid and diffusion limits when the retrial rate σ → 0 are
obtained in [34].
The authors in [33, 34] use the stationary distribution of the diffusion

process to approximate the number of customers in the orbit. Simulations
show that the approximation is accurate in a wide range of low retrial rate.

20.2.4 Open Problems

In all the models presented in this section, setup time or vacation time
follows exponential distribution. Based on that these models are directly
formulated using Markov chains where the matrix analytic method and/or
the generating function method can be applied. When the vacation or setup
time does not follow memory-less distributions further studies are expected.

In queues with workload-dependent service, the sojourn time distribution
is challenging and thus needs further investigations.

In multiserver queues with setup time, while the queue length processes are
well studied, little attention is devoted to the sojourn time distribution. For
a finite buffer multiserver model with setup time, Phung-Duc and Kawan-
ishi [45] obtain the waiting time distribution. However, for the infinite buffer
version, the existence of closed-form solution for the waiting time distribu-
tion is still an open question. Furthermore, the case where the customers are
strategic also calls for further investigation.

20.3 Infinite-Server Queues with Changeable
Service

Infinite-server queues have infinitely many servers, and thus all arriving
customers can receive service without waiting. Many researches have been
devoted to infinite-server queues with constant parameters, because these
models have applications in various areas such as road traffic systems, inven-
tory systems and telecommunication systems. In recent years, infinite-server
queues with variable service speeds have attracted much attention in addition
to their special cases, i.e., models with constant parameters.

20.3.1 Stability Condition

Infinite-server queues have many applications in various areas, thus many
researchers have studied stationary infinite-server queues (including both
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constant-speed models and variable-speed models). In this section, we review
some studies on the stability condition of infinite-server queues. Note that the
stability condition is the necessary and sufficient condition that there exists
the unique limiting distribution of the queue length process.

In the case that customers arrive at the system one by one, stability condi-
tions are often obtained in a relatively simple form. Kaplan [23] studies
the stability for a GI/GI/∞ queue. He shows that a GI/GI/∞ queue is
stable if and only if both inter-arrival times and service times have finite
means. In addition, for some single-arrival infinite-server queues with change-
able service, some researchers have studied the stability. O’cinneide and
Purdue [35] study the stability of the M/M/∞ queue such that the service
speed changes according to a background Markov chain. They show that the
stability condition of this changeable-service queue is that at least one of the
service rates is strictly positive. Keilson and Servi [26] extend the result of [35,
Theorem 2.2] to the M/M/∞ queue such that the service speed changes at
the moments that the background Markov chain changes, a customer arrives,
or the service is completed. That is, they show the stability condition of such
queues is that at least one of the service rates is strictly positive.

In the case that customers arrive in batches, infinite-server queues have
more complex stability conditions than single-arrival models. For queueing
models with constant service, Cong [8] establishes the stability condition
of the multiclass MX/M/∞ queue. Note that the multiclass MX/M/∞
queue is the infinite-server queue such that customers arrive according to
a multiclass batch Poisson process and service times are i.i.d. with a class-
dependent exponential service time. The stability condition derived in [8]
is that the first logarithmic moment of the batch-size distribution is finite.
Pakes and Kaplan [36] show that a GIx/GI/∞ queue is stable if and only if
the maximum service time of customers in a batch has finite mean, which
is not explicitly presented. In [36], the stability condition for GIx/GI/∞
queue is obtained as a special case of the condition for the existence of a
limiting distribution of the Bellman Harris process. Furthermore, Yajima and
Masuyama [57] show the stability condition for the GIX/GI/∞ queue in
a different way than [36]. In addition, they also show a tractable sufficient
condition for the stability under a moderate condition on the tail of the
service time distribution.

For batch-arrival infinite-server queues with changeable service, there are
only a few previous studies which derived the stability condition. Yajima
and Phung-Duc [59] study the stability for the MX/M/∞ queue such that
the service speed changes according to a background Markov chain. Note
that the MX/M/∞ queue (with constant service) is the infinite-server queue
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such that batches arrive according to a Poisson process, batch sizes are inde-
pendent and identically distributed (i.i.d.) with a discrete distribution, and
service times are i.i.d. with an exponential distribution. They show that
the queueing model is stable if and only if the logarithmic moment of the
batch-size distribution is finite.

20.3.2 Exact Analysis

In this section, we introduce some studies which explicitly analyze infinite-
server queues with changeable service. Unfortunately, there are not many
previous studies due to the complexity of models.

20.3.2.1 Two Types of Service Speeds

We now focus on some studies of changeable-service infinite-server queues
such that service speeds are limited to two types. In such cases, relatively
many studies exist.

Keilson and Servi [26] study M/M/∞ queues such that service speed
changes in two types when a customer arrives, the service is completed, or the
background Markov chain transitions. They derive the probability generating
function (PGF) of the stationary queue length distribution. Baykal-Gursoy
and Xiao [4] analyze M/M/∞ queues with two-type service speed such
that the service speed switches to the other after independent exponential-
distributed times. They show the stochastic decomposition of the stationary
queue distribution; that is, the random variable of the stationary queue length
can be expressed as the sum of two independent random variables. One
of two random variables is identical to the stationary queue length of an
ordinary M/M/∞ queue with higher service speed. The other is a random-
ized Poisson random variable whose parameter is explicitly derived in [4].
In addition, they obtain the mean and the variance of the stationary queue
length by using the decomposition result. D’Auria [10] studies M/M/∞
queues whose service speed changes in two types according to the back-
ground semi-Markov process. Assuming that at least one of the two service
time distributions is an exponential distribution, he derives explicitly facto-
rial moments of the stationary queue length. Falin [13] considers M/M/∞
queues such that service speed changes in two types according to an alter-
nating renewal process. He obtains the stationary mean queue length in
the explicit form. Furthermore, assuming that one of the speeds is zero
and that a period of strictly positive service speed is interrupted after an
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exponential-distributed time, he obtains the PGF of the stationary queue
length.

If one of the two service speeds is zero, it is possible to represent a
situation with server failures, service interruptions or service breakdown.
Similar to [13], some researchers are interested in infinite-server queues with
service interruptions (breakdowns). D’Auria [11] analyzes M/M/∞ queues
with interruptions such that up and down periods occur according to an
alternating renewal process. He shows that the stationary queue length is
stochastically decomposed into two independent terms. One of two terms
is identical to the stationary queue length of an ordinary M/M/∞ queue
without interruptions. The other is a random variable whose distribution is
determined by system parameters, which is explicitly shown in [11]. Jayawar-
dene and Kella [21] study M/G/∞ queues with interruptions such that
up and down periods occur according to an alternative renewal process.
Using a regenerative structure, they show the stochastic decomposition of the
stationary queue length distribution. As similar to [11], one of the decom-
posed terms is identical to the stationary queue length in an ordinary M/G/∞
queue without interruptions. However, for the other decomposed term, it is
difficult to derive its distribution in an explicit form. Pang and Whitt [37]
also present the stochastic decomposition for the stationary queue length
distribution of GI/M/∞ queue with service interruptions such that up and
down periods occur according to an alternative renewal process.

20.3.2.2 More than Two Types of Service Speeds

Finally, we introduce some studies of changeable-service infinite-server
queues such that the speed changes in more than two types. The explicit
result can be obtained only when a model has a simple structure. O’cinneide
and Purdue [35] analyze M/M/∞ queues such that service speed changes
according to the background Markov process. They obtain the stationary
queue length distribution in a recursive form. In addition, they explicitly
derive the factorial moments of the stationary queue length. D’Auria [9]
extends the decomposition result of [4] to the M/G/∞ queue whose service
speed changes (into more than two types) according to the background semi-
Markov process. However, the parameter of the randomized Poisson random
variable is obtained only when some conditions are imposed, e.g., the case
that there are two types of service speeds and the service time follows an
exponential distribution. Falin [13] considers M/M/∞ queues whose service
speed changes according to the background semi-Markov process. He derives
the mean queue length containing a solution of a set of linear equations.
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Fralix and Adan [14] extend the stochastic decomposition result of [9] to
allow the service speed to vary in more than two types. Blom et al. [5] study
the M/G/∞ queue such that the service speed changes according to a back-
ground Markov chain. They derive the mean and variance of the queue length
distribution in the explicit forms.

Even if the system of equations (e.g., for the queue length distribution)
cannot be solved, they often help to capture the characteristic of the system.
In limit analysis such as introduced in Section 20.3.3, researchers often start
analysis from the system of equations. D’Auria [10] studies M/M/∞ queues
such that service speed changes according to the background semi-Markov
process. He represents this queueing model as a Poisson process on R

2,
and then computed the queue length by counting the number of points in
this point process within a deterministic set (see e.g. [48]). By such a tech-
nique, he obtains the set of linear equations to compute row moments of the
stationary queue length. Fralix and Adan [14] also analyze the same model
as [10]. Assuming that service times follow an exponential distribution or
hyperexponential distribution, they present the simultaneous integral equa-
tions for the PGF of the stationary queue length. Furthermore, in the case
of hyperexponential services, they derive the simultaneous integral equations
for the PGF of the stationary queue length.

20.3.3 Limit Analysis

Many researchers study limit analysis (e.g., large deviation theory, diffusion
approximation, heavy traffic approximation) in order to capture characteris-
tics of queueing models with changeable-service speed, because it is difficult
to exactly analyze.

20.3.3.1 Limit analysis for a queue length distribution

The central limit theorem (CLT) describes the probability that a random vari-
able slightly deviates from its mean. The CLT holds for the queue length of
some infinite-server queues hold under a heavy traffic condition. For example,
let us consider the M/M/∞ queue whose arrival rate is λ and service rate is μ.
We denote L(N ) as the stationary queue length of the scaled M/M/∞ queue
such that the arrival rate is scaled by a factor N . Note that L(N ) follows the
Poisson distribution with mean Nλ/μ. By using the superposition theorem
for Poisson point process and the classical CLT, it is obvious that the normal-
ized queue length weakly converges to the normal distribution with mean 0
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and variance (λ/μ)2 as N → ∞; that is,

√
N

(
L(N )

N
− ρ

)
d−→ N

(

0,
λ2

μ2

)

, N → ∞,

where N (a, b) denotes a random variable following the normal distribution
with mean a and variance b.
The CLT for some changeable-service infinite-server queues also holds as

for the constant-service case. Blom et al. [5] study the M/G/∞ queue such
that the service speed changes according to a background Markov chain.
They consider the heavy traffic regime such that the arrival rate is scaled
by N and the transition rate of the background Markov chain by Nα for
α1; that is, the background Markov process speeds up faster than the arrival
process. They show the CLT for the transient queue length in a finite dimen-
sional setting; that is, at multiple points in time. Blom et al. [6] show the
CLTs for the stationary and transient queue lengths of the Markov-modulated
M/M/∞ queue. They consider a scaling scheme similar to [5], but they treat
any positive α (i.e., all of α1, α = 1 and α < 1). They mention that the
scaling regime is different based on the value of α: the rationale behind these
different regimes lies in the fact that for α > 1 the variances of the scaled
queue length grow essentially linearly in N , while for α < 1 they grow as
N 2−α. Yajima and Phung-Duc [59] show the CLT for the stationary queue
length of the Markov-modulated MX /M/∞ queue with binomial catastro-
phes via Lévy’s continuity theorem. That is, they extend the study of [6] as
customers arrive in a batch and catastrophes happen. Catastrophes represent
the phenomenon in which jobs may leave without their service completions.

A diffusion approximation is a method in which a (continuous) diffusion
process approximates a discrete stochastic process which is complicated and
difficult to explicitly analyze. In order to investigate the detailed behavior of
a queueing model which cannot be explained only by the average value, it
is necessary to consider a model which incorporated the stochastic variation
ignored in a fluid approximation.

Iglehart [20] shows that the functional central limit theorem (FCLT) holds
for the M/M/∞ queue (with a constant-service speed); that is, the scaled
queue length process converges to an Ornstein-Uhlenbeck (O-U) process.
The O-U process is a diffusion process that models the velocity of particles
undergoing Brownian motion. The O-U process {X (t)} is a modification of
the Wiener process such that

dX (t) = −θX (t)dt + σdW (t),
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where {W (t)} denotes the Wiener process and μ ∈ R and θ, σ > 0 are
constant parameters [55].
The FCLT has been shown to hold in some changeable-service infinite-

server queues as well as in the constant-service cases. Pang et al. [38] show
the FCLT for the G/GI/∞ such that service interrupts and restarts according
to an alternative renewal process under the assumption that a service time
distribution has a finite positive support. They also show that the G/GI/∞
such that service interrupt and restart according to an alternative renewal
process holds under the assumption of a weakly dependent service time.

20.3.3.2 Limit analysis for a queue length process

The CLT and FCLT show the probability concentrating on the average value.
On the other hand, the large deviation principle (LDP) can handle the prob-
ability of an event far from the average value (including the probability of a
rare event). The LDP describes the asymptotic behavior of a sequence of tails
probability [54]. For some infinite-server queues, it has been shown that the
LDP for the queue length distribution establishes. That is, there exists a lower
semicontinuous function I : [0,∞) �→ [0,∞) satisfying

lim
N→∞

1

N
logP(MN ≥ x) = −I (x),

where MN is the queue length of a scaled infinite-server queue whose arrival
rate is sped up by N . The function I (·) is called the rate function, Cramér
function, or entropy function.

Glynn [18] shows the LDP for the transition queue length of a GI/G/∞
(with constant service). For changeable-service case, Blom et al. [7] study the
transient and stationary LDPs for the Markov-modulated M/M/∞ queue.
For the stationary case, they explicitly derive the rate function. For the tran-
sient case, they show that the rate function jumps at most the number of
background process states. Jansen et al. [22] show the LDP for the transient
queue length of M/G/∞ queue in random environment. The service speed
changes according to a stochastic process, but the service requirement distri-
bution does not change regardless of the background state. They prove the
LDP under various scale regimes. Lu et al. [30] study infinite-server queues
such that batches of customers arrive according to a Markov additive process
and service times follow a general distribution which is decided by the back-
ground Markov chain. They call the above queue the Markov-modulated
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MMAP/G/∞ queue. They show the FCLT for the queue length process of
the Markov-modulated MMAP/G/∞ queue.
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21
Forecasting and its Beneficiaries

Bahman Rostami-Tabar and John E. Boylan

21.1 Background

Forecasting informs critical decisions in public-, private- and third-sector
organisations. Forecasts are used widely in such diverse areas as finance
and economics, public policy, healthcare, transportation, supply chains and
engineering. They can enable organisations to manage risk and deal with
uncertainty.

A few examples illustrate the scope of forecasting. In public policy, fore-
casts can enhance the quality of decision-making by predicting changes in
economic and social factors and their effects on the costs and benefits of
policy options. Forecasting plays an important role in guiding government
policy as well as business decisions regarding environmental challenges such
as climate change, in situations ranging from CO2 emissions to natural disas-
ters and early warning systems [33]. Forecasting plays a crucial role in finance
and economics, by anticipating how economies may evolve and informing
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the management of risk accordingly. In business and manufacturing, better
forecasting can enable a more efficient supply chain and greater productivity.
Forecasting is routinely used in the retail sector to ensure the availability of
required items on the shelves.

In the forecasting literature, the main emphasis has been on the methods
and techniques of forecasting. There is much less discussion on the ques-
tions of what purposes forecasts should serve and who should benefit from
forecasting. If there is any discussion, the emphasis is on profit and other
economic measures. Rostami-Tabar et al. [12] have challenged the notion that
forecasting must necessarily serve economic or financial aims. They point to
the potential of ‘Forecasting for Social Good’ (FSG) . They characterise FSG
as forecasting that contributes towards strengthening social foundations and
respecting the ecological ceiling. These social and ecological impacts can be
assessed both locally and globally. Inspired by the FSG agenda, we ask who
benefits from improved forecasting, and we discuss means by which more
people can benefit.

Debate about the beneficiaries of modelling is not new. This issue was
discussed in the Operational Research literature in a series of papers published
in the 1970s and 1980s (e.g. [34–36]). Power was a common theme under-
pinning those papers. The authors noted that it tended to be more powerful
organisations that benefit from OR, and OR projects had powerful people in
these organisations as their clients.

If OR is mainly conducted on behalf of powerful people in powerful
organisations, then it is natural that OR modelling will serve their interests.
This is sometimes observed quite explicitly in a model with ‘maximisation of
profit’ as its objective. Forecasting models, on the other hand, may appear to
be more neutral. Surely, everyone would be supportive of ‘minimising fore-
cast error’ (if appropriately measured) as an objective. This is to miss the fact
that forecasting is generally part of a broader set of activities, whose objectives
may not be shared so universally.

Many processes have indirect beneficiaries, and these beneficiaries may be
internal or external to the organisation. Take an example of a forecasting
system to predict the demand on an Accident and Emergency department
of a hospital. The direct beneficiary of the system is the person (or people)
with responsibility for using those forecasts to plan work rosters of doctors,
nurses and allied health professionals. If this is well done, then the indi-
rect beneficiaries are those health professionals for whom work is planned,
and those patients for whom treatment is being planned. The importance of
indirect beneficiaries such as these should be recognised when designing any
forecasting process.
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In this chapter, we examine the issue of forecasting beneficiaries from a
number of perspectives. Firstly, we address the agenda of ‘Forecasting for
Social Good’ and the different perspectives that may be called for. Then, we
move on to the major barriers to spreading the benefits of better forecasting
more widely. We review communication issues between stakeholders in fore-
casting. These issues are important in any setting, and must be addressed if
real benefits are to be achieved and shared appropriately. We conclude by
examining a recent initiative to improve forecasting capabilities in less well-
developed economies. The initiative is called ‘Democratising Forecasting’ and
it aims to extend the range of organisations and users who can benefit from
developments in forecasting methods and software.

21.2 Forecasting for Social Good

What is the point of forecasting? If asked this question, most academics
and practitioners would say ‘to inform better decisions’, or words to that
effect. This immediately prompts two further questions: (i) what do we mean
by better? and (ii) better for whom? Most of the organisations in which a
more professional and analytical approach to forecasting is employed have
economic and financial goals, such as minimising costs or maximising profits.
Alternative goals may also be served by improved forecasting. Rostami-Tabar
et al. [12] defined “Forecasting for Social Good’ (FSG) as: “… a forecasting
process that aims to inform decisions that prioritise the thriving of humanity over
the thriving of economies by enhancing the social foundation and ecological ceil-
ings that impact the public as a whole on both global and local levels”. They
remarked that FSG is inclusive and encompasses all organisations, irrespective
of their industry or whether they are governmental, commercial or volun-
tary organisations. FSG can be considered as a self-contained area of inquiry
that can lead to increased appreciation of forecasting as a worthwhile tool
for a wide range of beneficiaries and their communities. The benefits should
extend beyond the financial, although the forecasting process may also result
in economic growth. It can still be considered as FSG if the main focus is to
improve social and environmental conditions.

It is instructive to compare the concerns underpinning this definition of
FSG with those of authors such as Bevan and Bryer, Dando and Bennett, and
Rosenhead and Thunhurst, back in the 1970s and 1980s. Common to both
is the disquiet that the less powerful members of society are not benefiting
sufficiently from the rapid developments in modelling. The later work puts
greater emphasis on global issues, although this had not been absent from
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earlier work, as summarised in the review of OR in developing countries by
[37]. The later work also focuses more on environmental concerns, reflecting
the growing awareness of ecological issues in recent years.
Traditionally, the success of forecasting has been assessed purely in terms

of forecast accuracy. Boylan and Syntetos [38] argued that such accuracy
measures should be complemented by accuracy-implication metrics. These
measures assess the impact of forecast errors, for example on inventory
costs and stock availability. Rostami-Tabar et al. [12] developed this idea
further by prioritising social and environmental measures within the set of
accuracy-implication metrics.

As well as considering an extended set of performance metrics, it may also
be necessary to use more qualitative approaches to forecasting. Data in less
well-resourced organisations may be patchy or non-existent. In such cases,
quantitative forecasting methods are less helpful and processes relying on
judgement will become more prominent. There is an interesting parallel, here,
with the Community OR movement in the UK, which emphasised the use of
softer OR methods in voluntary or community-based organisations. In situa-
tions like these, forecasting processes should be designed to be as transparent
and interpretable as possible. This promotes trust in the modelling process,
particularly if there is a wider group of beneficiaries than might normally be
the case.

In summary, ‘Forecasting for Social Good’ may call for different perspec-
tives on what constitutes success, and on the means of achieving success.
Introducing these new perspectives in practice is not always straightforward.
So, it may be fruitful to ask: what are the barriers to sharing the benefits of
forecasting?

21.3 Barriers to Sharing the Benefits
of Forecasting

In this section of the chapter, we review the barriers to ‘Forecasting for
Social Good’, show how some are reducing in potency and point to ways
of addressing the other barriers.

We suggest that there are three significant barriers to extending the bene-
fits of forecasting: (i) lack of access to resources (e.g. software, people), (ii)
lack of access to expertise and (iii) poor communication between the various
stakeholders involved in forecasting (including the decision-makers). The first
barrier has been particularly serious for resource-poor organisations but we
shall argue that it is declining in significance. The second barrier is very
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important for poorer organisations and communities, and will be a major
theme of this chapter. It actually affects richer organisations, too, who have
the resources to invest in developing forecasting expertise, but fail to do so
adequately. The final barrier is relevant to all organisations. It is sometimes
under-emphasised in richer companies, to the detriment of their forecasting
processes. It is understandable that concerns about resource issues may draw
attention away from communication in poorer organisations, but to neglect
this vital issue would be misguided.

21.3.1 Access to Resources

In the forecasting process, a number of resources—from skilled forecasters
to specialist software—are required. Without them, forecasting model design
and implementation become difficult [22]. To acquire these resources, funds
are needed to purchase software, recruit appropriate staff and to educate
stakeholders to increase awareness of the benefits of better forecasting. Unfor-
tunately, the cost of the forecasting software, and of gaining modelling and
statistical expertise can become very large [23].
The development of free open-source forecasting software over the past

decade has been a breakthrough in making forecasting accessible to wider
beneficiaries. This is because it can be installed and used at no cost to the
user, while having huge support from the community of users, maintainers
and developers. The most widely used open-source forecasting software is
the forecast package for R [19], first released in 2006, and downloaded over
2 million times in 2019. Several other R packages for forecasting are listed
on the CRAN Task View for Time Series [4]. Another high level program-
ming language that has been used to create open-source forecasting software
is Python. The Statsmodels library [5] in Python allows for statistical fore-
casting and the scikit-learn library [6] is used more for machine learning.
The introduction of free open-source forecasting software has also led to the
publication of free online educational resources (e.g. [1, 3]), which can also
play a crucial role in learning about forecasting theory and practice.

Although the dissemination of open-source software has made sophisti-
cated forecasting methods more accessible, there are other resourcing issues to
be resolved. The most obvious is the cost of recruiting and retaining appro-
priate staff to work in a forecasting or planning capacity. Those who have
power in organisations are in a position to make decisions relating to staffing
levels and the deployment of staff. These decisions can have a significant
impact on the success, or otherwise, of the implementation of new fore-
casting processes. Without the support of powerful people in an organisation
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and their commitment to making necessary resources available, the imple-
mentation of a forecasting process will fail and its potential benefit will be
lost.

21.3.2 Access to Expertise

Although open-source developments are fundamental in making forecasting
available to wider beneficiaries, they may also introduce some problems into
practice. Anyone can easily find packages that let them produce forecasts
with just a few lines of code. Many Machine Learning (ML) algorithms
provide repositories of forecasting models, automate the hyperparameter
tuning process and sometimes offer a way to put these models into produc-
tion. The availability of such packages has led many people to think that
the forecasting process can be fully automated, eliminating the need for
forecasting expertise or interpretation. In fact, using forecasting models in
practice requires various technical and non-technical skills that are lacking
in many organisations. This becomes even more challenging in the public
sector, third sector and almost any sector in resource-poor environments in
low/middle income countries. These are communities that may have bene-
fited less from forecasting, and they may end up making poor decisions if
there is a lack of expertise in forecasting [25].

A rigorous forecasting process is not just about running code. The process
includes discussing the context with stakeholders, understanding decision-
making, identifying forecasting requirements, setting up the right evalua-
tion metrics for the problem, including domain knowledge, forecast model
testing, and gaining feedback from stakeholders, which all might be very
specific to each forecasting problem [1]. Moreover, forecasts are not always
produced using statistical or ML models relying on statistical software. In
fact, in less developed countries (low/lower income) where the quality of the
data may be an issue, relying on structured management judgement including
the Delphi method, forecasting by analogy, surveys, scenario forecasting and
other judgemental forecasting approaches can be more relevant [27].
Therefore, educating forecasters on the entire forecasting process so that

they are able to understand what lies behind the forecasting models, the
application of forecasting in various domains, and their implementation in
practice, is imperative. This can help them to make better forecasts that are
truly effective. Someone who just runs code might not be able to add value
to real-world problems in organisations. We need to go beyond training and
educate the potential users of forecasts on their impacts and how they can
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be used to inform decision-making process. Without such education, the
benefits of forecasting cannot be assured.

21.3.3 Communication Issues

Even if finance is available to put software resources in place, and forecasters
and planners have been recruited, this is still not a guarantee of success. It is
also crucial that the right software is used, which is most appropriate to the
needs of the organisation. Clear communication between software vendors
and decision-makers, in both directions, is crucial here. Otherwise, and unless
all needs are met by freeware, expensive mistakes can be made.

It is also very important that forecasts are being generated at the right
frequency, over appropriate horizons, at the right level of aggregation (e.g.
at product group or Stock Keeping Unit level) and are evaluated using
appropriate criteria. Evaluations, of both forecasting accuracy and forecasting
utility, need to be able to take into account the range of possible outcomes
that may be expected. All of this requires effective communication channels
between forecasters, planners and decision-makers.

In the sections that follow, we examine communication issues from
different perspectives. The successful resolution of these issues is essential if
knowledge and skills are to be developed and grown in organisations, thereby
allowing them to benefit to the fullest extent from expertise in forecasting.
It should be stated that effective communication channels are a necessary
but not sufficient condition for success. Internal politics brings different
kinds of instability within a forecasting process, especially where there are
many human interventions. Each intervention becomes an opportunity to
introduce bias and unnecessary inaccuracies [7]. Different stakeholders may
have different political interests within the organisation that skew the fore-
casting process. Powerful people may seek confirmation from the forecasting
outputs and if they do not get that confirmation, they tend to ignore it [21].
These issues are not unique to forecasting; they can affect other types of
OR modelling too. Addressing these issues requires careful consideration of
reward systems within an organisation and the promotion of a collaborative
approach between different sectional interests.

21.4 More Effective Communications

It would be a mistake to think of organisations as homogeneous entities.
There are often different people, with different roles, involved in forecasting,
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planning and decision-making activities. This is true not only in developed
economies, but in developing ones as well.

Considered as a whole, a forecasting system can be viewed as a human
activity system [2], embedded within a wider decision-making and moni-
toring system. In describing such a human activity system, three types
of people are relevant: (i) actors—those that undertake the activity; (ii)
customers—those for whom the activity is undertaken, and (iii) owners—
those with the power to start or stop a system. The inclusion of the third,
and most powerful, category of people recognises that human activity systems
require decisions to be taken about investment in resources (e.g. hardware and
software), processes to be followed (including data capture, reporting and
monitoring) and deployment of staff (to specific forecasting and planning
tasks). The responsibility for organising forecasting processes and tasks may
be delegated by owners to less senior managers. Resource decisions, unless
relatively trivial, are not usually delegated. For owners to take such decisions,
they must have access to the necessary funds and to have some appreciation
of the benefits that can accrue from better forecasting. Lack of funds or lack
of this appreciation and understanding can inhibit progress in forecasting and
planning.

Checkland [2] describes the second category of people as beneficia-
ries/victims, in a wry recognition that those who are said to benefit from a
system may not do so in practice. The first category of people, the actors, play
an essential role in the successful implementation of any forecasting system.
The need to develop the knowledge and skills of these people has not always
been fully recognised. It is certainly an issue in less developed economies,
and this theme will be picked up in the next section of this chapter. It can
be an issue in more advanced economies too. Forecasting education is often
neglected in developed countries such as the United Kingdom. Our expe-
rience of running training courses in the UK is that demand planners can
quickly absorb the principles of the methods they have been applying ‘blind‘
and can use their forecasting systems much more effectively as a result.

For forecasting to be beneficial in organisations, effective communica-
tion between the ‘actors’, ‘customers’ and ‘owners’ is essential. However, the
scope should be even wider. In this section, communications between three
groups of ‘forecast suppliers’ and two groups of ‘forecast recipients’ will be
considered. The forecast suppliers are defined broadly to embrace forecast
producers, software developers and forecasting academics. (The term ‘fore-
casting practitioners’ is sometimes used to cover the first two categories). The
forecast recipients include both the direct recipients (the ‘customers’) and
indirect recipients (the ‘owners’).
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21.4.1 Forecast Producers

It is important to recognise two important factors to increase acceptance
and use of forecasting in practice: (i) how forecasts should be communi-
cated with stakeholders and (ii) what should be communicated. Traditionally,
forecasts are communicated as point forecasts (single numbers), which does
not provide the information required for a decision-maker to manage risk.
Communicating forecasts as forecast distributions will be more beneficial
in that regard. Moreover, communicating not only the distributions of the
forecast variable but also their impact on decisions is critical. Considering
an Accident and Emergency department, providing the forecast distribution
of the future patient admissions using a forecasting model is important.
However, it is not something that a decision-maker can take action on.
Complementing this information with the distributions of costs, number of
staff required and waiting times resulting from the demand forecasts is more
beneficial.

For communications to be effective, forecasters need to have a good aware-
ness of how forecasts should be displayed visually. This is especially important
when communicating forecast distributions, so that owners and customers
(using Checkland’s terminology) can appreciate the information that they are
being given. Later, we shall discuss the development needs of forecast recipi-
ents. A little training should go a long way to improving communications of
forecasts and plans.

21.4.2 Commercial Software Developers

Commercial software developers have a keen interest in communicating
with system owners, as they have the power to commission and purchase
a new forecasting system. This decision needs to take into account numerous
factors, including interfaces with existing systems in general and Enterprise
Resource Planning systems in particular.

Communication often focuses on factors other than forecasting accuracy
because these issues will often be uppermost in the minds of the system
owners. Moreover, given the lack of knowledge about forecasting, discussed
previously, it is usually not possible to have an in-depth discussion on this
matter.

When forecasting is discussed, system owners may be impressed by soft-
ware developers’ descriptions of the latest ’trendy’ methods incorporated into
their software, or by anecdotal evidence of forecasting accuracy improve-
ments at other organisations. The problem is that there is hardly any objective
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evidence on the comparative accuracy of different forecasting software pack-
ages. Some information on a range of software packages is available in the
biennial forecasting software review conducted on behalf of the Institute for
Operations Research and Management Science (INFORMS) and published
in MSOR Today. These surveys show comparisons of the features available in
software packages but do not attempt to assess their forecasting performance.

After purchase, software developers often conduct training with forecasters
and demand planners in the organisation. Boylan and Syntetos [28] have
pointed out that there is great variation as to what may constitute training.
If the training does not go beyond tuition in clicking the right buttons, then
there will be little understanding of what to do when the forecasts decline in
accuracy. There is also an important distinction between using a package to
produce an operational forecast and using it as a ’what-if ’ scenario planner.
To make the best use of these planners, users need to have an appreciation
of the alternative methods available in their software and the parameters that
control them.

21.4.3 Forecasting Academics

Although forecasting academics are usually at least two steps removed from
forecasting clients, their contributions can be genuinely beneficial if harnessed
appropriately. Their main impact, to date, has been in developed economies.
In the next section, an initiative is described linking academics to less
developed economies.

Singh [41] pointed to a widening gap between academic forecasting and
business forecasting and, regrettably, his observation is still relevant five years
later. There are three gaps that underpin the problem, namely the knowledge,
research and implementation gaps [40].
The knowledge gap arises because of the lack of understanding of even

basic forecasting theory by many practitioners, and the lack of apprecia-
tion, by many academics, of the practical settings in which forecasting is
conducted. Filling these gaps is essential for meaningful communication to
be established. Some progress has been made in this direction by the estab-
lishment of outlets such as Foresight: the International Journal of Applied
Forecasting , which attracts pieces written in an accessible style by both practi-
tioners and academics. Opportunities for face-to-face communications have
been offered by the Foresight Practitioner Conferences and by events run
by the Institute of Business Forecasting and Planning . Also, some universi-
ties offer training courses and events specifically targeted at practitioners.
However, such publications and events attract the attention mainly of forecast
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producers and software developers, and often do not reach forecasting clients
or system owners. Although these groups do not need a detailed apprecia-
tion of forecasting techniques, they do need to understand how to set realistic
forecasting accuracy targets and to appreciate how the forecasts should inform
their decision making. New communication channels are required to address
this need.
The research gap arises from academics putting too much emphasis on

solving stylised problems, which can be somewhat remote from real business
situations. This can prompt doubts from practitioners about the relevance
of academic research to their organisations. More researchers are now testing
innovations on real-world data. Some researchers have gone further and eval-
uated the business implications of forecasting errors from different methods.
For example, Wang and Petropoulos [39] examined the inventory implica-
tions of different forecasting approaches, including judgemental ones (often
utilised in practice) on real business data. More research projects of this
type are needed, together with good quality review articles and books, which
synthesise the available empirical evidence.
The implementation gap refers to the delay between new methods being

published and subsequently being adopted in software. It is here that software
developers play a crucial role. When methods are adopted in commer-
cial software, then their use follows soon after. Communication between
academics and software developers has been enhanced in recent years by
more researchers developing open-source software, in languages such as R
and Python, to complement their academic papers. This is being picked up
by some of the more adventurous developers, who are incorporating these
new methods into their own commercial software offerings.

21.5 Democratising forecasting

While there are many initiatives such as Data Science for Social Good [8],
Artificial Intelligence for Social Good [9], Pro Bono Operations Research
[10], Statistics for Social Good [11] and Forecasting for Social Good [12]
that investigate the potential benefits of using data, modelling and forecasting
to tackle societal and environmental challenges, very few focus on educa-
tional issues. McClure [13] argued that the lack of educational processes
for the potential beneficiaries of Operational Research (OR) and Manage-
ment Science (MS) caused difficulties in securing benefits from OR/MS
approaches in practice. In particular, the importance of education for the
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users of OR—those who do not necessarily develop models but use them in
the decision-making process—was highlighted.

21.5.1 Data Science Initiatives

With the increase in data availability in the last decade and the interest in
using the power of data, new data-driven areas such as Data Science (DS)
have emerged [16]. Hill et al. [14] argued that it is important to make access
to DS tools more widespread to ensure that end users benefit from them. To
that end, they have designed a series of workshops and courses with the goal
of giving users in online communities the ability to ask and answer their own
questions and to build their skills to engage with other analysts and analyses.
They also aim at reducing inequality by training under-represented groups
in the field such as women, minorities, people with disabilities and veterans.
Workshops are offered at times, and at a cost, that makes participation by
diverse groups of people possible.
The National Institutes of Health (NIH) has launched the Big Data

to Knowledge (BD2K) initiative to facilitate both in-person and online
learning, and open up the concepts of Data Science to the widest possible
audience in the biomedical sciences. BD2K has created the Educational
Resource Discovery Index (ERuDIte), which identifies, collects, describes
and organises online data science materials from various online sources to
democratise novel insights and discoveries brought forth via large-scale data
science training [15]. These initiatives cover a wide range of topics and may
include forecasting but not necessarily so. There are some other initiatives
that democratise access to Data Science such as R-Ladies [18]. The focus
here is to make Data Science, using R programming, accessible to people
of genders currently under-represented in the community worldwide. The
organisation is articulated into ’chapters’, groups hosting events in cities or
remotely, the latter for the benefit of everyone, regardless of geographic loca-
tion or personal circumstances. The focus of the group is to democratise
programming skills in R via meetups (in-person and online), the abstract
reviewers’ network, the Slack channels and the mentorship programme. These
initiatives are meeting with some success. Their main emphasis has been on
broadening access within developed countries. Their principal focus has not
been on developing countries.
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21.5.2 Democratising Forecasting Initiative

Given the importance of educating stakeholders in order to increase the bene-
fits of forecasting to wider communities, one of the co-authors of this book
chapter launched the Democratising Forecasting (DF) initiative [17] in 2018,
supported by the International Institute of Forecasters (IIF). The goal of this
project is to provide forecasting education to individuals in developing coun-
tries around the world. This is born from a recognition of the benefits that
forecasting knowledge can bring to advancing people’s use of forecasting to
inform decisions. However, it goes one step further by emphasising direct
capacity building in deprived economies by educating future forecasters. This
project aims to build skills, increase the systematic use of forecasting, and
engage with stakeholders to make better decisions.
This work has involved designing a curriculum, and then running a series

of workshops delivered to academics (students and lecturers) and practitioners
in developing countries. The three-day training course concentrates on the
foundations of forecasting, using R, for forecasters, analysts and modellers,
focusing on the theoretical background of forecasting methods, their benefits
and limitations and their implementations and use in R software [19]. The
main emphasis of the workshops has been on educating learners about gener-
ating forecasts. Therefore, the primary audiences of the workshop have been
academics and forecasters.
These workshops are used to explore the potential of, and challenges

around, democratising forecasting. In designing and delivering the work-
shops, the intention is to broaden participation along several dimensions
including geographical location, demographic characteristics and academic
fields. Partners from academia, research institutes or industry are selected to
coordinate and help organising the workshops. Partners are selected based on
World Bank data from low, low-middle and middle income countries.

To make the workshops more widely accessible, the training comes at no
cost for participants or the hosting organisation, thanks to sponsorship from
the International Institute of Forecasters. This is important for participants
from lower income countries, who might not be able to afford workshop
fees. Beginners are targeted and, accordingly, participants are not assumed
to have any prior forecasting knowledge or any programming experience in
R. The training is designed around a project based on producing forecasts
for hospital admissions, to inform decisions regarding resource allocation.
Participants spend the majority of their time in the sessions identifying deci-
sions that require forecasts, determining what to forecast and the associated
data requirements, analysing data, writing code for producing forecasts and
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evaluating accuracy. In order to enrich the participants’ learning experience,
various guest speakers are invited from international organisations such as
the National Health Service (NHS), the International Committee of the Red
Cross (ICRC), the Australian Bureau of Agricultural and Resource Economics
and Sciences and SAP to talk about specific forecasting topics. The topics
range from retail forecasting to agricultural and food forecasting, forecasting
for emergency services and forecasting for humanitarian operations. These
talks provide a unique opportunity for learners in developing countries to
engage with forecasters from prominent organisations around the world via
an online platform. This creates a connection to the use of forecasting in the
real world, as speakers share best practices on how forecasts are created and
used and discuss challenges and practices that should be avoided.

21.5.3 Benefits and Impact of Democratising
Forecasting

The aim of the Democratising Forecasting project is to reach wider communi-
ties with limited access to high-quality education, help participants to develop
skills, increase awareness of the potential benefits of forecasting and empower
participants to facilitate workshops in their country and create change.
The initial goal was to train 400 individuals, over 5 years in 20 countries.

Nine workshops had been delivered in seven countries in Africa, the Middle
East and South Asia by the end of 2019. Overall, 210 people have been
trained, including undergraduate students, postgraduate students, academics
and practitioners. An evaluation feedback survey has been sent to learners
at the end of each workshop to assess whether the initiative has achieved its
stated aims and had an impact so far. While it might not be easy to measure
the success of the initiative using a post-workshop survey, we can provide
some evidence from participants’ feedback, which may serve as indications of
the potential impact.

During the workshop, participants learn forecasting and R programming
skills. They learn the theory and concepts of forecasting and how to imple-
ment methods in R. A participant explained how the workshop helped him
to build skills in forecasting and R programming: “The workshop helped me to
manipulate and prepare data for forecasting and use R to generate forecast and
evaluate its quality. I discovered how powerful R is for forecasting modeling ”.
The workshop also emphasises the use of forecasting for planning and

decision-making through various examples and guest speakers from different
sectors. Although not relating directly to their own experience, this provides
an opportunity for learners to think critically about the role of forecasting and
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its potential benefits for their organisations and wider society. A participant
highlighted how the workshop increased her awareness about the potential
use of forecasts:“I couldn’t have imagined a link between forecasting and social
good utilities. You have shown that link and I thank you for that ”.

Democratising forecasting workshops are delivered in person. They are
coordinated with institutions in developing countries, who host and organise
the workshops. Tutors from the UK travel to the country and deliver
the training. By doing so, the initiative achieves its aim of outreach to
resource-poor countries where access to quality education might be an issue.
Rostami-Tabar [25] discussed the knowledge and expertise gap in the area of
forecasting in developing countries and emphasised that very little has been
done over the past two decades to reduce this gap. A participant highlighted
the importance of organising the forecasting workshop in her country:“Not
everyone in the world has the privilege or the chance to get a proper education and
it is us, those who had this privilege, [who give] thanks for making the forecasting
workshop accessible to us”.

Ideally, the democratising forecasting initiative should empower partici-
pants and ultimately bring changes not only at the personal level but more
widely in terms of enabling decisions to be more well informed. While it is
difficult to measure the impact of the workshop on the latter, there are indica-
tions of the former from end-of-workshop feedback. A participant reported
that the workshop had led to a significant change in her priorities for her
professional life:

“Honestly, this workshop made me reset some of my priorities. In fact, I thought
that I was determined and that I already chose the next steps in my career. Then,
after this training, I found myself really interested in forecasting and especially
forecasting for social good. So, I really welcome any opportunity to create the
community that you talked about today and I would be honored to be part of
it ”.

21.5.4 Challenges in Delivering Democratising
Forecasting Workshops

Democratising Forecasting focuses on educating people about forecasting
in developing countries and requires coordination with partners in those
countries to make the workshops accessible to wider beneficiaries. Partners
are responsible for in-country organisation. Tasks include advertising the
workshop among potential participants, registration, communication and
providing a venue.
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While the idea of Democratising Forecasting is based on the distribution
of forecasting knowledge, at no cost, in developing countries, it would be an
oversimplification to assume that everyone is open to the idea. In fact, one of
the most important challenges in the Democratising Forecasting workshops
has been finding partners who are genuinely interested in knowledge distri-
bution in this area and who are able and willing to coordinate effectively to
meet the learning requirements of the workshop. The coordination with part-
ners is needed prior to the workshop delivery to ensure that learning will take
place, and requires having the right learners in the workshop with the right
level of infrastructure and support. In the following, some challenges related
to coordination and delivery are highlighted.

It had been agreed with partners that the workshop should be accessible
to any learner at no cost. When delivering the workshops, it became evident
that some institutions made it accessible only to their own students and staff.
In one case, the hosting organisation was asking for money to organise the
workshop, to provide a room and internet access. The amount they proposed
was clearly aimed at making a profit from organising the event. Some partners
brought in irrelevant people (e.g. secretaries) to show off the high number of
attendees. These examples revealed, very clearly, that the concept of sharing
knowledge and making it accessible to wider communities at no cost is not
always understood or appreciated in some institutions.

Another challenge that was observed is related to the physical environ-
ment. Research highlights the importance of the physical environment on
learning [26]. This was neglected by partners in some countries, especially in
Africa. In one case, a workshop had to be delivered in a room without any
windows or ventilation. Also, the layout of the room did not allow for any
group discussion and it was difficult for the tutor to move around and help
students who may have been having issues in using the software.

Overall, it is evident that the lack of dedicated partners who share the
value of the Democratising Forecasting project can be an important barrier
in achieving the project’s aim.

21.5.5 Limitations of the Democratising Forecasting
Initiative

One of the limitations of the Democratising Forecasting project has been
the lack of assistance to learners after attending the workshop, to overcome
the issues they face. This would include helping them at the transitional stage
from the workshop to real-world settings or to become a trainer. This is highly
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desirable but additional financial and people resources would be required to
support learners in this way.
The practical aspects of the workshop could be delivered based on prob-

lems/datasets that participants are familiar with. While this might be helpful
for the learning process, it would require skilled mentors to help the
instructor and such mentors have not been available.

So far, the Democratising Forecasting (DF) project has been mainly
focusing on the theory of forecasting models and educating analysts to
produce forecasts using R, rather than on the role of forecasts in the decision-
making process. This limitation may not be restricted to the DF project
and could be a more general tendency in designing forecasting education
programmes, which may create issues in accepting forecasting as a useful
tool. Similar issues have also been highlighted in the Management Science
and Operations Research education literature [13, 30]. Also, the workshop
content only covers forecasting using statistical methods, which assumes data
availability. However, there are many situations where there is limited capacity
to record data in developing countries, which means the data might not be
available or the collected data might not be reliable. Including sessions on
judgmental forecasting can enhance the curriculum in that regard.

In such programmes, there is often insufficient discussion on forecasting
beneficiaries, the link between forecasting and decision making and how fore-
casts should be used. This raises the important question of whether learning
theories about forecasting and applying models on datasets is enough to
prepare learners for forecasting in practice. In the examples discussed in
the DF training courses, there is usually no role for the user of forecasts
to play. This may create an issue in using forecasts in practice, as learners
may conclude that this is the end and generated forecasts are the solution
to the problem. Putting more emphasis on the relationship between forecasts
and decision-making in forecasting education programmes and educating the
main beneficiaries of forecasting, such as managers and decision-makers, is
fundamental in encouraging the systematic use of forecasting. It is intended
that this aspect of Democratising Forecasting will become a focal point for
future developments.

21.5.6 Future Agenda for Democratising Forecasting

Given the importance of judgemental forecasting in practice, especially in
resource-poor environments where data is not available or is incomplete, and
the fact that DF workshops have been covering only statistical methods, it
is planned to introduce new sessions on judgemental forecasting in future
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workshops. The sessions will introduce different approaches in judgemental
forecasting, and there will be a case study focusing on scenario forecasting,
given its relevance in many situations for contingency planning.
To overcome the lack of support and communication with DF partici-

pants after workshops have finished, it is planned to create the Democratising
Forecasting Slack channel and to invite attendees to join the channel. It will
be used as a communication channel and, in particular, members can use it
to post questions and/or answers. Previous attendees can also support new
ones in their journey, help them to solve issues and create an online learning
environment. The Slack platform has proved to be a very effective tool to
assist learners, especially in data science-related programmes [31, 32]. It can
be used as a single communication channel with attendees before, during
and after attending a workshop. The aim is to use this channel to increase
engagement, enhance the learning experience and assist learners during their
transition stage, after attending the workshop.

Aligning with the principles of Forecasting for Social Good, the future
agenda is to encourage workshop participants to put what they have learned
into practice, and to empower them to create change by using forecasting
to make better informed decisions and policies. To this end, the Forecasting
for Social Good Research Grant has been introduced [29]. This grant will be
awarded annually to researchers in developing countries as the project lead
and its main objective is to improve the use of forecasting tools to inform
decisions that prioritise the well-being of people and the planet.

Potential users of forecasts (e.g. managers, planners, decision makers) may
not fully benefit from the current workshop, as it mainly focuses on fore-
casting methods and their implementation in R software. In recognition
of this issue, it is planned to design and deliver a one-day workshop on
forecasting for managers. The focus of this workshop will be on concepts
and considerations about forecasting from the perspective of the consumers
of forecasting, rather than the producers. The workshop will be aimed at
increasing awareness of the potential benefits of forecasting for managers and
decision-makers and encouraging the systematic use of forecasts. The work-
shop will be coordinated and hosted in developing countries by a leading
international humanitarian organisation.

21.6 Conclusions

In many modern organisations, multiple decisions are made in the light of
predictions generated by forecasting processes. A forecasting process should
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be perceived as successful if it enables better decisions to be made, bringing
benefits to organisations and wider society. This requires a shift from the way
forecasting success is assessed, which has been traditionally based on forecast
accuracy alone. The potential benefits resulting from the use of forecasting
should include not only economic outcomes but also social and environ-
mental measures at both local and global levels. This would lead to an
increased appreciation of forecasting as an activity with a much broader base
of beneficiaries than has previously been contemplated.

Ensuring that forecasting benefits decision-making requires far more than
developing the latest forecasting models, which has been the main emphasis
in the academic forecasting literature. There are various factors that may act
as barriers to realising the benefits that can arise from forecasting. We have
discussed some of the principal reasons why benefits might not be shared,
including lack of access to resources and expertise, and poor communica-
tion between the various stakeholders involved in the forecasting process. In
addition to improving internal communications, it was argued that better
communications are also needed with software developers and forecasting
academics.

In recognition of the benefits that forecasting knowledge and skills can
bring to organisations, and to overcome some of the barriers to realising these
benefits, the Democratising Forecasting (DF) initiative has been established,
to extend the range of users and organisations. This project builds capacity in
developing countries by educating the potential beneficiaries of forecasting.
Overall, the project has been a success so far. It has reached out to commu-
nities in lower/lower-middle/middle income countries, helping learners to
develop forecasting and software skills, empowering them to create change
and increasing awareness of the potential benefits of forecasting.

Reflecting on the experience of delivering workshops in the Democratising
Forecasting project, we highlighted some issues and challenges that may have
some broader relevance. It was concluded that perhaps the most impor-
tant factor in making an international learning project a success is having
a dedicated partner to coordinate and organise the workshop in the country.
Without such a partner, all efforts to design a high-quality programme, and
to make it more widely accessible, may prove fruitless.

In DF workshops, the main emphasis has been on statistical methods
and software. However, there are many situations where data might not be
available or incomplete, and this is where judgemental forecasting becomes
essential. This will be included in future workshops and should, indeed, be
a part of any business forecasting educational programme. We also recognise
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that it is critical to assist learners after attending a workshop in their transi-
tion to produce and use forecasts in the real world. To that end, a grant has
been established, which helps participants to put in practice their learning in
the forecasting for social good area.

Further reflection brought the realisation that the focus of the DF work-
shops has been mainly from the perspective of forecasters or forecasting
modellers (i.e. on producing forecasts and using the software) rather than
the perspective of the decision-makers. This omission is important, given
their crucial role in adopting, gaining acceptance and sustaining new fore-
casting processes. New forms of engagement with these decision-makers are
currently being planned. More generally, forecasting education should recog-
nise the important role of decision-makers as the main beneficiaries and the
relationship between forecasting and decision-making should be covered in
any programme.

In similar initiatives such as Data Science for Social Good, there are indi-
cations of success such as peer review publications, number of organisations
involved, number of projects completed and number of fellowships awarded.
Democratising Forecasting has also been growing, in terms of outreach and
number of participants benefiting from its workshops, since its launch in
January 2018. However, a full set of measures has not yet been developed
and so it is difficult to assess its impact objectively. Success might be best
evaluated based on actions taken, and their effects, as a result of what was
learned during the workshop and afterwards.

We believe that there is a broad demand for forecasting skills in commu-
nities that may have benefited less from forecasting, such as the public
sector, third sector and almost any sector in resource-poor environments in
low/middle income countries. We hope that we have provided a vision of
what a democratised forecasting curriculum might look like. We believe that
coupling Democratising Forecasting with Forecasting for Social Good creates
opportunities for societal and environment benefits beyond what has been
achieved so far.
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Problem Structuring and Behavioural OR



22
Behavioural OR: Recent developments

and future perspectives

Martin Kunc and Konstantinos V. Katsikopoulos

22.1 Introduction

The study of the behavioural aspects of OR can be traced back to the 1960s
and 1970s with authors such as Ackoff and Churchman, in the 1980s and
1990s within the field of systems thinking, and in the specialised domain of
“soft” OR [5]). However, the need to merge behaviour and the practice of
hard OR has been increasingly acknowledged due to the failures on imple-
menting the results from models. A focus on human behaviour should help
to develop models that capture behaviour realistically and focus the atten-
tion of scholars and decision makers on managing behavioural aspects of the
system more realistically. This request is underpinned by experiments and
theory in fields such as psychology, economics, and finance that are increas-
ingly recognising aspects of individual behaviour such as decision-making
heuristics and biases and adaptations, bounded rationality, and mispercep-
tions of feedback affecting the results from quantitative models. Additionally,
attributes of human behaviour both shape and are shaped by the physical
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and institutional systems in which they are embedded [5]. Behavioural issues
in decision-making are widely studied at the individual, group, and organ-
isational levels by judgement and decision-making, cognitive psychology,
organisation theory, game theory, and economics. Consequently, the rise of
Behavioural OR (BOR) within OR/MS should not be surprising and it
should naturally be part of any research on OR/MS modelling. The recent
developments of BOR imply a focus on empirically examining what people
actually do within a system or when engaged in OR-supported processes with
the aim of identifying key behavioural dimensions that shape the conduct of
OR in practice [5]. To summarise, scholars in BOR aim not only to describe
but also to prescribe human behaviours in order to improve OR in practice.
To summarise, among many definitions for BOR, we suggest “behavioural
operational research (BOR) is defined as the study of behavioural aspects
related to the use of operational research (OR) methods in modelling,
problem solving and decision support” [10]”. This chapter will cover recent
developments in the field as well as future issues.

22.2 Recent Developments

This section divides recent developments into the conceptual frameworks
defined by the BOR community and by a similar area of research in BOM.
While they are not identical, BOR and BOM share some interesting aspects.
The integration of their principles can provide a useful broader framework
for considering behavioural aspects in the field of OR/MS.

22.2.1 Conceptual Framework of BOR

Franco and Hämäläinen [5] propose a framework for empirical studies in
BOR. In their view, the behavioural aspects of OR practice depend on the
type of OR actors, such as expert modellers, decision analysts, consultants,
and users, the impact of OR methods (techniques/tools such as mathemat-
ical programming or simulation, and the routines for using those, such as
building, communicating, and intervening, and OR praxis which reflects the
behaviour of participants during the process of using OR methods. Finally,
the context of the OR praxis, such that the type of the organisation or the
level of decision-making defines the outcomes such as changes in cognition,
attitudes, or interaction.

Relatedly, Kunc, Malpass, and White [22] suggested three areas of research
related to BOR: behaviour in models, behaviour with models, and behaviour
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beyond models. The first area evaluates the representation of behaviour in
OR/MS models where there can be different approaches such as modelling
human behaviour as passive entities, which are predictable but unrealistic, to
people with biases, sentiments, and traits, which are difficult to pin down, or
to agents with capacities for adaptive and effective decision-making when the
conditions are right. The representation of human behaviour depends on the
assumptions of the modellers but the model can have very different results
due to the impact of the behaviours on the dynamics of the system under
study. The second area is related to the use of models by decision makers,
for example, asking questions about what information is used and how it is
processed.

Katsikopoulos [13] proposed psychological heuristics where decision-
making is based on psychological capacities; decision makers do not neces-
sarily use all available information and employ simple computations. The
use of OR models can also impact dimensions such as affective or cogni-
tive conflicts [11]. The final area of BOR research in this view is concerned
with behaviour beyond the use of models. This area aims to understand the
impact of models through the lens of the socially situated nature of OR prac-
tice [33]. Most models do not prescribe action because they are a guide to
action and action is a collective activity aiming at system-level improvement.
Therefore, behaviour beyond models intends to evaluate the externalisation
of inclinations to act on and modifies the environment using models [33].

22.2.2 Comparison between BOR and BOM

Gino and Pisano [9] suggest that “behavioral operations is the study of
attributes of human behaviour and cognition that impact the design, manage-
ment, and improvement of operating systems, and the study of the interac-
tion between such attributes and operating systems and processes”. When
comparing this with the BOR definition, it seems that the research focus
in BOR is mainly related to behavioural facilitation for model building
and communication of model results, whereas BOM seems to mostly focus
directly on the impact of behavioural factors on solving problems within
organisational contexts [20].

Ultimately, both BOR and BOM share the same goals: the design,
management, and improvement of operating systems and processes assuming
the impact of human behaviour [20]. However, BOM focuses on devia-
tions from assuming that actors are motivated by self-interest expressed in
monetary terms and the optimisation of a well-defined objective function.
For example, activities like inventory management that can be explained
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Table 22.1 Differences and similarities between BOM and BOR (adapted from [20])

Concept BOM BOR

Practice Identify deviations from
normative “rational” theories

Understanding behavioural
aspects of the practice of OR

Scope Activities in operations such as
inventory, production, services,
product development, supply
chain management

The development and use of
OR models in different
organisational contexts and
type of problems

Focus of
attention

Operations Models

Theories Behavioural economics
Organisational behaviour

Bounded rationality
Group Dynamics

Research
methods

Experiments
Surveys
Models
Psychometric research

Action research
Models
Experiments
Case studies

Target of
research

Managers and workers Consultants and analysts

with actors following “rational” theories in operations, are evaluated through
experiments where participants do not follow such theories. Thus, BOM has
focused on experimental research underpinned by, for example, behavioural-
economics theories [20]. However, the most important aspect in BOM is the
focus on the operational context such as the supply chain, service operations,
forecasting, and so on, differently from BOR where the context is primarily
the OR actor. Table 22.1 summarises the above comparison.

22.2.3 Empirical Basis of BOR

Of course, useful OR has always been taking into account the known
evidence on human behaviour [5]. In 1940, Patrick Blackett’s “circus”
consisted of eleven members, three of which were physiologists [24]. In the
wake of the second world war, behavioural sciences such as psychology and
economics developed further rigorous methods of experimentation and data
analysis, and are now able to provide an empirical basis for BOR. As with all
science, some of the original findings has been called into question, but there
have been systematic efforts of producing reliable findings and we can now
be more confident about behavioural data [26].
Two areas of OR in which behavioural findings have played an important

role in building and applying models are decision analysis and simulation
[22]. In the case of BOM, behavioural game theory has provided modelling
input to areas such as supply chain management [4]. A large chunk of the
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work on individual decision-making and strategic interaction can be found in
the areas of judgement and decision-making, and behavioural economics. In
recent years, some of such work is carried out within BOR itself [7, 12, 25,
27]. The literature on behavioural effects in simulation is partly found in
human factors/engineering psychology, but it is now flourishing within BOR
too [31, 3]. Because of the scientific need for experimental control, a big
chunk of behavioural research can be criticised as taking place in the lab,
which contradicts the need for rooting OR in practice, but there are also
studies taking place in the field [6, 17].
The work referenced above provides behavioural evidence that interfaces

more naturally with “hard” OR that employs formal models. Behavioural
evidence that is better aligned with “soft” approaches is also available in both
BOM and BOR [1, 34], but it is discussed in subsection 22.3.2. An inter-
esting stream of this work gathers and reviews the evidence of behavioural
interventions in the field [6].
The following section zooms into the input to OR from the areas of judge-

ment and decision-making and behavioural economics, and abstracts some
main themes, highlighting the spectrum of ideas present [14].

22.2.4 Behavioural Science and BOR

Herbert Simon was a serious polymath of the twentieth century, and
contributed to both the human sciences, such as cognitive psychology and
behavioural economics, as well as to what he called the “sciences of the arti-
ficial”, such as the design of technical systems and AI. In 1958, in the pages
of Operations Research, he engaged in a heated debate with Richard Bellman
on how close were we to major advances in automating behaviours such as
playing chess, proving theorems, and composing music. Simon thought that
it was a matter of a decade but Bellman was dismissive (to put it politely). We
shall discuss the connection between OR and AI that is emerging in recent
years in the next section. Here, we consider how Simon’s ideas on how people
make decisions found their way into BOR.

Simon rejected the ideal of neoclassical economics that people make deci-
sions “as-if ” they optimise a utility function (an objective function in OR
terminology). Rather, he posited, people use heuristics in order to satisfice
[30]. This conception of heuristics resonates with how the concept features in
OR: Optimisation is great when one can accomplish it, but in practice, who
can? The data required might be of poor quality, the computational power
needed might be unavailable, and so on. In both cases, heuristics, which are
understood as formal entities, benefit decision makers by delivering feasible
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solutions. In fact, in the real world, these feasible solutions might well outper-
form solutions that are optimal according to a model of the world, a point
made repeatedly by the OR pioneers [19].

Simon’s ideas on heuristic decision-making were mostly published in
economics, psychology, or engineering, and seem to have had little immediate
impact on OR. Eventually Simon did impact BOR, but this was through the
work of two behavioural scientists that followed up on his ideas on heuris-
tics, albeit in distinct ways. In their heuristics-and-biases program, Daniel
Kahneman, together with his late colleague Amos Tversky, emphasised a
conception of heuristics that “in general...are quite useful, but sometimes
lead to severe and systematic errors” [32, p. 1124], and proposed verbal
descriptions of heuristics. In the fast-and-frugal-heuristics program, Gerd
Gigerenzer and his ABC research group developed and tested mathematical
and computer models of heuristics that, they argued, “...when compared to
standard benchmark strategies...can be faster, more frugal, and more accurate
at the same time” [8, p. 22]. Both perspectives are represented in work on
behavioural operations [16, 1, 22, 4], and researchers can choose an approach
that fits their context [14].

22.3 Future Developments

In this section, we present three areas where research on BOR can see strong
development. The first area is artificial intelligence (AI) where it can have
profound impact on behaviour. The second area is the theories and method-
ologies employed to do research in BOR since BOR is an inter-disciplinary
field. Finally, teaching BOR is an untapped area with very few courses and
no recognised book text.

22.3.1 BOR and AI

Simon might have been a little over-optimistic about the prospects of AI
in the 1960s, but the new millennium could end up vindicating his vision.
While some of us might remain un-impressed by AI-composed music, none
should count on beating AI in games such as Go. Decision-making is
now embedded in “technology-rich, data-driven” environments [2]. OR, and
BOR, must interface well with AI; otherwise they might soon be seen as the
mere precursors to an era of “analytics” or “big data”.

Burger et al. [2] have pointed out that big data, by itself, does not guar-
antee that OR/analytics methods and models will produce insights that are
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actionable by people. Drawing from areas such as sociology and philosophy
of technology is key in figuring out how to do so well [34]. Such theoretical,
methodological, as well as educational resources are provided in the next two
sections. Here, we outline some model building and testing resources.

As any useful OR model, models induced by big data, should meet
standards of performance and transparency. Transparency has entered, as it
should, the public discourse, especially in sensitive domains such as health,
wealth, and justice. There are many definitions of model transparency in AI.
At a minimum, a model should be easily explainable to its users, especially
not quantitatively sophisticated ones, and also easily usable by the users, again
especially those who might lack some computer savviness [29, 15]. Candidate
models should be compared with each other on these criteria, along with
measures of performance such as predictive accuracy. Lazer et al. [23] have
shown that this kind of crucial testing was missed in well-known applica-
tions such as nowcasting the incidence of influenza, and it is unfortunately
not yet clear if such lessons have been heeded [18].
There might be multiple routes to building transparent models. An

approach often taken in machine learning is to first build a model that is as
accurate as possible without worrying about how complex this model is, and
then trying to find a simpler model that is almost as accurate but much more
explainable than the original model. Issue with this approach is that users are
often confused by the mere existence of two models, their relationship, and
their respective roles [28]. An alternative route is to attempt from the get-
go to build models that are simultaneously simple, accurate, and transparent.
While this might not always be straightforward, it has been accomplished in a
range of applications, including peace-keeping operations and the monitoring
of investment banks [17].

22.3.2 Theoretical and Methodological Resources
for BOR

Kunc, Harper, and Katsikopoulos [21] presented three tables that summarise
theoretical and methodological resources for the future developments of
BOR, under the three main areas of behaviour in models (Table 22.2),
behaviour with models (Table 22.3), and behaviour beyond the models
(Table 22.4). The tables provide a useful summary for researchers and prac-
titioners interested in applying behavioural sciences in OR. Table 22.2 has
five columns. First column identifies the approach that has been taken by
OR modellers to represent human behaviour. Second and third columns are
a description of the way that human behaviour is considered. Fourth and fifth



728 M. Kunc and K. V. Katsikopoulos

Ta
b
le

22
.2

B
eh

av
io
u
r
in

m
o
d
el
s:

O
R
m
o
d
el
lin

g
an

d
th

e
re
p
re
se
n
ta
ti
o
n
o
f
h
u
m
an

b
eh

av
io
u
r
(A

d
ap

te
d
fr
o
m

Ta
b
le

1,
[2
1]
)

A
p
p
ro

ac
h
ta
ke

n
to

re
p
re
se
n
t
h
u
m
an

b
eh

av
io
u
r

D
es
cr
ip
ti
o
n

R
ep

re
se
n
ta
ti
o
n
o
fh

u
m
an

b
eh

av
io
u
r
in

th
e
m
o
d
el

W
o
rl
d
vi
ew

o
f
th

e
O
R

m
o
d
el
le
r

O
R
te
ch

n
iq
u
e

(e
xa

m
p
le
)

Si
m
p
lif
y
b
y
n
o
t

in
cl
u
d
in
g
an

y
b
eh

av
io
u
r

El
im

in
at
e
h
u
m
an

b
eh

av
io
u
r
b
y
o
m
is
si
o
n
,

ag
g
re
g
at
io
n
an

d
su

b
st
it
u
ti
o
n

N
o
re
p
re
se
n
ta
ti
o
n
o
r

su
b
su

m
ed

in
o
n
e

va
ri
ab

le
,
e.
g
.,
a

ra
n
d
o
m

o
n
e

O
p
ti
m
is
at
io
n

M
at
h
em

at
ic
al

p
ro

g
ra
m
m
in
g

Ex
te
rn

al
is
e
fr
o
m

th
e

m
o
d
el

In
co

rp
o
ra
te

h
u
m
an

b
eh

av
io
u
r
o
u
ts
id
e
th

e
m
o
d
el

b
y
al
lo
w
in
g

d
ec

is
io
n
m
ak

er
s
to

in
te
ra
ct

w
it
h
th

e
m
o
d
el

Si
n
ce

b
eh

av
io
u
r
is

to
o

co
m
p
le
x
to

co
d
if
y,

it
is

re
co

rd
ed

fr
o
m

re
al

d
ec

is
io
n
s

G
am

in
g
,
N
at
u
ra
lis
ti
c

d
ec

is
io
n
m
ak

in
g

M
an

ag
em

en
t
fl
ig
h
t

si
m
u
la
to

rs
,

Ex
p
er
im

en
ts

u
si
n
g

m
o
d
el
s

In
co

p
ro

ra
te

as
a

p
as
si
ve

el
em

en
t

M
o
d
el

h
u
m
an

s
fo

llo
w
in
g

si
m
ila

r
ru

le
s
w
it
h
o
u
t
an

y
d
if
fe
re
n
ce

H
ig
h
-l
ev

el
va

ri
ab

le
s

re
p
re
se
n
ti
n
g
av

er
ag

e
h
u
m
an

b
eh

av
io
u
r

C
o
n
ti
n
u
o
u
s
p
ro

ce
ss

o
ve

r
lo
n
g
te
rm

C
o
n
ti
n
u
o
u
s

si
m
u
la
ti
o
n
,
Sy

st
em

d
yn

am
ic
s,

M
ar
ko

v
m
o
d
el
s

In
co

rp
o
ra
te

as
in
d
iv
id
u
al

en
ti
ti
es

M
o
d
el

h
u
m
an

s
as

d
is
cr
et
e

en
ti
ti
es

su
ch

as
m
ac

h
in
es

D
is
cr
et
e
p
ro

ce
ss
es

ca
p
tu

re
va

ri
ab

le
s
in
si
d
e

th
e
m
o
d
el

D
is
cr
et
e
el
em

en
ts

co
n
tr
o
lle

d
b
y
ru

le
s

D
is
cr
et
e
ev

en
t

si
m
u
la
ti
o
n

In
co

rp
o
ra
te

th
ro

u
g
h

ac
ti
vi
ti
es

M
o
d
el

h
u
m
an

p
er
fo

rm
an

ce
in

ta
sk
s

O
u
tp

u
t
va

ri
ab

le
s
in
si
d
e

th
e
m
o
d
el

A
ct
io
n
s
ar
e
re
sp

o
n
se

to
p
re
-d
ef
in
ed

se
q
u
en

ce
o
f

ta
sk
s

D
is
cr
et
e
ev

en
t

si
m
u
la
ti
o
n

In
co

rp
o
ra
te

as
fr
ee

in
d
iv
id
u
al
s

M
o
d
el

in
d
iv
id
u
al

h
u
m
an

b
eh

av
io
u
r
w
it
h
al
l
it
s

co
m
p
le
xi
ty

M
ic
ro

-l
ev

el
va

ri
ab

le
s

in
si
d
e
th

e
m
o
d
el

re
p
re
se
n
t
st
at
es

an
d

p
ro

ce
ss

o
f
ch

an
g
e

Sp
ec

if
ic

at
tr
ib
u
te
s
o
f

b
eh

av
io
u
r
ar
e
p
re
se
n
te
d

in
d
iv
id
u
al
ly

an
d
em

er
g
en

t
fr
o
m

in
te
ra
ct
io
n
s
w
it
h

o
th

er
h
u
m
an

s

A
g
en

t-
b
as
ed

si
m
u
la
ti
o
n



22 Behavioural OR: Recent developments and future perspectives 729

columns show the type of OR method associated with each representation of
human behaviour. As can be observed, there is a strong relationship between
the type of models and how human behaviour is considered. Additionally,
there is a suggestion of the use of multi-methodologies, e.g. experiments and
OR models, to inform the models as a way of enhancing those models with
more realistic behaviour.
Table 22.3 content is based on the field of psychology. The first column

shows the type of behavioural change expected from using models, e.g.
changes on the decision rules (heuristics), changes on the way of processing
information (cognition), changes on the state of the mind when models are
used (conflicts). This area implies the use of data collection methods that are
related to soft OR methods, such as system dynamics models that consider
mental models’ complexity, and hard OR methods, such as decision analysis.

Finally, Table 22.4 is based on organisational behaviour literature. This
is an area that has been particularly neglected in the OR field but it can
very fruitful to indicate the impact of OR practice. For example, the imple-
mentation of a revenue management system can change the language used in
the organisation and even the dialogue happening in the organisation while

Table 22.3 Behaviour with models: How OR models impact on decision makers’
behaviour (Adapted from Table 2, [21])

Behavioural
change in Description

Representation of
human behaviour

OR technique
(examples)

Heuristics Use of different
heuristics under
different
interactions with
the model

Elicitation of
heuristics and
their
consequences

Decision analysis

Cognition Change of mental
models, Better
understanding of
complexity

Elements of mental
models (variables,
causal links)

System dynamics,
Cognitive mapping

State of mind Change in the
state of mind is
associated with
two categories of
conflict:
functional
task-related
conflict (e.g.
cognitive conflict)
and dysfunctional
emotion-related
conflict (e.g.
affective conflict)

Level of conflict Problem-structuring
methods
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Table 22.4 Behaviour beyond models: The impact on organisational behaviour from
the use of OR models (Adapted from Table 3, [21])

Organisational behaviour
change expected Description

Representation of
collective behaviour

Interpreting / Integrating Interpreting is a process of
explaining an an insight
or idea to others,
Integrating is a process
of developing shared
understanding and
taking coordinated action
through mutual
adjustment

Language Dialogue,
Storytelling, Shared
observations

Institutionalising A process of routinisation
where tasks and actions
are specified together
with organisational
mechanisms to embed
the learning

Systems, Procedures,
Structures

the revenue management system also involves the implementation of new
procedures and structures to embed in the organisation.

22.3.3 Education Resources for BOR

There exist two handbooks on behavioural OR [22, 34], and two hand-
books on behavioural OM [1, 4], which cover the very wide spectrum of
ideas, techniques, and applications in the two areas. A gap here is that there
is currently no work that attempts to integrate the research performed in
these two areas, by largely distinct communities. In the more specific area of
building models of decision-making that are predictively accurate and at the
same time transparent to first and end users, there is a “how-to” guide [17],
which is accompanied by a freely available R package (ffcr) for statistically
inducing and empirically testing such models.

22.4 Conclusions

The area of BOR is growing rapidly following the increasing attention to
behaviour in multiple disciplines, such as economics, finance, operations, and
marketing, and of course in the “sister” discipline of BOM. The growth of
BOR is also sustained by excellent theoretical resources given the diversity
of theories from, among others, disciplines such as psychology, economics,
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and sociology, which are supporting the analysis of human behaviour, and
the lasting work of luminaries such as Herbert Simon. In terms of method-
ologies, there is a clear set of methods for supporting the collection of data
describing human behaviour with many strengths, but also increasing levels of
challenges. For example, an important development is the existence of more
and more behavioural data coming from “big data” sources, and its automated
processing via algorithms for predicting and influencing human behaviour.
But it is unclear whether these algorithms always help build behavioural
theory that is fit for practice. And, ethical implications have to be considered
on the use of individual data. This is still an area where research is lagging
and more transparency is needed.
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23
Problem Structuring Methods: Taking Stock

and Looking Ahead

L. Alberto Franco and Etiënne A. J. A. Rouwette

23.1 Introduction

On the morning of January 28, 1986, the space shuttle Challenger was
launched from the Kennedy Space Center. The temperature that morning was
around −5 °C, well below the previous low temperatures at which the shuttle
engines had been tested before. Seventy-three seconds after launch, the Chal-
lenger exploded, killing all seven astronauts aboard, and becoming the worst
disaster in space flight history. The catastrophe shocked the whole world, and
for many Americans it was the most tragic event since the assassination of
John F. Kennedy in 1963. The findings of the Presidential Commission on
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the Space Shuttle Challenger Accident pointed to a flawed decision-making
process as a primary contributory cause.1

Very few machines come near to the space shuttle in terms of its sheer
complexity. Manufactured by Rockwell International and operated by NASA,
the 250-ton machine operated at the very limit of human engineering. The
launch of the Challenger was originally scheduled for January 22, 1986, but
was postponed three times. The first two postponements occurred because
the previous space mission was late, and the third postponement was based
on an unacceptable weather forecast. Finally, a launch attempt on January
27 was cancelled because of high crosswinds and a balky bolt on a spaceship
door. On the evening before the actual launch on January 28, NASA manage-
ment and engineers met with the management and engineers of Morton
Thiokol Inc, the contractors that produced the solid rocket boosters respon-
sible for the shuttle’s primary propulsion, to discuss the issue of launching
the shuttle despite near freezing temperatures expected for the next morning.
During that meeting, Morton Thiokol engineers expressed grave concerns
about the effect of the low temperature on the functioning of the O-ring
seal in the joint of the solid rocket booster. Roger Boisjoly was the key engi-
neer expressing concerns. He believed that cold temperatures could lead to
substantial O-ring erosion on the solid rocket boosters. And if the O-rings
eroded substantially, the erosion could lead to a catastrophic accident during
launch due to a leaking of hot gases.

Boisjoly found himself lacking sufficient data to prove his case. He had
some data, but the evidence was inconclusive as the combination of O-
ring erosion and low temperatures had been observed only in a very small
number of previous shuttle launches. He also was relying on his intuition to
come to the conclusion that cold temperatures were problematic. Without
sufficient data, he could not persuade top managers. NASA and Morton
Thiokol held very different interpretations about the decision that needed to
be made about the launch. For Morton Thiokol management and engineers,
the decision was about whether it was safe to launch the shuttle; for NASA
management and engineers it was about whether the data suggested that the
shuttle would fail. Clearly all parties in the meeting wanted to make the best
possible decision, but the findings of the Presidential Commission indicate
that NASA management tried to win the argument at all costs, presenting
their views forcefully, suppressing dissenters, and seeing the other party as an
opponent. They were not open to being influenced by arguments from the
Morton Thiokol engineers. Had all the parties involved been willing and able

1 Presidential Commission on the Space Shuttle Accident (1986) Report of the presidential
commission on the space shuttle challenger accident. Washington, DC.
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to understand whether there was a correlation between O-ring failure and
temperature, they might have recognised that they had access to data that
could have convinced everyone to delay the launch. Indeed, if data about
previous flights that had not experienced O-ring erosion was added to the
data that Boisjoly presented to NASA, it would have become apparent that
O-ring erosion and temperature were indeed correlated, and that a launch
delay was thus necessary.

Decision situations such as the one described above have received partic-
ular attention within the discipline of Operational Research (OR). Namely,
complex situations that present high levels of uncertainty because full infor-
mation or knowledge is not available, and that are subject to multiple
contrasting interpretations and interests that can lead to high levels of
conflict. This chapter will give an overview of a family of decision support
approaches specifically developed to deal with complexity, uncertainty and
conflict. Known as problem structuring methods (PSMs) [139, 140] and
developed almost 50 years ago within OR, their general purpose is to assist
a group of stakeholders in gaining a better understanding of a situation of
concern through the provision of modelling and facilitation support [71],
with a view to reaching consensus on problem structure, and usually, on
initial stakeholder responses to the problem [140]. PSMs extended the scope
of traditional OR decision support, which was already accessible to address
problems with relatively low levels of uncertainty and conflict, and high
levels of complexity, to problem situations with high levels of uncertainty
and conflict. PSMs took from its OR origins the model-based approach and
added facilitation processes [71] to enable groups of diverse composition to
structure and thereby handle the problem situations they face more easily.
The use and study of PSMs have continued to grow over the years,

although mainly confined to certain geographical areas [1, 78, 108, 124].
Advocates of PSMs maintain that the methods offer flexibility in their appli-
cation and can be responsive to the dynamics of group work and/or the
particularities of the problem situation at hand. In practice, this flexibility has
allowed the possibility of their combined use, as well as their use in combi-
nation with non-OR and mainstream OR methods, in what has been termed
‘multi-methodology’ (or ‘mixed-method’) interventions [87, 107, 111, 116].
The original family of PSMs described in the widely referenced text by

Rosenhead [139] and its revised version [140] was constrained to only five
major methods.2 However, increasing calls to extend the family of PSMs [16,
37, 79, 150, 162] has led some OR scholars to attempt redefining what a

2 The original version contained six methods. In the revised version Metagame Analysis and
Hypergame Analysis were fused into Drama Theory, resulting in five methods.
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PSM is [153, 166]. A parallel development within PSM scholarship has been
a gradual move from simply reporting case studies of PSM applications in
various contexts, to rigorously testing or developing theories that explain how
PSMs are used and their actual effects [63, 66, 141, 146, 172–174].

Against the above background, the aim of this chapter is to take stock of
what we know about PSMs and highlight some areas of work that deserve
critical attention for the continuing advance of PSM as a field of practice and
research within OR. The chapter is structured as follows. First, we present
the general nature of PSMs based on their shared characteristics regarding
tools and process. Next, we review the use of PSMs in practice drawing from
published surveys and academic reviews. This is followed by an examination
of the evidence supporting or questioning the actual achievement of the prod-
ucts and impacts claimed by PSMs. Finally, we discuss what in our view are
the most pressing issues confronting PSM practitioners and researchers, and
offer some suggestions to address them.

23.2 The Characteristics of PSMs

What is a PSM? The PSM/non-PSM boundary has been somewhat arbi-
trary in the relevant literature, with key edited collections presenting different
selections of methods [131, 137, 140]. Earlier attempts to characterise PSMs
have mainly focused on their philosophical and sociological foundations, and
on the type of problems for which they were specifically designed. That is,
that PSMs operate within an interpretivist paradigm, and that they are suited
to deal with ‘messy’ (i.e. ill-defined) problems [140]. These earlier character-
isations position PSMs in sharp contrast to traditional OR methods based
on a positivist paradigm, and focussed on ‘tame’ (i.e. well-defined) problems.
The characterisation has remained the dominant portrayal of PSMs to the
present time. The differences between traditional OR methods and PSMs are
summarised in Table 23.1.

Although a useful starting point, portraying PSMs in this way is prob-
lematic. For example, whilst philosophical and sociological considerations
are certainly important to raise awareness of the assumptions operational
researchers are making about their interventions, knowing that we are inter-
pretivists does not necessarily imply that the method we are using in a
particular intervention can be considered a PSM. Indeed, it is possible to use
many traditional OR methods such as decision analysis, system dynamics,
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Table 23.1 Contrasting traditional OR methods and Problem Structuring Methods
(based on Rosenhead [139])

Traditional OR methods Problem Structuring Methods (PSMs)

Operate within a positivist paradigm,
meaning that:

Operate within an interpretivist
paradigm, meaning that:

• there is only one problem out there:
objectives are set and the current
situation can be known

• problems do not exist
independently of human thought
and are thus the constructs of
people based on their worldviews

• the context of the problem is frozen:
it does not change during analysis,
current cause-effect relations carry on
into the future

• people are considered active
participants in the intervention
deployed to tackle the problem

• the task of the operational researchers
is to find the best way to get from the
current to the desired situation

• operational researchers cannot act
as objective outsiders

Suitable for well-defined (tame)
problems, characterised by the existence
of:

Suitable for ill-defined (messy)
problem situations characterised by
the existence of:

• passive stakeholders; unambiguous
objectives and firm constraints;
implementation is unproblematic due
to a clear chain of command

• multiple stakeholders with
potentially conflicting perspectives,
values and interests regarding the
problem; implementation cannot
rely on authority or power

• certain or knowable relationships
between causes and effects, based on
an abundance of reliable and
accessible data

• high levels of uncertainty regarding
cause-and-effect relationships due
to lack of reliable data, potential
behaviours of others, or both

and mathematical modelling within an interpretivist paradigm.3 That is,
instead of assuming that the models produced by these methods are objective
representations of a problem situation, the models are seen as representa-
tions of individuals’ beliefs or views about that situation. And yet, even if
these methods are used by adopting an interpretive stance, they would not be
considered to be PSMs.

Similarly, the notion that PSMs are designed to tackle messy rather than
tame problems is also problematic as a means of characterisation. Defining a
problem as messy or tame always depends on who is doing the formulation.
Indeed, seasoned OR practitioners and their clients would certainly be able
to tame a messy problem (or formulate a tame problem as messy) to suit their
particular methods, including PSMs. As Mingers and Rosenhead [112] aptly
note: “the very construction of the situation as being a problem of a particular

3 Mingers [108] makes a similar point.
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type is a result of the process of problem structuring rather than being a given
starting point” (p. 532).
There have been recent attempts to characterise PSMs in more practical

ways. Yearworth and White [166] offer a set of nine testable propositions
that can be applied to assess whether a given intervention can be consid-
ered to have used a PSM, even if the interventionists do not claim to have
done so. An example of one of their testable propositions is ‘the inter-
vention uses systems ideas appropriate to the context and supported by
systems modelling’. Although carefully crafted and grounded in literature,
this framework allows for interventions that make use of ‘hard’ OR and
systems methods in a ‘soft’ manner to be exemplars of PSM use, which in
our view lessens the discriminatory power of the framework. Furthermore,
whilst the language used in the propositions aligns well with systems-based
PSMs, there are many PSMs that are not systems-based and thus the language
of systems would be less appropriate to describe them. Similarly, Smith and
Shaw [153] propose a set of 13 questions that can be used to determine if a
given approach could be a PSM. This framework is also carefully formulated
and supported by literature. However, several of the questions are related to
the ‘products’ (see Sect. 23.4) claimed by PSMs (e.g. learning), which are
aspects more related to PSM evaluation than actual characterisation.

Here, we provide a simpler (but hopefully useful) characterisation of PSMs
based on their similarities in terms of available tools and the processes of
applying them. We will leave the treatment of PSM products for a later
discussion in the chapter. The characteristics listed in Table 23.2 are those
which have been claimed for PSMs by OR scholars in relation to their use
with stakeholder groups within and across organisations [53, 65, 140, 153].

Before we discuss PSM tools and processes in more depth, a short clarifi-
cation of central terms may be helpful to the reader. First, the term ‘problem
structuring’ will be used here to refer to any PSM-supported activity that
adds clarity to the current situation, the desired situation, or actions to get
from one to the other. This may, for instance, include activities for identifying
different problem elements such as issues, uncertainties, stakeholders, and the
relationships between these elements. As all PSMs are intended to facilitate
agreements to act [52], a PSM-supported problem structuring activity will
also include the identification of actions to tackle the problem of concern.4

Second, and related to problem structuring, is the term ‘frame’,5 which is

4 Incidentally, many PSM pioneers reject the label ‘PSMs’ as it gives the (wrong) impression that the
methods are only about structuring problems in a narrow sense [32, 53, 75].
5 A related and frequently used concept is ‘mental model’. In System Dynamics this term is typically
used to refer to a person’s understanding of a complex issue he or she is involved in. Doyle and
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Table 23.2 PSM characteristics in terms of tools and process—based on Rosenhead
and Mingers [140]

Tools Process

• Model-based, where models are: • Group-based
– amenable to formal analysis of

relationships
• Participative

– requisite • Facilitated
– expressed in visual/diagrammatic form,

and with reduced quantitative data
requirements

• Iterative
• Interactive

– transparent and accessible • Phased
• Open technology to support model

building
• Non-Linear

widely used across various disciplines to refer to the sense-making devices
that aid in organising and classifying our experiences of the world [20, 36, 60,
77, 101]. When we frame a problem situation of interest, we make use of our
prior experience and knowledge to highlight one possible (but limited) view
of that situation over other possible views. Our chosen frames will influence
what we see or expect to see, and thus guide our responses to the problem
situation. Consequently, when a stakeholder group engages in problem struc-
turing , multiple problem frames will be exchanged and shared among those
involved. Typically, the creation of an agreed problem frame will be needed
to ensure stakeholder groups can make progress.

23.2.1 PSM Tools

The core tools available with PSMs are all model-based. According to Pidd
[132], a model is “an external and explicit representation of part of reality as
seen by the people who wish to use that model to understand, to change,
to manage and to control that part of reality” (p. 12). This interpreta-
tion of part of reality includes cognitions, values, and expectations and may
include elements of the present as well as the desired or ideal situation.
As with the case of models developed with traditional OR methods, PSM
models are amenable to formal analysis of relationships6 of various types,

Ford [42] state that “A mental model of a dynamic system is a relatively enduring and accessible,
but limited, internal conceptual representation of an external system (historical, existing or projected)
whose structure is analogous to the perceived structure of that system” (p. 414).
6 Some PSMs also offer explicit means of analysing uncertainties. In traditional OR models, the
uncertainty about future values of a factor of interest is handled by deriving probability distributions
across its possible values. By contrast, PSM models focus on the ‘possibility’ and implications of an
uncertain event deemed to be important enough by the group to enter their deliberations [140].
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namely, relationships between concepts, activities or stakeholders; relation-
ships of similarity or influence; and relationships between options. Especially
significant is the analysis of cause-and-effect relationships through which
the different elements that make up the problem situation are identified.
By enabling the analysis of relationships, PSM models and modelling are
thought to help group members to ‘look beneath the surface’ by exchanging
and sharing their individual problem frames. The use of models is thus the
defining characteristic of these methods, which gives them their unambiguous
OR identity [53, 66].7

The type of models built with PSMs are said to be requisite [127]. This
means that they contain sufficient knowledge and information to help group
members find a way forward. For instance, although considering the entire
‘solution space’ is in principle of interest as there is no single optimal solution
to the problem at hand, the set of all possible solutions would be unman-
ageable large. Consequently, PSM models limit their scope at any time to
a set of discrete ‘solutions’ or options for action selected using different
screening procedures [76, 93]. By concentrating on a few significant discrete
options (which may change during the analysis), PSM models seek to help
stakeholder groups to handle the complexity of their problem situation.

PSM models are expressed in visual, diagrammatical form, and thus have
reduced or no quantitative data requirements. Among the numerous exam-
ples of PSM models are: cognitive maps [26], soft systems models [33],
decision graphs [76], causal loop diagrams [163], and means-ends objec-
tives networks [93]. Furthermore, it has been claimed that diagrammatical
methods are of particular value in representing complexity to lay audiences
who might otherwise find traditional OR means of handling complexity
opaque [52, 140]. In PSM models there is supposed to be nothing hidden,
which makes them transparent (i.e. easy to understand) and accessible (i.e.
simple to use).

Indeed, these attributes of transparency and accessibility have made it
possible for some PSM scholars to promote PSMs as open technology

7 It is worth noting that some prominent PSM scholars consider other cognate approaches as falling
within the PSM family, though they do not use models and modelling in the sense described
above [108]. However, whilst it is possible to support problem structuring without the type of
models described here, we believe that the use of models amenable to formal analysis of relationships
is a shared characteristic that locates all PSMs firmly and unequivocally within OR. PSMs are
sometimes referred to as Soft OR approaches, a loosely defined term to indicate any use of OR that
pays attention to the non-quantitative elements of a problem or uses traditional quantitative OR
methods in a ‘soft’ way. Thus Soft OR would include, for example, approaches such as Interactive
Planning [12] and Strategic Assumptions Surfacing and Testing [103], as well as particular forms of
multimethodology [111] that combine hard and soft methods. In this chapter, however, we will stick
to the term ‘PSMs’ as it is more sharply defined and firmly located within OR.
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approaches [76]. This characteristic is aptly expressed in the settings and
tools used for building PSM models: a room spacious enough for partici-
pants to move around freely and with movable chairs laid out in a horse-shoe
fashion; large sheets of paper attached to the walls of the room; a simple,
non-permanent means of sticking notes to these paper sheets; and a good
supply of marker pens with contrasting colours are all that is usually needed
for a PSM modelling session [45, 82, 88]. This suggests that PSM modelling
is technically a relatively unsophisticated activity conducted in a workshop
format.8

23.2.2 PSM Process

The aim of PSMs is to aid groups of stakeholders in coming to agree-
ment on the nature of a problem situation they face so that progress can
be made. This is because in a situation where there is a plurality of actors
with different perspectives and interests, high levels of complexity , uncer-
tainty, and conflict will be experienced by those involved and this needs to
be managed. Consequently, unless the problem situation is resolved by an
exercise of power, stakeholders will need to find an effective way to develop
appropriate responses to the problem and commitment to the way forward
[140].

When group members participate in a PSM process, they openly exchange
their different frames about the problem situation that is being structured
[62]. The PSM process is claimed to be participative in the sense that group
members are able to jointly construct the problem situation, make sense of it,
arrive at a shared problem definition, and develop a portfolio of options rele-
vant to the problem so defined [140]. This participatory process is facilitated
by external professionals [72, 122, 130, 148].

It has also been argued that the PSM process is interactive and phased
[140]. Interactive because it requires interaction between the group and
the model-supported analysis, and between the group members; this former
interaction reshapes the analysis, and the analysis reshapes the group discus-
sions. Phased in the sense that they are organised into stages or modes, which
makes it possible for the users of the method to conclude without passing
through all the stages that compose it, and still have a visible product which
can be of use to them (more on the products of PSMs later). As Eden [44]
argues, the characteristic ‘phased-ness’ of PSMs is a direct consequence of

8 Some PSMs do, however, use software [4] and web technologies [167] to support their modelling
processes.
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acknowledging that participants in a stakeholder group will consider the prac-
ticality and political feasibility of possible actions [33, 51] at the same time
as the problem is formulated.9 Finally, the process is claimed to be iterative,
because it is possible to cycle between the stages and thus the process can
be repeated until the problem situation is satisfactorily structured so that the
group feels sufficiently confident in making commitments to actions.

What have been described in the preceding sections are the typical shared
characteristics of the family of PSMs as a whole, though individual methods
may vary with respect to these in certain respects. Methods with these charac-
teristics have been designed for one-off uses in particular problem situations.
And even those methods that have achieved a considerable weight of applica-
tions are commonly employed in creative variants that take account of local
circumstances. However, description and critique have naturally concentrated
on the more standard forms of the principal methods that arguably have trig-
gered the rise of PSMs as a recognised field of activity [3]. These methods
are: Strategic Options Development and Analysis [5, 56] and its development
Journey Making [6, 51], Soft Systems Methodology [30, 33], and Strategic
Choice Approach [76]. Following our preceding characterisation, and consid-
ering the number of published accounts of their use in practice (see next
section), we propose a slightly extended set of methods from that contained
in Rosenhead and Mingers [140] that can be considered PSMs.10 These are
listed in Table 23.3.

23.3 The Use of PSMs in Practice

In this section we provide a short account of the practical application of PSMs
in two complementary ways. First, short descriptions of a small number of

9 Built into some PSMs are features whose purpose is to enable participants to distance themselves
from previous bindings during the problem structuring process, effectively providing them with
a certain degree of ambiguity or ‘equivocality’ regarding their own positions [46]. This is often
facilitated by the possibility of group members entering their inputs to the model anonymously,
which can allow them to change their positions in response to what they have learned about the
problem without destroying the social order in the group [46]. Changing positions implies individuals
‘changing their minds’, i.e. changed beliefs, changed values, and changes in the salience of particular
issues or values [44]. The consequence of this adaptability is that it becomes easier for group members
to reconcile the position they eventually take both with principles and with past words and actions
during discussion.
10 The list has similarities to the one proposed by Mingers [108], although we have not included
methods that do not build and use models (as defined here) in a facilitated mode. We also excluded
other facilitated modelling methods that would fit the characterisation presented here but which do
not have yet a substantive volume of applications published in the mainstream OR literature—see,
for example, Conklin’s [35] Dialog Mapping and Ritchey’s Morphological Analysis [138].
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varied applications will be provided, in order to shed further light on what
these methods can do in practice. Second, published survey evidence and
academic reviews will be summarised, to capture actual use and the range
and distribution of PSM applications.

23.3.1 Sample of PSM applications

In this section we sketch the process and products of three applications
of PSMs. These applications are explicitly chosen to reflect the divergent
contexts and ways in which the approaches are used. The examples cover
systemic risk elicitation [10], public strategic planning [17], and child
protection services [97].
The paper by Ackermann et al. [10] describes part of the Northern Isles

New Energy Solutions (NINES) project. NINES aims to inform the design
of a new power station for the Shetlands Islands, by assessing different energy
generation portfolios and smart grid technologies in the light of current and
future demand for electricity. This multi-million-pound project is extremely
complex and involves a range of stakeholders. The role of Ackermann et al.
was to identify, structure, quantify, and assess the implications of the risks
involved in the options proposed. The understanding of risks here extends
beyond standard technical and financial considerations, and also includes
uncertainties arising from demands and actions of stakeholders. The research
team designed and facilitated three workshops, each with different audiences:
the NINES researchers and project managers, Shetland islanders, and tech-
nical staff of the electricity company. Participants were chosen in consultation
with NINES project members and depending on availability on planned
workshop days. The process followed in the workshops was supported by
the use of Group Explorer,12 a computer system that supports the imple-
mentation of the causal mapping technique (part of SODA), and enables
the construction and utilisation of causal maps in a team environment. Each
workshop followed roughly the same agenda: generation of risks (which were
directly grouped into clusters by the facilitator), identification of relations
between risks, and identification of priorities. Workshops had between eight
and 16 participants, lasted four to five hours, and generated as much as 200
contributions each. The setup of the workshops included a computer console
for each pair of participants, allowing them to contribute ideas, means-ends
relations, and priorities in parallel, and see the results on a shared screen. A

12 Group Explorer was originally developed by Colin Eden and Fran Ackermann at the University of
Strathclyde.
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round of interviews was held to gather additional input. As they were gener-
ated by different participant groups, the three resulting maps were analysed
separately and no attempt was made to integrate them. Across the maps,
clusters of highly interrelated risks were identified which pointed manage-
ment to areas in which one risk could exacerbate another, and thus addressing
them in isolation would be less effective. On the basis of clusters and recur-
rent themes a prioritised agenda for risk management was provided to the
client organisation. Participants in particular valued the comprehensiveness
of the analysis, the consideration of relations between risks rather than seeing
them as independent, and the inclusion of different stakeholder groups in the
process.

Bana e Costa et al. [17] report on a project with the State Department
of Social Development and Human Rights (SESDH), part of the State of
Pernambuco in northeast Brazil. The aim was to develop a multi-annual
plan for the 2008–2011 period. Sessions were organised in the form of deci-
sion conferences and integrated various methods, in the main group causal
mapping (part of SODA) and multi-criteria decision analysis, supported by
value-focused thinking, analysis of interconnected decision areas (AIDA, part
of Strategic Choice Approach), strategic graphs and portfolio analysis. A total
of 30 participants took part in facilitated meetings, grouped into two sepa-
rate work teams: a technical team bringing together representatives of the
SESDH’s planning and budget units, and a decision-making team consisting
of secretaries, directors and superintendents of each administrative unit in
SESDH. After a first meeting attended by both teams, the technical team
continued into a three-day meeting aimed at structuring objectives, designing
actions and organising these into programmes, and identifying factual infor-
mation on the contribution of programmes to objectives. The meeting of the
technical team started with listing ideas on Pernambuco’s mission on post-it
notes. These were then clustered and by the end of the second day resulted
in a means-ends map in Decision Explorer.13 The third day was spent on
clustering actions into intervention programmes. Following the principles
of AIDA, compatibilities and incompatibilities between actions were visu-
alised. After coherent intervention programmes were formed, the technical
team organised factual information on the contribution of the programmes
to objectives. Both teams then met again, after which the decision-making
team took the lead in the next phase assisted by the technical team. Decision
makers in the next two days chose three fundamental objectives and validated

13 Decision Explorer is a software tool to support the creation of causal maps. It is developed and
distributed by Banxia Software (www.banxia.com).
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programmes. This laid the foundation for an evaluation of the contribu-
tion of programmes to objectives, weighing objectives, assessing doability
of programmes and ultimately prioritisation of programmes. In formulating
and weighing objectives, decision makers were supported by MACBETH.14

Some participants scored programmes low on benefits because they were diffi-
cult to implement. This confusion of value and difficulty of implementation
led to a separate analysis of benefit versus doability, leading to the conclu-
sion that all programmes of high benefit were to be implemented regardless
of their implementation difficulty. A sensitivity analysis was performed to
test if a change in weights would alter the portfolio of chosen programmes.
The conclusions were included in the multi-annual plan and implemented to
various degrees.

Finally, Lane et al. [97] provide an in-depth review of the child protec-
tion services in England. The UK Department for Education (DfE) formed
a reference group of individuals experienced in the sector: a judge, foster
mother, paediatrician, two young people with experience of the child protec-
tion system, two academics, as well as representatives of children’s services
and a charity. An initial analysis of published research, expert interviews and
additional qualitative and quantitative evidence indicated an addiction to
compliance. The result was captured in a causal loop diagram, showing an
emphasis on creating and strengthening procedures, generating a balancing
loop aimed at error correction. This however limits the social worker’s scope
for using their professional judgement in working with children and fami-
lies. In addition, learning by recognising and examining errors was replaced
largely by avoiding the acknowledgement of errors and hiding behind proce-
dures. The systems map was included in a first review report, which resonated
widely within the sector. As a result, a series of facilitated meetings were held
following a GMB format. Participants with a background in policy, practice,
or academia were invited to participate and civil servants of the DfE gath-
ered relevant qualitative and quantitative data on child protection services in
England and other countries. An analysis of the diagram in terms of balancing
and reinforcing loops allowed participants to see the ripple effects of compli-
ance, as well as identifying why measures such as a Serious Case Review15 do
not result in allowing the system to improve its functioning again. Further
discussions with the reference group and among the researchers involved led

14 MACBETH is a software tool that supports the evaluation of options when multiple objectives
need to be considered. It was originally developed by Carlos Bana e Costa at the University of Lisbon
(m-macbeth.com).
15 Serious Case Reviews (SCRs) were established in the UK under the 2004 Children Act to review
cases where a child has died and abuse or neglect is known or suspected. SCRs could additionally be
carried out where a child has not died, but has come to serious harm as a result of abuse or neglect.
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to the formulation of 15 recommendations. These were directed at social
workers, children’s services, and other agencies involved in child protection
and in the main aimed to create a child protection service that functions as
a learning organisation, with a continued building of professional expertise
and better ability to support safety and welfare of children. The Govern-
ment’s response was positive: 10 recommendations were accepted in full, five
in principle and timescales for implementation were specified.

23.3.2 Evidence of Use and Applications

Published practical applications of PSMs have grown steadily over time, as
evidenced in recent surveys of the field [1, 78, 136], although Mingers [108]
notes that the bulk of applications is probably larger as most published
accounts are written by OR scholars rather than practitioners. Below we start
with a discussion of published surveys that cover the use of PSMs, before
considering published academic reviews of their practical applications.

23.3.2.1 Surveys of PSM use in practice

Earlier published surveys into the use of PSMs focused on SSM. Mingers
and Taylor [113] surveyed practitioners and academics in the UK with very
high exposure to SSM, whereas Ledington and Donaldson [100] surveyed
practitioners in Australia with lower levels of exposure to the method. Yet,
both surveys report similar results, with the most common benefit attributed
to the use of SSM being improved understanding and learning. In addition,
the majority of respondents in both surveys evaluated their use of SSM as
successful, although no objective criteria were provided for this evaluation.
Another early survey evaluated PSM use indirectly by paying attention to the
practice of multimethodology. Munro and Mingers [116] conducted a survey
covering the combined use of PSMs, as well as their combination with other
OR and non-OR methods. Like in the earlier surveys, practitioners reported
their use of PSMs as successful albeit without an operational definition of
success.

More recent surveys have examined the use of PSMs in specific areas. For
example, O’Brien [117] surveyed OR practitioners in the UK to investigate
the use of PSMs in strategic planning, which arguably is a natural domain of
application given that strategic problems can be considered messy problems.
The survey results indicate that whilst many traditional OR techniques are
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used to support the strategy process, PSMs are not regularly used despite prac-
titioners being aware of these methods. A more positive picture is given by
Ranyard et al. [136], who report the use of various OR techniques (including
PSMs) in a survey commissioned by the International Federation of OR
Societies (IFORS). Three methods, SODA, SSM, and Strategic Choice are
reported as being used fairly regularly in the UK, but much less frequently in
the rest of the world. The IFORS survey evidence confirms a gradual increase
in the use of PSMs over time in the UK, though diffusion elsewhere remains
low.

23.3.2.2 Academic Reviews of PSM Applications

A number of OR scholars have conducted literature reviews that focused on
the application of particular PSMs. For example, Van der Water et al. [161]
surveyed the published literature on SSM and found ecology and environ-
ment, and information and communication technology, as the main areas
of application. Mingers and White [114] also surveyed SSM applications as
part of their review of the use of systems-based approaches published in OR
and non-OR journals from the mid-1990s to the late 2000s. They iden-
tified health, environment and agriculture, and supply chain, production,
and project management as the main areas represented in SSM applica-
tions. Parnell et al. [123] surveyed VFT applications in selected OR journals
from 1992 to 2010, and found that government and military were the most
common problem domains of application. As part of an examination of
the potential role of PSMs in the problem formulation stage of a simu-
lation study, Powell and Mustafee [135] review published applications of
SSM in healthcare. Of the 49 papers they selected to review, only eight
papers reported an actual SSM application. Abuabara and Paucar-Caceres
[1] surveyed published applications of SODA from 1989 to 2018 in OR
and non-OR journals. They found a growing interest in SODA over the
period of analysis, with applications reported in many sectors. Most areas
where SODA had been used partially, fully or in combination with other
methods included strategic management, sustainable development, infor-
mation systems, and performance evaluation. Notably, only a very small
proportion of the reported applications (less than ten per cent) involve facili-
tated model-supported workshops. Abuabara and Paucar-Caceres suggest the
lack of facilitation skills as a barrier to deploy SODA in practice as originally
intended.

Other OR scholars have undertaken broader reviews of PSMs applications.
Mingers [107] surveyed reported PSMs applications published during the
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1990s in reputable, peer-reviewed journals. The review covered applications
of PSMs16 used in isolation or in combination with other methods. The
main areas of application were organisational design, planning, IS/IT, and
health services. The partial or full use of SSM was quite common in these
applications. Similarly, Marttunen et al. [102] surveyed the peer-reviewed
literature covering the 2000–2015 period, reporting on the combined
use of problem structuring approaches with multi-criteria decision anal-
ysis (MCDA) methods. Interestingly, the most popular combinations with
MCDA methods did not include any of the PSMs listed in Table 23.3. The
most recent review of PSMs at the time of writing was undertaken by Gomes
Jr and Schramm [78], who surveyed an eclectic mix of journals covering arti-
cles published between 2010 and 2020. They found that PSMs were used to
support the management of problems affecting businesses, society, healthcare
services, and the environment. SSM was noted as the most frequently used
PSM in these applications.

We conducted a cursory review of PSM applications published in the rele-
vant OR literature during the 2010–2020 period. We used Web of Science
(WOS) to search for applications published in the following mainstream
OR journals: European Journal of the Operational Research, Journal of the
Operational Research Society, and Omega. We did not survey US-based OR
journals such as Management Science or Operations Research because they
do not recognise Soft OR and PSMs as a legitimate part of OR [108] (but
for a notable exception, see Dyson et al. [43]). We also surveyed two jour-
nals in which PSM scholars regularly publish their work: Group Decision
and Negotiation, and Systems Research and Behavioral Science. Finally, we
also included System Dynamics Review and Decision Analysis, because these
journals are a natural home for PSMs such as GMB and VFT. We used
various search terms including ‘problem structuring methods’, ‘soft OR’, and
the names of each of the PSMs listed in Table 23.3. We need to emphasise
that we did not intend to produce a comprehensive review of PSM applica-
tions as previous OR scholars have done (see above). We just wanted to give
the reader a rough idea of the body of PSM applications published in selected
journals over the last decade.

Our search criteria produced a total of 143 papers for initial analysis. After
reading the abstracts we identified papers reporting PSM applications with
actual stakeholder groups seeking assistance. If an abstract did not make this
clear, we then read the whole paper to assess its suitability. We thus excluded
papers reporting ‘desktop’ applications in which authors use PSMs to analyse

16 The list of PSMs included in Mingers [107] also considered problem methods that do not use
models as defined here.
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a problem situation as outsiders, but without the involvement of an actual
stakeholder group requesting support17 [25, 95, 152]. Table 23.4 collates a
corpus of 50 papers identified from our brief review of the selected literature.
It shows the sector in which PSMs were used, the specific areas of applica-
tion, split into several categories, the OR methods used, and the associated
reference.

Several products have been claimed to be the result of the use of PSMs
by stakeholder groups. The intended products of PSMs and the mechanisms
claimed to facilitate their achievement, together with supporting evidence of
their attainment after PSM use, are discussed in the following section.

23.4 PSM Products, Mechanisms, Supporting
Evidence

23.4.1 Claimed Products and Facilitative Mechanisms

Table 23.5 displays those products that have been claimed for PSMs
by numerous scholars in relation to their use with single and multi-
organisational stakeholder groups [52, 63, 65, 112, 140, 163]. We use the
term ‘products’ to refer to the visible and less visible outputs that result from
using a PSM [76]. These products may be generated during or at the end of
the PSM process, and their actual achievement is thought to be facilitated by
specific mechanisms.
The most visible and common PSM product is obviously the final model

built during the PSM process, which describes the agreed problem frame.
The individual frames of stakeholder group members as well as the ensuing
agreed problem frame are captured during the PSM modelling process, but
each PSM model will represent problem frames in different ways. In SODA,
for example, the problem frame represented by the model will contain a
network of statements about issues, goals, and options. In VFT/DC, the
final frame will contain a decision statement expressed in terms of the alter-
natives to choose to achieve the fundamental objectives concerning a given
decision context. In GMB, the final frame will describe the structure under-
lying observed behaviour, with special emphasis on feedback loops, and so
on.18

17 Papers proposing new PSMs are mentioned in Sect. 23.5.
18 In the case of VFT/DC and GMB, the problem frame represented in the model is often used to
inform the development of a quantitative model.
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Table 23.5 Products claimed for PSMs, with accompanying facilitative mechanisms—
based on Rosenhead and Mingers [140], Vennix [163], and Franco [66]

Mechanisms
Claimed less visible
products Claimed visible products

• Taxonomy • Improved
communication

• Final model containing
agreed problem frame

• Model as recording
device

• Increased shared
understanding

• Action plan to address
the problem (typically
in the form of ‘partial
commitments’)

• Model as transitional
object

• Accommodation of
conflicting positions
and interests

• Model as boundary
object

• New knowledge and
cognitive change

• Facilitated, participative
modelling process

• Consensus on, and
ownership of, final
problem frame and
action plan

• Commitment to support
implementation of
action plan

Although it is possible to use PSMs only for structuring the problem, all
PSMs are intended to facilitate agreements to act19 [52, 53]. Consequently,
a second visible product of a PSM intervention takes the form of an action
plan or list of planned actions to tackle the problem. Actions plans are usually
expressed as what Friend and Hickling call a ‘commitment package’ [76],
which contains a mix of espoused or recommended decisions, policies, or
research explorations, and which may or may not include supporting argu-
mentation derived from the PSM model. Typically, action plans represent
only partial commitments on the part of the stakeholder group because, it
is argued, the only way to make progress in conditions of complexity, uncer-
tainty, and conflict is by adopting an incremental approach and thus working
on a less comprehensive solution [51, 74, 140].
The agreed problem frame and action plan are the consequence of

achieving six less visible yet critical products during the PSM process:
improved communication; increased shared understanding of the problem;
accommodation of conflicting positions and interests; new knowledge and
cognitive change; consensus on, and ownership of, the final problem frame
and action plan; and, commitment to support implementation of the
proposed action plan.

19 See also, Footnote 4.
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The achievement of these less visible products is thought to be facilitated
by specific PSM mechanisms. First, the PSM model is built using a specific
taxonomy (e.g. issues, goals, and actions in SODA; the CATWOE, RD,
and 5Es mnemonics in SSM; decision, comparison and uncertainty areas
in SCA; stock and flow variables in GMB). By using these taxonomies as
a shared language to talk and think about the problem of concern, it is
argued that communicative exchanges are more comprehensive and accu-
rate because participants are able to better specify their different perspectives,
dependencies, and knowledge about the problem [14, 62, 66], which results
in an improved communication among those involved. Second, because PSM
models can also act as recording devices that enable us to survey and trace
content of group discussions ‘on-the-hoof ’ [66], it is argued that PSMmodels
can increase our ability to process and monitor large and complex informa-
tion, which is another way to facilitate and improve communication within
the stakeholder group.
Third, better specification of group members’ views, dependencies, and

knowledge is also thought to be facilitated by the PSM model acting as
a transitional object [38, 52, 175] to experiment with problem structure.
This means that through the analysis of relationships embedded in problem
structure and the direct inputs of group members the model is constantly
changing, which is thought to increase their shared understanding of the
problem situation, of organisational processes and cultures, and of others’
beliefs and values. Such increased understanding is also taken to be conducive
to new knowledge and cognitive change (e.g. learning) [30, 31, 66, 76].

Fourth, increased shared understanding and learning can make particular
perspectives, knowledge, and interests more salient and at stake, which gener-
ates conflict within the stakeholder group. If the conflict stays at the cognitive
level, then it is claimed that the mutual exploration of problem structure
as portrayed by the model as transitional object will further facilitate the
creation of new knowledge, achieve cognitive change (i.e. people changing
their minds), and develop consensus on, and ownership of, the final problem
frame and the recommendations for action [46, 140].

However, group members’ anticipations of the consequences, perceived or
real, of their increased understanding and learning can sometimes escalate
to a relational level [57], especially in situations characterised by complexity
and uncertainty. Such conflict will commonly require group members to
reach an accommodation regarding their positions and interests [30, 31],
which is thought to be facilitated if the model, as a transitional object , also
becomes a boundary object [21, 22, 28, 66] during group members’ inter-
actions. A model acts as a boundary object only if it is able to help group
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members defuse their entrenched positions and develop common interests.
Achieving these accommodations20 also facilitates new knowledge creation,
cognitive change, consensus and ownership and, in addition, ‘cognitive’ and
‘emotional’ commitment [46, 140] to support the implementation of action
plans.21 Group members’ active engagement in the PSM facilitated partic-
ipative modelling process is also argued to produce strong ownership and
commitment [71, 140].

23.4.2 Supporting Empirical Evidence

What has been described in the preceding section are the typical products
and accompanying facilitative mechanisms claimed for PSMs as a whole,
although individual PSMs may vary with respect to these in certain ways.
What evidence is there, then, of the actual achievement of these products in
the field? Looking at the number of PSM applications listed in Table 23.4
alone, it would be tempting to take it as a strong indication of supporting
evidence. However, the justifications of the products claimed to have been
achieved by using PSMs are often based on the personal reflections of those
conducting the interventions. For example, in the case of GMB applications,
Rouwette et al. [145] note that out of 107 applications, 88 gather evalua-
tion data in the main through observation that informs personal reflection.
And although we cannot disregard the reflections of highly experienced PSM
scholars and practitioners, we should exercise caution: personal reflections
alone are not reliable evidence of PSM impacts. In the few cases where ques-
tionnaires or interviews have been used to support the evaluation of PSM
applications, very few or no details are given on the recruitment of the sample
of respondents and interviewees, the impact of the sample on data collection,
or the data analysis approach employed.22 Similarly, previous surveys and
academic reviews of PSMs (see Sect. 23.3.2) report high levels of satisfaction
by users of PSMs, but no evidence is offered as to why users were satisfied.
Overall, then, there is clearly a role for more formal, systematic evaluations of
the actual achievement of claimed PSM products in the field [106, 146, 169].

However, systematic evaluations are rather scarce in the literature. For
example, we searched for PSM evaluation studies in the same selected journals

20 Accommodations between group members may also require coalition forming [44, 48, 54], which
may produce a shift in power relations during the PSM process [46].
21 In specific contexts, commitment to maintain the group membership has also been claimed [41].
22 It is also worth noting that self-reports as a sole basis of evaluations are fraught with difficulties,
as people struggle to distinguish between subjective and objective effects associated with PSM use
[39, 142].
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(see Section 23.3.2.2), but for the 20-year period between 2000 and 2020,
and only found twelve studies that assessed whether the PSM products listed
in Table 23.5 had been realised after PSM use. Notably, almost all studies
evaluated GMB interventions. The remaining study evaluated DC interven-
tions. Overall, evaluation studies of practical GMB interventions [142, 145,
149] provide some evidence for a positive impact on communication, cogni-
tive change (learning), consensus, commitment and changes in behaviour,
and implementation of results. Recent studies [39, 160] lend further support
to an effect on consensus and alignment. However, it has proven difficult to
reproduce these results in controlled environments [104]. For the case of DC
interventions, Schilling et al. [147] use questionnaire data in six cases and
found a positive effect on commitment and group alignment.

One of the earlier arguments against conducting systematic evaluations of
PSM interventions was based on the notion that any approach to PSM eval-
uation must fit the complexity of the intervention because PSMs are complex
technologies dealing with messy problems [47, 49, 50, 61]. This would
render the use of an experimental approach to evaluation less appropriate.
This does not mean that the need for PSM evaluation has dwindled within
the PSM community. Indeed, now it is widely accepted that claims about
the achievement of PSM products cannot only be based on self-reflective
or impressionistic accounts of PSM intervention success [e.g. 154] or failure
[e.g. 84], but also on empirically grounded evaluations [e.g. 64, 172].
Two approaches to non-experimental PSM evaluation have emerged in

recent years. One approach is based on the development and use of an eval-
uation framework that relates the mechanisms of PSMs and their claimed
products, and takes into account the context and purpose of the PSM inter-
vention being evaluated. An example is the framework developed by Midgley
and colleagues [106], which is based on the tradition of multi-method
systemic intervention [91, 105, 110]. Another one is the meta-framework
proposed by Donais et al. [40],23 which draws from Chess’ [34] environ-
mental public participation framework. Whether these frameworks will be
taken up by PSM scholars and practitioners is an open question, but the
advantage of using an evaluation framework is clear for at least two reasons.
First, an evaluation framework can inform the development of suitable ques-
tionnaires to elicit participants’ views before and after the intervention [89],
which can then be analysed to produce quantitative evidence of the achieve-
ment of PSM products from the perspective of those involved. Second,

23 Although this meta-framework focuses on evaluating MCDA interventions, the framework could
also be applied to evaluate PSM interventions.
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repeated use of an evaluation framework can help build a corpus of accu-
mulated evidence from different PSM evaluation studies, and subsequently
inform the design of further evaluation studies that could add to the corpus
of evidence.
The second approach is theory-based, and stems from the need to under-

stand why the products claimed for PSMs were achieved (or not) in a
particular application context. A theory-based approach could use an estab-
lished theory in a ‘top-down’ fashion to analyse the data generated from
the intervention to assess the actual achievement of PSM products. A good
example is the study by Rouwette and colleagues [144], who use Ajzen’s
[13] Theory of Planned Behavior to evaluate seven GMB interventions.
Overall, they found that GMB changed participants’ attitudes, subjective
norms, and intentions, each of which can be related to participants’ problem
frames, consensus, and commitment, respectively. Alternatively, a theory-
based approach could analyse the data generated from the intervention to
build a theory ‘bottom-up’. Theories developed in this way can provide a
locally meaningful evaluation based on how participants make sense of the
intervention in which they are engaged [81]. Some PSM scholars argue that
bottom-up explanations must also fit into the broader patterns of interac-
tions within which the PSM intervention is embedded [172]. In this way, a
‘mid-range’ theory [125] can be built to explain why the PSM intervention
products were realised (or not), and for whom. Such theory also recognises
that using the same PSM intervention in one situation may work, but it may
not work in another situation [66, 172].

It is our contention that the framework-based and theory-based
approaches to PSM evaluation should be seen as being complementary rather
than as competing or opposite. Combining the insights generated from the
two approaches can provide a richer understanding of the actual achievement
of PSM products than any one approach can provide by itself.

Finally, it is worth noting there is very little written about the impacts of
PSMs beyond the intervention. For example, we know little about whether
the use of PSMs can be linked to positive organisational change or perfor-
mance. Indeed, the most cited textbook on PSMs [139] and its revised
edition [140] steer away from claiming long-term PSM intervention impacts
and, instead, focus mostly on PSM products within the intervention (see
Table 23.5). This is not to say that PSMs cannot contribute to long-term
impacts. Indeed, the high-profile cases by Ormerod at Sainsbury [118, 119]
and by Eden and colleagues at Bombardier [8, 170] are a testimony that
PSMs can indeed make a tangible and significant difference to organisations
beyond the intervention. However, published accounts like these are rare in
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the literature. In a few cases, PSM scholars have gone back to stakeholder
groups (or the organisations to which they belong) to identify any long-
term effects following a PSM intervention [73, 81, 143]. Yet, again, these
are the exception rather than the rule. Indeed, many published PSM appli-
cations do not report tangible results in terms of organisational change and
improved performance. For example, the comprehensive review of SODA
applications by Abuabara and Paucar-Caceres [1] indicated that SODA use
has been mostly limited to achieving products within, rather than beyond,
the interventions they surveyed. This should not come as a surprise: it would
be very difficult to claim long-term impacts given the myriad of uncontrol-
lable factors, both within and outside the stakeholder group using a PSM,
that could affect the implementation and performance of PSM recommenda-
tions. Granted, it is plausible that for many interventions no action or change
regarding the problem of concern is necessarily expected. But not being able
to demonstrate the link between PSMs and long-term organisational impacts
can make their dissemination and take up more difficult.

23.5 The Future of PSMs

The practical use of PSMs continues to represent an active field of activity
judged by the increasing number of applications reported in the literature
since PSMs were developed back in the 1970s, and the number of new
methods introduced in the last decade as new PSMs [37, 79, 99, 150].
Furthermore, a wide variety of practical issues linked to PSM practice have
already generated a significant amount of research since the start of the new
century, from how to mix different PSMs with other methods [87, 110] to
how to rigorously evaluate PSMs (see Sect. 23.4.2). However, there are still
areas of work that remain critical to the future of PSMs as a field of practice
and research within OR, and which deserve the continuing attention of PSM
advocates. We discuss these areas in this final section, together with some
suggestions for ways forward.

23.5.1 Becoming a Competent PSM Practitioner

What are the competences required to deploy PSMs in practice? In a
review of the extant literature that examines PSM competences, Ormerod
[120] identifies core competences under three broad headings: conducting
analysis, designing and managing process, and appreciating context. Devel-
oping these competences is often best through apprenticeship, in which a



764 L. A. Franco and E. A. J. A. Rouwette

novice has access to observing an expert in action, as well as applying the
methods in practice. However, apprenticeship opportunities like this are
not always available. Instead, university programmes that incorporate PSMs
into the curriculum, as well as specialist PSM training courses offered by
specialist providers, have traditionally addressed this gap. Here, there are two
approaches to developing PSM competences. The first one aims to develop
competences via small consulting projects with a real organisation, in which
participants can have hands-on experience of using PSMs under the super-
vision of an academic with PSM expertise.24 When conducting projects
is a formal part of a university programme or training course, then this
approach to develop PSM competences is the closest to the apprenticeship
model. For example, in the European Master in System Dynamics program
(www.europeansystemdynamics.eu), students take part in projects with client
organisations as part of their studies.25

The second approach is to develop PSM competences in the classroom,
but this is significantly more challenging for those teaching, and being
taught, PSMs [2]. The size of the challenge will depend on the specific
competences that are the target of development. For example, competence
in conducting analysis requires mastery of qualitative modelling techniques,
which can be developed via experiential learning [171], cases studies, and the
understanding gained from textbook descriptions of various PSMs, such as
those presented by Rosenhead and Mingers [140] or Reynolds and Holwell
[137]. Although the use of experiential learning tasks, case studies, and text-
books cannot replicate the complex reality of PSM practice, this approach
is nonetheless effective for helping novices develop a minimum level of
desk-based analytic competence in PSMs. Similarly, the need to develop
competences in appreciating the complexity of the context in which PSMs
are deployed can somewhat be addressed by sharing the personal experiences
of PSM teachers and trainers with students and trainees.26 This could be
complemented by bringing former clients into the classroom to talk about

24 Ackermann [2] argues that an academic’s PSM expertise can be real or vicarious. However, we
would warn against the latter. Only academics with actual PSM expertise will be able to share their
largely tacit, uncodified experience with their students, and in doing so help students appreciate the
nuances and complexities of PSM practice, and know when and how to adapt a PSM intervention
to fit the context in which it is deployed.
25 A recent development is the OR apprenticeship approved in 2020 by the Institute for Appren-
ticeships and Technical Education in the UK (https://www.instituteforapprenticeships.org). The
apprenticeship has not started at the time of writing. Notably, how to select and apply, a range
of PSMs to understand complex problems is part of the knowledge, skills, and behaviours expected
from the participants taking up the apprenticeship.
26 Some PSMs also contain specific tools to gain an appreciation of context, for example, the use of
rich pictures and analysis I, II, and III (cultural stream analysis) in SSM [31].
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their experience of facing past problem situations, and discuss how useful
they found PSMs in tackling those situations [2].

By contrast, developing competences in designing and managing process
is significantly more challenging, particularly within the boundaries of a
standard university programme or training course. This requires designing a
learning environment that not only can bring the real world of PSM practice
into the classroom, but also one that provides learning materials that capture
the uncodified tacit knowledge of PSM experts, which is not revealed in text-
books [96]. To gain competence in designing and managing the process, the
general approach seems to be engaging PSM novices in meaningful tasks
in which they have a stake [2, 29], or tasks based on realistic consultancy
projects [83]. Such tasks aim to provide opportunities for PSM novices to
develop experience in performing tasks that are typical of PSM interventions
such as, for example, preparing a proposal, interviewing, facilitating a group,
presenting results, and recognising and justifying the added value brought by
the use of PSMs. This is a useful approach to competence building, one that
can help novices to move beyond just having desktop qualitative modelling
skills and an appreciation of context.

It is worth noting that the learning tasks for competence building in the
design and management of process are typically based on problems that do
not exhibit the type of complexity, uncertainty, and conflict for which PSMs
were developed. In addition, the scripts [9, 15] students are taught and
instructed to follow to complete these tasks, are typically sanitised portrayals
of real PSM practice, that is, they contain a clear and well-defined set of
expected behaviours by PSM users. It is not so much that such scripts are
divorced from real PSM practice. The main issue resides in their inability
to capture the interactional and situated specifics of using PSMs in practice,
which is an aspect certainly well known to PSM experts. In other words,
scripts must be accomplished on the ground, and therefore cannot determine
or prescribe what PSM users actually do in situ.
To the extent that the current approach to develop competences in

designing and managing process, and its supporting learning materials, do
not fully correspond to actual practice, PSM students and trainees are at a
disadvantage. An approach to competence building based on real PSM prac-
tice will need to be informed by research that collects and analyses PSM
practice as it is performed by experts on the ground [67, 72]. Analyses of
multiple instances of recorded PSM practice can identify the actual organ-
isation and trajectories of different PSM intervention tasks and activities,
with a view to identify what works and what does not. With the knowledge
accrued from these analyses it would be possible, for example, to develop
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facilitation role plays grounded in the actual, rather than simulated, activities
of anonymised PSM facilitators. The structure of such role plays could be
designed in a way that the trajectory of a given facilitated task would only
be revealed after students and trainees do something at a particular point in
time.27

23.5.2 Becoming a Competent PSM Researcher

Broadly speaking, OR practitioners conduct research in the sense of investi-
gating a problem located within a system of interest, and using an analytic
approach to solve that problem in order to improve the management of the
system. This type of problem-solving research also enables OR academics to
develop new methods or improve existing ones, and report these develop-
ments and their applications in peer-reviewed journals. PSM practitioners
and academics are no exception to this type of research, although the use of
problem and problem-solving is typically changed for problem situation and
problem alleviation, respectively, to better reflect the context and purpose
of PSMs. Methodology development and improvement is typically pursued
via action research [55], and reporting applications of the use of PSMs in
isolation or combinations with other methods is done through case studies
[168].
The discussion in this section will focus on a different type of PSM

research, namely, the empirical investigation of the practice of using PSMs
as it happens on the ground [68]. This choice of research focus is deliberate.
Research that is mostly aimed at creating or improving the methods or tools
of PSMs, though important, tends to overlook the human, social and organ-
isational challenges associated with their practical use. The latter aspects are
well known to PSM practitioners, but their empirical interrogation is typi-
cally absent from published accounts of PSMs. This can only be done by
examining what PSM practitioners and users actually do when they engage
in a PSM intervention, which places the study of PSM practice within the
domain of the behavioural and social sciences. A similar concern is shared
by OR scholars working within the sub-discipline of Behavioural OR [23,
69, 70].28 Treating PSM practice as a research problem demands specific
competences that are distinct from those of mainstream PSM academics
and practitioners. Here, the discussion will concentrate on what are more

27 This approach to competence building has been pioneered in other professional fields such as
mediation [155, 156] and education [92].
28 It is worth clarifying that the concern of Behavioural OR scholars relates to OR practice in general,
and not just PSM practice.
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likely to be the main options regarding research methodology open to PSM
researchers interested in studying practice, as well as the required competences
for implementing these options.

First, PSM researchers can adopt the so-called variance approach [115,
134] to investigate PSM use. In general terms, variance research seeks expla-
nations of change in terms of relationships among independent variables
and dependent variables. Explanations take the form of causal statements
captured in a theory-informed research model that incorporates these vari-
ables (e.g. A causes B, which causes C). The model is then tested with data
generated by the PSM intervention, and the model findings are assessed
in terms of their generality. The variance approach for investigating PSM
use requires the implementation of quasi experimental or pre- and post-
test research designs. This involves careful selection of independent vari-
ables, which might be either manipulated (e.g. method, computer support),
or left untreated (e.g. experience, demographics). It also requires choosing
and measuring dependent variables that act as surrogates of the products
claimed for PSMs (e.g. learning, consensus). Measurements can be taken
in absolute or relative terms, and can also include perceptions about inter-
vention outcomes (e.g. commitment, confidence) and the intervention itself
(e.g. satisfaction, usefulness), which can only be measured subjectively via
self-reports. Variables that act as either covariates or moderators through
which independent variables influence the dependent variables (e.g. conflict
as moderating the relation between method and consensus) can also be
included. Once information about all variables is collected, data is quanti-
tatively analysed using a wide range of statistical techniques (e.g. analysis of
variance, regression, structural equation modelling). Generally speaking, the
competences that are required to conduct variance research align well with
those used in typical OR investigations: review the literature and identify rele-
vant theory, formulate hypotheses, test these empirically, and then develop a
causal explanation that further specifies the theory. Indeed, the few systematic
evaluation studies of PSM use discussed in the previous section adopt have
adopted a variance approach. Thus competence building for undertaking
variance-type research on the use of PSMs does not seem to be a critical issue.

Despite its obvious appeal to the mainstream PSM researcher, a vari-
ance approach will only produce explanations that contain a small number
of variables, which will not always be applicable in cases where the overall
intervention outcome is both complex and emergent. If the interest is on
understanding how PSM users respond to events and circumstances within an
intervention, and how their responses affect results, then PSM researchers can
adopt what is known as the process approach [115, 134]. Generally speaking,
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process research seeks explanations of how a sequence of events leads to
an outcome. Rather than using variables, a process approach considers an
evolving actor (individual, group, organisation) to which events occur or who
makes events happen as the unit of analysis. Process explanations provide
thick narratives that account for how one event led to another, and that one
to another, and so on to the final outcome [133]. Diverse and eclectic research
designs are used to implement a process approach, and central to these designs
is the task of identifying or reconstructing the intervention process through
the analysis of activity and events taking place over time. Typically, process
studies derive theory inductively from observation and ethnographic-type
methods, which requires collecting and analysing large amounts of qualita-
tive and quantitative data from which a process explanation is developed. It
is also possible to test theory-informed models of the intervention process,
or use theories to guide empirical observation in an abductive or retroduc-
tive mode [109], which then further specifies the theories [134]. It might be
apparent that the demands placed on the PSM researcher wishing to imple-
ment a process approach are higher than if a variance approach is adopted.
Specifically, becoming acquainted with theories from the social sciences,
as well as gaining competence in social science research methodologies is
not straightforward for the PSM researcher. Yet, the process approach has
attracted growing attention of PSM scholars in recent years [7, 11, 27, 66,
67, 151, 157–159, 173, 174]. It is worth noting that not all process research
presents the same challenges for those wishing to adopt it. As Brocklesby
[23] notes, some types of process research represent a more feasible proposi-
tion for a wider population of PSM researchers [121]. For those interested in
pursuing more complex types of process research, there are several heuristics
and systems available in the non-OR literature that include both, qualitative
[98, 126] and quantitative [134] process research.

23.6 Conclusion

The purpose of this chapter has been to take stock of what we know about
PSMs. We noted that though the process of deploying PSMs is quite distinct
from that used in mainstream OR, their model-based technology locates
them firmly within the OR discipline. The chapter has documented the
extent to which PSMs have been applied in practice, as well as the evidence
regarding the products that are claimed to result from using PSMs. Whilst
the range and variety of PSM applications is substantial, they remain limited
in geographical coverage. Furthermore, evidence of PSM impacts remains
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patchy to date, with the notable exception of GMB evaluation studies. The
chapter has also highlighted the development of PSM practice and research
competences as critical to ensure the sustainability of PSMs within OR. We
believe these are areas that might produce exciting further developments for
the PSM field.
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24
Are PSMs Relevant in a Digital Age?

Towards an Ethical Dimension

Isabella M. Lami and Leroy White

24.1 Introduction

The aim of the paper is to explore the relevance of Problems Structuring
Methods (PSMs) in the digital era. Today digital transformation , arising from
the proliferation of digital technologies [71] is both affecting and altering
organizations [82]. In tracing the progress of PSMs practice and theorizing,
we argue that their place in this new world can hardly be denied, but there
are some obvious consequences. In everyday organizational practices, it is
questionable whether concerns for implementation, strategizing and plan-
ning, the sorts of issues PSMs were originally developed for, need PSMs. Even
though these methods were developed with “wicked problems” in mind. Are
the problems faced by stakeholders more amplified as a result of the digital
transformation of organizational life? Does the promise of digital transforma-
tion bring an existential threat to PSMs? Primarily we ask: Is the concept of
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PSM still relevant in a world accelerating with digital technology and innova-
tion, where digital transformation is affecting and challenging organizational
stakeholders?
This chapter takes a firm and justified position on their relevance: PSMs

are still important but the challenging contextual conditions may have altered
the way they are to be used and the purpose for which they are applied.

We make our case for the relevance of PSMs by first, arguing why the
nature of the current organizational challenges still justifies the use of PSMs.
Then, we examine further what is particularly special about PSM use, high-
lighting the need to shift from an emphasis on design to one on deliberation.
Finally, we explore a new type of concern, an ethical one that heightens the
relevance of PSMs We conclude with practical implications.

24.2 Where AreWe Now?

PSMs were developed over 40 years ago, so the question of its relevance today
appears legitimate. Defined as participative and interactive methods focused
mainly on structuring the problems rather than directly solving them [67],
they were developed to fill the gap that traditional Operational Research
(OR) and decision analysis were not addressing satisfactorily, i.e., complex,
ill-structured problems, also defined “wicked problems” [65], i.e., incom-
prehensible and resistant to solution [17], in a world of continuous change
[11].
The assumption was that it is not always possible to find a single

uncontested representation of the problem under consideration in real-
world situations. PSMs were devoted to representing problems and observing
their multiple perspectives [53]. Representation was necessary, using visually
analytical models. In this perspective, the models are used to inform negotia-
tions about the nature of the problem situation. In the process of representing
the problem, stakeholders can understand and discuss the problem, engage
with each other, and work towards identifying potential improvements. Thus,
PSMs are often applied by groups of stakeholders in a workshop setting.
Here, the stakeholders jointly develop suggestions on moving towards an
agreement on the problem during interactive conversations [3]. Working on
the models in the workshop is characterized by the way stakeholders can share
and understand different perspectives, and the identification and agreement
on possible solutions to alleviate the problems at hand and to act. Principally,
the methods follow the notion expressed by Rorty ([66], p. 3), that the more
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accurately we represent the world, the better chances we have to improve our
action in it (see White [85]).

24.2.1 What Is the Nature of the Problem Today?

In the early ‘70s PSMs were developed by academics and practitioners in
response to practical commitments with real problems, involving complexity,
uncertainty and conflict, recognizing that there are specific characteristics of
problem situations that make the traditional mathematical modelling tools
of OR ineffective. The ’unclear definition’ of the problems, the presence of
multiple interests and perspectives, many uncertainties and often a lack of
reliable (or indeed any) data, highlighted how the process is primarily one
of learning and negotiation rather than the technical solution of a problem
[51]. These ill-structured problems, such as the planning problems, the envi-
ronmental or social ones for instance, were defined by Rittel and Webber
[65] “wicked problems”, and later “messy problems” [7] or “social messes”
[37]. Pioneers of PSMs developed methodologies to navigate many of these
issues. Indeed, PSMs have been applied in many different fields (for a review
of contributions, see Rosenhead [67], Mingers and Rosenhead [53], Mingers
and White [54], Rosenhead [68].

However, we have recently witnessed quite dramatic events such the finan-
cial crash of 2010, COVID-19 and the ever-emergent climate crisis. These
are characteristically complex and intractable [75]. Indeed, some say they are
beset with wicked problems, contradictions, different world views, different
mindset to name but a few. But are they different to problems OR has
tackled in the past? These problems it seems are not only "wicked", but as
some scholars recently suggest, they are “super wicked problem”, because they
have further exacerbated features [46, 49]. According to Lazarus (referring to
climate change) are related to:

1. the quantitative and in somehow measurable aspects of the problem
(the greenhouse gases, the stock/flow nature of physical and chemical
processes underlying it with its enormous temporal dimension; the lack
of homogeneity in the geographical distribution of the effects);

2. the limits of the human mind (human beings think mostly in physio-
logical time; there is a human tendency to judge the likelihood of an
occurrence based on the relative ability to imagine its happening and
climate change is an unimaginable problem; the complexity of the causal
chains of human actions makes their consequences seem very far from
each other);
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3. the absence of an adequate institutional framework able to “address a
problem of climate change’s tremendous spatial and temporal scope”.

Drawing on climate change literature, it is possible to re-define several
types of problems, in different realms, as super wicked problems, particu-
larly the current disruptive events. Even before the pandemic of Covid 19 the
scientific debate was discussing about climate change, infrastructural disrup-
tion, insecurity, pandemics, at local and global scales [91], to the point that
this type of uncertainty has been proposed to be added in one of the most
used PSMs, the Strategic Choice Approach [45]. These new issues, unpre-
dictable, unknowable or unmanageable, which can vary from the health to
the presence of transhumans in our society, pervade public and political
debate about projections of uncertain futures.

In short, we still have wicked problems, even super wicked ones, but can
we assert that the PSMs are still relevant?

24.2.2 PSMs Today

Over the years, the attention of researchers has been mainly devoted to the
development of different PSMs [16, 26, 34]; their applications [2, 8, 19, 25,
30, 69, 86]; comparisons between different PSMs [36, 44, 76]. At the same
time a literature developed on the theoretical and methodological position of
PSMs [41, 50, 73, 81, 83].
There are several examples of the use of PSMs in the organizational field [1,

4, 5, 16, 30, 77]), in reshaping and restructuring the organization’s structure
and processes of government agencies, major corporations, communities and
other bodies in general. They are also widely acknowledged in the health care
and services sector [19, 27, 42, 47, 56, 87]), in cases of service provision, local
care strategies, applying or developing simulation and systems modelling.
Several applications to the information systems field have been published [15,
58–61, 90], developing IT strategies for different actors, such as supermarket
chains, business organizations or even parliaments. Finally, PSMs have also
often been used to develop planning strategies [8, 10, 18, 31–34, 78, 88],
working at national and regional levels with local governments, transport
systems, development planning, but also at urban and architecture scale, in
urban renewal and reuse projects. These are among the main acknowledged
uses in PSMs, nevertheless they have been used in other settings too—e.g.,
for strategic directions in the publishing industry [23], to support claims
for damages [5], and more in general to support strategic decisions. Under-
standing the process of PSMs is also an ongoing research challenge [39, 40,
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80]). More than a quarter of a century ago soft OR “pioneers” reported that
interventions felt like a “playful toying with ideas” [22] and that they were
“doing what feels good” [89] and yet it is unclear how these early soft OR
insights can be used by today’s OR practitioners. This is a pressing problem.
The concern has led to recent attention to micro-process view of OR practice
(e.g., Ackermann et al. [6]), which holds some potential for a more nuance
understanding on the process of OR. This is a focus on research arising from
the need to understand the interactional and collective behaviours that are
difficult to predict based on knowledge of the constituent parts [62]. Hence,
capturing the essence of “OR practice” requires further research [24].

24.2.3 So What’s the Issue?

There is an exponential growth in the performance of available technologies
and systems available to OR people. Approaches such as advanced algorithms
and analytics are transforming the dynamics of work [43]. The so-called
Moore’s and Metcalf ’s laws are claimed to govern the broadening availability
of digital technologies, in that computing hardware is becoming ever more
powerful, cheaper, embedded and ubiquitous, while network effects yield
increases in value by connecting individuals, organizations and objects [9].
Technologies typically associated with digital transformation are commonly
abbreviated as SMAC: social, mobile, analytics and cloud [35]. Over the next
decades, the adoption of analytics and artificial intelligence technologies will
transform the workplace and organizations. These technologies are already
bringing a profound change in the traditional way of organizing [20] and
potentially could bring changes to OR practice [12, 55].

Digital transformation has completely changed context for OR compared
to its origins. Therefore, it cannot but have consequences on the kind of
contribution that PSMs can make. In order to reflect on this, we review the
definition of PSM given by Rosenhead [67] (p. 117, bold is ours):

Problem structuring methods (PSMs) are a broad group of problem-handling
approaches whose purpose is to assist in structuring problems rather than
directly with solving them. They are participative and interactive in char-
acter and in principle offer operational research access to a range of problem
situations for which more classical OR techniques have limited applicability.

In contrast to the above definition, fifteen years later, Mingers and Rosenhead
[52] wrote that (p.1):
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the question that PSMs aim to help with is: How can models based on the
range of different perceptions and positions in a problematic situation help
the participants in that situation to resolve what actions they might agree to
take?

The emphasis is on the word might . There is a doubt. Does this last part
imply that there is doubt about the efficacy of PSMs? Even after years of
application the efficacy of PSMs is still in doubt? The phrase “actions they
might agree to take” emphasizes the crisis at the heart of PSMs: do they allow
action to be taken? Do they work?
This quote was 2011 and, as mentioned before, the world has dramatically

changed due to the digital revolution. Who the clients are and what purpose
the methods have has become vague or lost. Many clients are now online,
virtual, clients are more experts, problems are more distributed with “tech
savvy” professionals jumping in and out of the problem-solving space (see
GitHub) and is much more about locality and globalization. The old way of
thinking about hierarchy collaboration top-down/bottom-up public/private
are all blurred in the digital world. Recently scholars are describing as new
organizational forms such as Holacracy [72]. These are described as organi-
zations with permeable, agile structures, that are agile, adaptable and without
boundaries. These types of arrangements are made possible because data-
driven processes enhanced through digital technologies [21]. In terms of
actions and decision-making within these settings, before client characteris-
tics and beliefs could be teased out by survey interviews or group work. Now
organizations can scrape data from a variety of sources, apply analytics and
learn all the characteristics of our colleagues and customers.

So Rosenhead & Mingers’ doubt was right. But when they wrote this, we
were in the middle of a far-reaching revolution that has now completely trans-
formed how we work, live and relate. For example, who foresaw the collective
events known as the Arab Spring where groups, communities and nations
self-organized through their mobile phones and the social media apps? This
has bearing with PSMs because decision-making was collective participation
and problem structuring and self-organized at rapid speed with no imped-
iment of time and space. Perhaps, the doubt in Rosenhead and Mingers
definition was an unconscious realization that the world has changed and
the PSMs relevance is in question.

In sum, given the dramatic changes in the environment for PSM practice,
certain themes still make PSMs relevant. For instance, there are three words
to observe in the original definition: (i) “structuring”; (ii) “participative and
interacting”; (iii) problems situations.
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Structuring . The challenges around the COVID-19 pandemic have spurred
organizations into action by increasing their awareness of the need to accel-
erate digital transformation . Indeed, the pandemic emergency has forced us
to move everything online. The consequence is that it has made any work
much more designed. Perhaps problem structuring is a lesser need because
there is currently a general tendency for any interaction to involve some
online structuring [79], even if it is not explicitly aimed at solving a problem.
This kind of reflection recalls the question that often appears in the debate
on the topic, i.e., whether PSMs are more effective than self-structuring?

Participative and interactive. PSMs are still certainly participatory and
interactive, but how this happens has changed. In most cases, participation
takes place in a telematic forum where people interact simultaneously online;
in more extreme cases, interaction takes place asynchronously. So, the interac-
tion among the group has changed, but the role of the facilitator is also under
question. This change, i.e., moving focus groups online, made necessary by
Covid, but which will probably continue, at least in part, to be used even
after the pandemic has ended, has required the introduction of new software
developed specifically in the field of soft OR , or the use in this context of
other software on the market.

Problem situations. Strategic problems continue to be of a nature that
cannot be solved directly by mathematical models; indeed, in some ways,
the level of complexity has increased further. In fact, the pandemic has high-
lighted the global scope of many decisions that until now we thought could
only have local consequences.

In terms of the second definition, PSMs can be used as a basis for dealing
with doubt through examining hunches, in that, as suggested by Weick [84]
(p. 525) “plausibility is a substitute for validity”. Therefore, “going with the
flow” may be one way to deal with doubt. PSMs may also infer pragmatism
[57] the notion of which is built on the early system philosophers who argued
that pragmatic arises from people’s need to solve problems quickly, using his
limited understanding of the situation. A pragmatic perspective appears to
have been predominantly applied to study the process of OR to inform a
process view of PSMs [38]. In sum, the ideas present a very practical and
applied philosophy that is orientated towards action, and it acknowledges
that operational researchers’ worldviews involve ethical and moral concerns.
Finally, these ideas accord with the idea of abduction as Peirce [63], p. 216:

the only logical operation which introduces any new idea; for induction does
nothing but determine a value, and deduction merely evolves the necessary
consequences of a pure hypothesis.
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24.3 The Ethical Boundary

This was certainly true in the “old world”, where the PSM exercise was in a
room, with a white board or a flip chart paper and a facilitator. But now, when
the design phase is often supported by software, giving rise to a mediated
form of problems structuring, helping people to self-facilitate and allowing
distributed design and asynchronous design, we wonder if the contribution
they can make today is more on deliberation. A first reflection connected to
this is about the role of analytics in this realm. If we come back to the first
ideals of PSMs: cognitive mapping, Strategic Choice Approach and SSM,
they have at their core group work and facilitation. In the current world,
we have technology. While software was available, the processes were more
connected to the design and the in-situ issue of social interaction. Today, to
bring PSMs to the actual world is perhaps to put digital first and see what
characterize a decision currently. We can go to extremes and imagine a future
where fully automated, decentered human facilitation algorithms that made
recommendations.
The second reflection is about the nature of the decisions: decisions are

not the responsibility of machines, but of human beings. According to the
philosopher Maurizio Ferraris [28], for some decades now we have been
witnessing a technological revolution, which is radical because it does not
depend on people’s beliefs, but on the tireless operation of machines. It is a
revolution that can be defined as (p. VII):

’documedial’ because it is based on the intersection between the growth of
documentality, the production of documents as a constitutive element of social
reality, and that of mediality, which in digital is no longer one-to-many but
many-to-many.

The environment in which it is produced is the web, i.e., a potentially ubiq-
uitous place, which easily explains the radicality of the transformations that
have taken place. The importance and pervasiveness of today’s technology,
which has made this revolution possible, could generate the fear that the
human is no longer needed in the face of the presence of the machine. Ferraris
underlines the groundlessness of this fear (p. IX):

artificial intelligence receives nourishment, meaning and purpose from the fact
that there are human agents, mortal organisms that have an irreversible end,
unlike machines, and are therefore able to prescribe an end to machines.
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Taking these reflections back to the context of PSMs, it can be observed that
machines and software can contribute to the structuring and representation
of problems, but not to decision-making, which continues to remain in the
purely human sphere. We come back to the initial discussion about the nature
of the problem: in the fully automated process, wicked is ethical problem,
which needs a human arbiter.

How do we take this forward? To reflect about the PSMs’ contribution in
a world accelerating with digital innovation, we started from the way scholars
in PSMs categorize and define models as potential “boundary objects” [22,
29, 64, 74, 76, 86] and their performativity in facilitating or constraining
group interactions. Boundary objects, indeed, can act by “transferring”, to
develop shared language between participants; by “translating”, to develop
shared meanings; moreover, by “transforming”, with the aim to develop
common interests among parties [29], based on Carlile [13, 14].

According to Franco [29] the models, as boundary objects, are (p. 731):

Focal points around which different knowledge, perspectives, dependencies
and interests associated with the situation can be transferred, translated and
transformed in interaction.

To this end, we can imagine adding a fourth type of boundary to Franco’s
[29] scheme, based on Carlile [13, 14]: the ethical boundary (Table 24.1).

Table 24.1 Modes, roles and effects at boundaries with the introduction of the
ethical one (adapted from Franco [29])

Type of boundary faced Model role
Model
effects

Syntactic boundary Transferring perspectives and
Knowledge

Shared
language

Semantic boundary Translating perspective Shared
meanings

Pragmatic boundary Transforming perspectives and
Knowledge

Common
interests

Ethical boundary Deliberating Ethical
decision

This addition grounds a process in which to extend an understanding of the relevance
of PSMs. This extension is also well-recognized in OR thinking (e.g., Le Menestrel and
Van Wassenhove [48] and Mingers [51])
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24.3.1 Case Vignette: Comparison of Two PSMs’
Remote Applications

In this section, we use a synthetic illustration of the role of models as
ethical boundary objects. We have selected a vignette related to two online
applications of Strategic Choice Approach (in its classical version and in
its combination with a multicriteria decision analysis) in a Master’s degree
course at the Politecnico di Torino for the development of transformation
scenarios of a historical building. The students tackled the same decision-
making problem with two different models, in both cases working virtually in
groups and therefore only interacting remotely. In the first application, they
were asked to apply the Strategic Choice Approach [34] with the support of
the “Miro” software for the representations provided in the designing, shaping
and comparing phases. In the second application, the same decision-making
problem was tackled with a new software developed by the Politecnico di
Torino, called Multi-Values Appraisal Methodology (MuVAM) (scientific
referent is the first author of this chapter), where the first two SCA phases
(Shaping Mode and Designing Mode) are combined with Analytic Hier-
archy Process [70] for comparison and identification of the preferred option.
During these two experiences, the students were asked to keep a “logbook”,
in order to develop some final comparative reflections on the two experiences.
One of this logbook will be reappraised here in the light of the conceptualiza-
tion of models as potential ethical boundary objects. It should be clear that
the purpose of the empirical vignette is not to test this conceptualization but,
rather, to illustrate its value in increasing the understanding of the new PSMs’
contribution.

24.3.1.1 Analysis of the Case Vignette: Shaping

Decision Areas
The first phase of the Shaping is related to the identification of the decision
areas. Using Politecnico’s new software, MuVAM, each member of the group
proposes decision areas, and the others react through written comments,
leading to a vote that identifies which of these proposals will make up
the model and which will be excluded. The reflections of the three group
members were all in clear preference towards MuVAM over “classic SCA”,
precisely because of the interaction that took place through the written
comments in the deliberation phase with respect to the selection of deci-
sion areas. Student 1 writes: “I found this first phase very quick and intuitive,
personally more efficient than the ‘traditional SCA’ carried out manually, and
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the key factor was the possibility of voting on the various Decision Areas
without being overly influenced by my group colleagues”. Student 2 points
out that “it was essential to use the comments in the domains in which we
disagreed, so as to try to find a solution or to try to convince classmates who
had a different idea from mine”. Student 3 writes: “The possibility of asking
oneself questions independently and then being able to interact with group
mates is a very good idea. Being able to put one’s thoughts together and then
compare them, through the software, by means of comments and actions
finds its own logic in the identification of different problems”.

Decision Graph and Problem Focus
In this phase the participants connect the various decision areas with deci-
sion links and the software determines which decision areas are “urgent”,
“important” and “secondary” based on the number of links (Fig. 24.1). The
comments on this step are ambivalent: on the one hand all agree that the soft-
ware considerably optimizes working time, on the other hand this reduction
in time seems to be at the expense of understanding the graph. Student 3
emphasized that “in the manual SCA a clearer representation with Decision

Fig. 24.1 Example of the problem focus (implemented with MuVAM)
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Areas is possible with a process of identifying Important and Urgent areas
leading to a much more informed focus”.

24.3.1.2 Analysis of the Case Vignette: Design

Decision Options
In the first phase of the design the decision options are identified. A deci-
sion option is anyone of the mutually exclusive courses of action that can
be considered within a decision area. With MuVAM, similar to the deci-
sion areas, each person can propose an option and the other participants can
write comments or directly accept the proposed option. Here the speed of
the deliberative process seems again to be perceived as a positive element
of the method: “The simultaneity of the options that are sent is funda-
mental, as they all arrive very quickly, and this allows them to be read and
approved without perhaps repeating them among the members of the group”
(comment by student 1).

Incompatibility Grid
Once options have been identified, the question arises of what possibilities for
choice are to be found, not merely within each decision area taken separately,
but within linked pairs or sets of decision areas within the selected problem
focus. It therefore becomes necessary to introduce assumptions about how
far options from different decision areas can be combined. This phase is
unanimously considered to be the one that has benefited most from the intro-
duction of the software, not only in terms of its methods but also in terms
of graphics (Fig. 24.2). The simultaneous filling in of identical boxes speeds
up the work considerably, as do the graphics and ease of filling in. Student
3 writes: “This phase of the software is, in my opinion, of incredible value
compared to the classic SCA carried out manually, it is much more efficient
and faster. The graphic is well represented, clear and easy to handle, espe-
cially when dealing with a large number of Decision Options, I am really
impressed”.

Option Tree
The software processes all the data and produces the final option tree,
reducing the work of the team to a minimum. The problem, however, is
reading the tree in its entirety, especially when there are many options: in
this case it is the technical limitation that does not allow a complete view
of the route, reducing its effectiveness (Fig. 24.3). “If the software was excel-
lent for the incompatibility phase, this is not the case for the Options Tree,
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Fig. 24.2 Example of the incompatibility grid (implemented with MuVAM)

Fig. 24.3 Example of the option tree’s section (implemented with MuVAM)
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which completely loses its function of conveying clarity regarding the possible
compatible solutions. On the web page it is practically impossible to see the
whole graph, and the use of icons for each Decision Option is unclear, if they
had been in text form it would have been better” (student 3). In this phase,
where there is no need to decide but only to collect and represent information
from the previous phase, the use of “classic SCA” is more effective and clearer,
although it requires significantly more time and energy from the participants.

24.3.1.3 Analysis of the Case Vignette: Comparison

Solutions
At this stage of the methodology, the comparison is made through a multi-
criteria analysis.
The first step concerns the decision whether to eliminate any of the solu-

tions to the decision problem that emerged in the design, through a voting
mechanism among the participants. This step was very much appreciated by
the students, for two reasons: it was very quick and at the same time because
“the option of being able to accept or exclude an option also makes one more
reflect on the considerations of the other members of the group” (student 1).

Comparison Areas
Similarly, to the identification phase of decision areas in shaping, here also
each member of the group proposes comparison areas, and the others react
through written comments, leading to a vote that identifies which of these
proposals will make up the model and which will be excluded. Again, partic-
ipants said they preferred this approach to the less structured SCA. “My
comments about this phase are limited to appreciating the clear and simple
layout of voting in the various Comparison Areas, with the possibility of
making a simple comment on the proposals of group colleagues, which again
is a quicker approach than the communication problems with the traditional
SCA” (Student 3).

Weighting and Comparison
In the weighting each criterion is assigned a degree of importance by each
participant. This step is immediate thanks to the quality of the graphics.

In the comparison, each participant proceeds individually with the
comparison of solution pairs. The evaluation phase represents one of the main
innovations of MuVAM and takes place by placing the user in front of a grad-
uated scale which allows him to define whether and to what extent a solution
“A” is preferable to a solution “B”, on a scale of 1 to 9 (Saaty), for each pair of
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opposing solutions. At the end of the evaluation phase, the software processes
the data of each user: the individual analyses are then combined linearly to
obtain a ranking of possible implementable solutions, ordered according to
the combined score obtained by each solution. This ranking, accompanied
by a set of additional information, is represented using schemes, graphs and
tables that allow to analyse in depth the weight of each participant, of her/his
choices and of the issues s/he brings in the whole decision-making process.
This phase is much more structured than the comparison in the methodology
defined by Friend and Hickling. According to the participants, “the tradi-
tional SCA is perhaps more elastic in both modification and representation,
but this is at the expense of speed and efficiency, which make the software
very good for managing multiple options” (student 2).

24.4 Conclusions

By reviewing the relevance of PSMs for a digital era, we have shown how the
methods are still meaningful for organizational interventions as they embrace
the complexities of digital transformation . Our chapter highlights the impor-
tance of deliberation aspect of PSMs in more detail, revealing the importance
of embracing doubt via abduction. Specifically, via a case study we indi-
cate a distinct emphasis on the ethical boundaries within problem situations.
We thus propose future studies to focus on the ethical aspects of “wicked
problems” to encourage more research into PSMs more generally.
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25
Recent Advances in Big Data Analytics

Daoji Li, Yinfei Kong, Zemin Zheng, and Jianxin Pan

25.1 Introduction

With rapid development of information technologies, it is much easier and
cheaper than before to collect data [22]. For example, satellites and surveil-
lance cameras collect a large amount of image data with huge number
of features; Walmart handles more than one million customer transactions
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per hour; and Facebook generates billions of posts per week. Such exam-
ples also occur in agriculture, economics, finance, marketing, bioinformatics,
medicine, biology, and social media studies.

Big Data cannot be processed or analyzed using traditional methods and
tools. They are often accompanied by a large number of features and/or
a large volume of observations. For example, in disease classification using
microarray or proteomics data, tens of thousands of expressions of molecules
or ions are potential predictors. When interactions are considered, the dimen-
sionality is huge since the number of pairwise interactions increases quadrat-
ically with the number of features p and that of higher-order interactions
grows even faster. Another example is the airline data set (http://stat-com
puting.org/dataexpo/2009/the-data.html), which includes more than one
hundred million observations about flight arrival and departure information
for all commercial flights within the USA, from October 1987 to April 2008.
The number of covariates p is large in the first example while the number of
observations n is huge in the second example. See Fan et al. [25] for more
big data examples in different disciplines.
The availability of big data not only provides more information but also

poses unprecedented challenges because traditional methods may fail in many
big data applications. For example, the classical method of least squares for
linear regression will fail for high-dimensional data because in this case the
design matrix has more columns than rows, resulting in the Gram matrix
is huge and singular. In addition, statistical inferences frequently involve
numerical optimization. High-dimensional optimization is not only expen-
sive in computation, but also slow in convergence [25]. It is well known that
high dimensionality has a significant impact on computation, spurious corre-
lation, noise accumulation, and theoretical studies [26]. For massive data, it
is time-consuming to analyze the entire dataset. In some cases, the data is
too large and beyond the capacity of standard machines and software tools
for storage and analysis. Donoho [15] convincingly demonstrated the need
to develop new statistical approaches and theories in high-dimensional data
analysis. Fan and Li [24] provided a comprehensive overview of statistical
challenges with high dimensionality in different problems. Fan et al. [22]
presented various challenges in big data analysis.
To address the challenges in big data analytics, many new statistical

methods have been developed in recent years. In this chapter, we will summa-
rize some of these approaches to give a selective overview of the current
state of the development. We will focus on two types of big data: ultrahigh-
dimensional data and massive data, both of which are central to a spectrum
of tasks of statistical learning and inference over the past two decades. Here,

http://stat-computing.org/dataexpo/2009/the-data.html


25 Recent Advances in Big Data Analytics 807

ultrahigh-dimensional data refers to the data in which the number of features
may grow exponentially with the number of observations while massive data
means that the number of observations is huge and much larger than the
number of features.
The rest of the article is organized as follows. Section 25.2 presents recent

advances in ultrahigh-dimensional data analysis with the focus on feature
screening and interaction screening. Section 25.3 introduces divide-and-
conquer methods and subsampling methods for massive data. We conclude
the article with brief summary and discussions in Section 25.4.

25.2 Ultrahigh-Dimensional Data Analysis

As mentioned earlier, big data are typically characterized by high dimension-
ality and large sample size. In this section, we focus on ultrahigh-dimensional
data in which the number of features p may grow exponentially with the
number of observations n. In the past twenty-five years, variable selection and
feature screening have been two central topics in ultrahigh-dimensional data
analysis. Variable selection, also known as feature selection, aims at effectively
identifying the subset of truly important features. It can increase the estima-
tion accuracy and improve the model interpretability. Many variable selection
methods have been proposed to select important covariates. Some examples
include Lasso [78], SCAD [23], the Elastic Net [105], Adaptive Lasso [104],
the Dantzig selector [7], SICA [61], and MCP [94]. See, for example [5,
27, 29], for overviews of recent developments in high-dimensional variable
selection.

Scalability is a major challenge in high-dimensional variable selection. As
pointed out in [26], when the dimension is extremely high, even though
the aforementioned variable selection methods can be used to identify the
important variables, the algorithms used for optimization can still be very
expensive. To overcome such a challenge caused by ultrahigh dimensionality,
one popular strategy is feature screening. The goal of feature screening is
to reduce the dimensionality of the feature space from a very large scale to
a moderate one in a computational fast way by discarding as many noise
features as possible and meanwhile retaining all truly important features.
In what follows, we will first briefly review feature screening methods and
present some recent approaches for interaction screening.
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25.2.1 Feature Screening

Suppose that we have n observations (yi , xTi ), which are independent and
identically distributed copies of the pair (y, xT ), where y ∈ R is the response
and x = (X1, · · · , X p)

T is a p-dimensional covariate vector. Consider the
linear regression model

y = β1X1 + · · · + βpX p + ε, (25.1)

where β = (β1, · · · , βp)
T is a p-dimensional unknown regression coefficient

vector, and ε is the random error with mean zero. We focus on the ultrahigh-
dimensional setting in which log p = O(nα) for some 0 < α < 1. To
ensure model identifiablilty, it is common to assume that the true regression
coefficient vector β0 = (β0,1, · · · , β0,p)

T is sparse, meaning that only a
small number of covariates are truly associated with the response. Let M∗ =
{1 ≤ j ≤ p : β0, j �= 0} be the true sparse model with the size s = |M∗| =
o(n). Then the set M∗ contains all important variables.
The SIS method proposed in [26] is a two-scale learning approach in

which large-scale feature screening is first applied to reduce the dimen-
sionality from p to a moderate one d (say, below sample size n), and
moderate-scale variable selection are then conducted on the much reduced
feature space. In particular, the SIS method ranks the importance of all the
p features X1, · · · , X p based on the marginal Pearson correlation between
each covariate and the response, and estimate the set of M by

M
∧

= {1 ≤ j ≤ p : | corr∧

(X j , Y )| is among the top d largest ones }

where corr
∧

denotes the sample correlation. This is the feature screening
step of SIS and reduces the ultrahigh dimensionality down to a relatively
moderate scale d . Then the variable selection step of SIS using features in
the estimated set M

∧

can be conducted with any existing variable selection
method including Lasso [78], SCAD [23], the Elastic Net [105], Adaptive
Lasso [104], the Dantzig selector [7], SICA [61], and MCP [94]. Under fairly
general conditions, [26] proved that, with probability tending to one, all the
important covariates are retained in the feature screening step of SIS, that is,

P(M∗ ⊂ M
∧

) → 1. (25.2)

This property in (25.2) was named as the sure screening property which is
vital to the variable selection step of SIS.
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Fan and Lv [26] suggested to take d = �n/ log(n)	 or n − 1 in practice,
where �a	 is the smallest integer greater than a. It can also be tuned by some
data-driven methods. For example [21, 96] proposed a simple permutation
method that controls the false positive rate at a predetermined level.

Since the seminal work of Fan and Lv [26], the feature screening idea
has been applied to many important problems including generalized linear
model [31], classification [21], semi-parametric model [52, 102], nonpara-
metric model [66], varying coefficient models [30, 57], generalized varying
coefficient model [92], generalized varying coefficient mixed effect models
[12], quantile regression [42, 65, 88], survival analysis [32, 36, 75, 97],
compressed sensing [89], network autoregression model [44], and graphical
models [20], among others. To avoid the issue of model misspecification,
various model-free feature screening methods have been proposed [14, 54,
59, 67, 69, 71, 73, 77, 99–101]. See, for example [28, 58, 60] for overviews
of feature screening procedures for ultrahigh-dimensional data.

25.2.2 Interaction Screening for Regression Models

Understanding how features interact with each other is fundamentally impor-
tant in many scientific discoveries and contemporary applications, especially
in areas such as medicine, genetics, and cancer studies [13, 68]. In practice,
the models containing interaction effects are more flexible and powerful than
main-effects-only models as they can improve both model interpretability and
prediction accuracy. The following quadratic regression model

y = α0 +
p∑

j=1

β j X j +
p−1∑

k=1

p∑

�=k+1

γk�Xk X� + ε (25.3)

is a natural extension of the linear model (25.1) by considering interac-
tion effects between the covariates, where α0 is the intercept, β j ’s and γk�’s
are regression coefficients for main effects and interactions, respectively. We
assume that E(X j ) = 0 for each j = 1, . . . , p. Otherwise, consider the
interaction model (25.3) with each X j replaced by X j − E(X j ).
Taking interactions into account in ultrahigh-dimensional data analysis

poses great challenges in the computation for practical implementations
and theory for analyzing the properties of the estimators. For example, the
number of the possible pairwise interactions is p(p−1)/2, and p is typically
growing at some exponential rate of the sample size n. For a dataset with
n observations and p covariates, the augmented design matrix including all
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main effects and pairwise interaction terms is of size n×(p2+p+2)/2. When
p is 105 or larger, it may not be possible to store the entire augmented design
matrix for a desktop. In theory, interaction effects have heavier tails and more
complex covariance structures than main effects in a random design, making
theoretical analysis difficult, especially in ultrahigh-dimensional settings.

Similar to screening main effects, the goal of interaction screening is to
screen out unimportant interaction terms in (25.3) while retaining important
ones. A naive extension of the SIS idea for interaction screening would be
to treat interactions as new features and screen them based on the marginal
utility between each interaction and the response. It is easy to show this naive
approach is inefficient and can result in undesirable results. See, for example
[70] for a toy example.
To facilitate implementation, one commonly used strategy is to impose

the heredity assumption. The strong heredity assumption requires that an
interaction between two covariates be included in the model only if both
main effects are important, while the weak one relaxes such as a constraint to
the presence of at least one main effect being important. See, for example [4,
38–41, 53, 91] for the methods using this assumption.

However, the heredity assumptions can be violated or difficult to verify
in real applications [13, 37]. To address this challenge [48] introduced a
new screening approach, named the interaction pursuit with distance corre-
lation (IPDC), in high-dimensional multi-response regression models, which
exploits feature screening applied to transformed variables with distance
correlation followed by feature selection. This approach is computationally
efficient, and does not require the heredity assumptions. Here we only review
the interaction screening step. To be more specific [48] consider the following
high-dimensional multi-response interaction model

y = α + BT
x x + BT

z z + w, (25.4)

where y = (Y1, · · · , Yq)T is a q-dimensional vector of responses, x =
(X1, · · · , X p)

T is a p-dimensional vector of covariates, z is a p(p − 1)/2-
dimensional vector of all pairwise interactions between covariates X j ’s, α =
(α1, · · · , αq)

T is a q-dimensional vector of intercepts, Bx ∈ R
p×q and

Bz ∈ R
p(p−1)/2×q are regression coefficient matrices for the main effects

and interactions, respectively, and w = (W1, · · · ,Wq)
T is a q-dimensional

vector of random errors with mean zero and being independent of x. Each
response in this model is allowed to have its own regression coefficients, and
to simplify the presentation, the covariate vector x is assumed to be centered
with mean zero. It is of practical importance to consider sparse models in
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which the rows of the coefficient matrices Bz and Bz are sparse with only a
fraction of nonzeros. Obviously, the quadratic regression model in (25.3) is a
special case of the interaction model (25.4) with q = 1.
To facilitate the presentation, we call Xk X� an important interaction if the

corresponding row of Bz is nonzero, and Xk an active interaction variable if
there exists some 1 ≤ � �= k ≤ p such that Xk X� is an important interaction.
Similarly, X j is referred to as an important main effect if its associated row
of Bx is nonzero. Define three sets

I = {(k, �) : 1 ≤ k < � ≤ p and Xk X� is an important interaction },
A = {1 ≤ j ≤ p : X j is an active interaction variable },
M = {1 ≤ j ≤ p : X j is an important main effect }.
Then I , A, and M the set of all important interactions, the set of all active
interaction variables, and the set of all important main effects, respectively.
Note that I ⊂ {(k, l) : 1 ≤ k < l ≤ p and k, l ∈ A}. Thus, in order to
identify the important interactions, it is sufficient to identify the set A.

Kang et al. [48] proposed to construct the marginal utility function
exploiting the distance correlation introduced in [74] and identified the
set A by ranking the distance correlations between the squared covariates
X2

j and the squared response vector y ◦ y, where ◦ denotes the Hadamard
(componentwise) product of two vectors. The distance correlation

dcorr (u, v) = dcov (u, v)
√

dcov (u,u) dcov (v, v)

is well defined for any two random vectors u ∈ R
du and v ∈ R

dv of arbitrary
mixed dimensions, where the distance covariance between u and v is given
by

dcov2(u, v) = 1

cducdv

∫

Rdu+dv

|ϕu,v(s, t) − ϕu(s)ϕv(t)|2
‖s‖du+1‖t‖dv+1 dsdt.

Here cm = π(m+1)/2/	{(m+1)/2} is the half area of the unit sphere Sm ⊂
R
m+1, ϕu,v(s, t), ϕu(s), and ϕv(t) are the characteristic functions of (u, v),

u, and v, respectively, and ‖ · ‖ denotes the Euclidean norm. Compared to
the Pearson correlation, it also has the advantage that the distance correlation
of two random vectors is zero if and only if they are independent. See [74]
for more properties of the distance correlation, and [45] for a fast algorithm
for computing the distance correlation.
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Suppose we have a sample (yi , xi )ni=1 of n independent and identically
distributed (i.i.d.) observations from (y, x) in the multi-response interaction
model (25.4). For each 1 ≤ k ≤ p, denote by dcorr (X2

k , y ◦y) the distance
correlation between the squared covariate X2

k and squared response vector
y ◦ y. For notational simplicity, we write X∗

k = X2
k , ỹ = y/

√
q, and y∗ =

ỹ ◦ ỹ = y ◦ y/q. Define two population quantities

ω∗
k = dcov2(X∗

k , y
∗)

√
dcov2(X∗

k , X
∗
k )

and ω j = dcov2(X j , ỹ)
√

dcov2(X j , X j )

(25.5)

with 1 ≤ k, j ≤ p for interaction variables and main effects, respectively.
Denote by ω

∧∗
k and ω

∧

j the empirical versions of ω∗
k and ω j , respectively,

constructed by plugging in the corresponding sample distance covariances
based on the sample {(yi , xi )}ni=1. According to [74], the sample distance
covariance between any two random vectors u and v based on a sample
{(ui , vi )}ni=1 is given by

dcov
∧2

(u, v) = S
∧

1 + S
∧

2 − 2S
∧

3,

where the three quantities are defined as S
∧

1 = n−2 ∑n
i, j=1 ‖ui −

u j‖‖vi − v j‖, S
∧

2 = [n−2 ∑n
i, j=1 ‖ui − u j‖][n−2 ∑n

i, j=1 ‖vi − v j‖],
and S

∧

3 = n−3 ∑n
i, j,k=1 ‖ui − uk‖‖v j − vk‖. In view of dcorr2(X2

k , y ◦
y) = dcorr2(X∗

k , y
∗) = ω∗

k/{ dcov2(y∗, y∗)}1/2 and dcorr2(X j , y) =
dcorr2(X j , ỹ) = ω j/{ dcov2(̃y, ỹ)}1/2, the procedure of screening the inter-
action variables and main effects via distance correlations dcorr (X2

k , y ◦ y)
and dcorr (X j , y) suggested above is equivalent to that of thresholding the
quantities ω∗

k ’s and ω j ’s, respectively.
Then one can estimate the sets of important main effects M and active

interaction variables A as

M
∧

= {1 ≤ j ≤ p : ω
∧

j ≥ τ1} and A
∧

= {1 ≤ k ≤ p : ω
∧∗
k ≥ τ2},

(25.6)

where τ1 and τ2 are some positive thresholds. With the set A
∧

of retained
interaction variables, we construct a set of pairwise interactions

I
∧

= {(k, l) : 1 ≤ k < l ≤ p and k, l ∈ A
∧

}. (25.7)
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This achieves the goal of interaction screening. Such a procedure is compu-
tationally efficient, generally applicable beyond the heredity assumption, and
effective even when the number of responses diverges with the sample size.
Under mild regularity conditions [48] showed that, the IPDC method enjoys
the sure screening property that all important interactions and main effects
can be retained in the reduced model with probability approaching to one
even when the number of covariates p is growing at some exponential rate
of the sample size n. In addition, for the special case of the interaction
model (25.4) with q = 1 [51] further established the theoretical results of
interaction selection on the oracle inequalities and false sign rate in ultrahigh-
dimensional settings with random design. Moreover, the false sign rate can be
asymptotically vanishing.

In practice, one may sort ω
∧∗
k in descending order and keep the top d vari-

ables to estimate the set A. One can also use the same idea to estimate the
set M. Similar to the SIS method in [26], one can take d = �n/ log(n)	 or
choose d using some data-driven methods such as the permutation method in
[21, 96]. It is worth mentioning that the screening procedure of IPDC replies
only on the marginal statistics so that parallel computing can be further used
to accelerate the computation for extremely large data sets.

25.2.3 Interaction Screening for Classification

Classification, aiming at identifying to which of a set of categories a new
observation belongs, has been frequently encountered in various fields such as
genomics, proteomics, face recognition, brain images, medicine, and machine
learning. Unlike regression models, the values of the response variable in
classification are discrete class labels, e.g., fraud vs. non-fraud.

For the ease of presentation, let us focus on binary classification problems
in which observations are from two classes. Assume that the p-dimensional
feature vector x = (X1, · · · , X p)

T follows

x|(Y = 1) ∼ N (μ1,�1) and x|(Y = 2) ∼ N (μ2,�2),

where Y ∈ {1, 2} is the class label, μk ∈ R
p, k = 1, 2, are the mean vectors,

and �k ∈ R
p×p, k = 1, 2, are the two covariance matrices. Bayes’ rule

classifies a new observation x to class 1 if and only if π1 f (x|μ1,�1) >

π2 f (x|μ2, �2), where f (x|μ, �) is the probability density function of a
multivariate normal distribution N (μ,�), and πk = P(Y = k), k = 1, 2,
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are the two prior probabilities. It is easy to show that the Bayes rule admits
the following form

Q(x) = 2−1x�x + δT x + ζ, (25.8)

where � = �−1
2 − �−1

1 , δ = �−1
1 μ1 − �−1

2 μ2, and ζ = 2−1μT
2 �−1

2 μ2 −
2−1μT

1 �−1
1 μ1 + 2−1 log(|�2|/|�1|) + log(π1/π2). A new observation x is

classified into class 1 if and only if Q(x) > 0.
Throughout this subsection, we use the term “interaction” to refer to all

second-order effects, including both two-way interactions X j X� with j �= �

and the quadratic terms X2
j . So there are p(p+ 1)/2 possible interactions in

total under our definition. We call X j X�, 1 ≤ j, � ≤ p an active interaction
if its coefficient is nonzero in (25.8), and we call X j an interaction variable if
there exists some � ∈ {1, 2, . . . , p} such that X j X� is an active interaction.

From (25.8), one can observe that an interaction term X j X� is an active
interaction if and only if � j� �= 0. Here we use A j� to denote the ( j, �)
element of any matrix A. Motivated by this observation [33] proposed a new
interaction screening approach, called the innovated interaction screening
(IIS), by recovering the support of �. To be more specific, denote the index
set of interaction variables by

A = {1 ≤ j ≤ p : X j X� is an active interaction for some 1 ≤ � ≤ p}.
(25.9)

In light of (25.8), the above set can also be written as A = {1 ≤ j ≤ p :
� j� �= 0 for some 1 ≤ � ≤ p}. If the index set A can be recovered, then
all active interactions can be reconstructed by the set {(k, l) : 1 ≤ j < l ≤
p and j, l ∈ A}.
Identifying the index set A is challenging when p is large. Write �1 =

�−1
1 and �2 = �−1

2 . [33] proved that A = A1 ∪ A2 where

A1 = {1 ≤ j ≤ p : (�̃1) j j �= 0} and A2 = {1 ≤ j ≤ p : (�̃2) j j �= 0}
(25.10)

with �̃1 = �1�2�1 − �1 and �̃2 = �2�1�2 − �2. Observing that
(�̃1) j j is the difference of between-class variances of the j th component of
the transformed variable vector �1x, the index set A1 can be obtained by
examining which features have different variances across two classes after the
transformation based on �1. Similarly, the index set A2 can be obtained by
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examining which features have different variances across two classes after the
transformation based on �2.

Since IIS works with the transformed feature vectors x̃ = �1x and
x̌ = �2x identically, for the ease of presentation, we only discuss in detail
IIS based on the transformation x̃ = (X̃1, . . . , X̃ p)

T = �1x. Suppose we
observe n data points {(Yi , zTi )}ni=1, where Yi = 1 or 2. Write X̃ = X�1 as
the transformed data matrix, where X = (x1, . . . , xn)T is the original data
matrix. To test whether the j th transformed feature X̃ j has different variances
across two classes [33] proposed to use the following test statistic

D̃ j = log σ̃ 2
j −

2∑

k=1

(nk/n) log
[(

σ̃
(k)
j

)2]
, (25.11)

where σ̃ 2
j denotes the pooled sample variance estimate for X̃ j , and (σ̃

(k)
j )2

is the within-class sample variance estimate for X̃ j in class k. As can be seen
from (25.11), D̃ j is expected to be nonzero if variances of X̃ j are different
across classes. This test statistic D̃ j was originally introduced in [46] in
the sliced inverse index model setting for detecting important variables with
pairwise or higher-order interactions among p predictors.

In most applications, the precision matrices �1 and �2 are unknown and
need to be estimated. There is a large body of literature on estimating preci-
sion matrices. See, for example [3, 6, 34, 35, 84, 93], among others. For each
k = 1, 2, given an estimator �

∧

k of �k , the IIS approach transforms the data
matrix as X�

∧

k . Consider the transformation X�
∧

1. Then the corresponding
test statistic D

∧

j is

D
∧

j = log σ
∧2

j −
2∑

k=1

(nk/n) log
[(

σ
∧(k)

j

)2]
, (25.12)

where σ
∧2

j is the pooled sample variance estimate for the j th feature after the

transformation X�
∧

1, and (σ
∧(k)

j )2 is the class k sample variance estimate for
the j th feature after the transformation for k = 1, 2.

Define A
∧

1 = {1 ≤ j ≤ p : D
∧

j > ωn} with ωn > 0 the threshold
level depending only on n. Similarly, one can obtain A

∧

2,which is defined
analogously toA

∧

1 using the test statistics calculated with data transformed by
�
∧

2. Then the setA can be estimated byA
∧

= A
∧

1∪A
∧

2 and the set of all active
interactions can be reconstructed by {(k, l) : 1 ≤ j < l ≤ p and j, l ∈ A

∧

}.
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Fan et al. [33] showed that the IIS method enjoys sure screening prop-
erty in interaction selection in the high-dimensional setting of p growing
exponentially with the sample size. As we can see, the IIS method for classifi-
cation share the same spirit as the IPDC approach for regression models in the
sense that both use the marginal screening ideas on the transformed features
and identify O(p2) important interactions by examining only p transformed
features.

25.3 Massive Data Analysis

As we enter the era of big data, there has been an explosive growth of data
size, not only in terms of the dimensionality but also sample size. In the
previous section, we reviewed different methods for ultrahigh-dimensional
data where p >> n. We now focus on massive data in which n >> p and
our goal is to analyze such a data with enormous size under limited compu-
tational resources. In the field of statistics, various techniques were developed
to analyze massive datasets, such as divide-and-conquer methods [11, 56] and
subsampling methods [17, 62, 63, 82, 83].

25.3.1 Divide-and-Conquer Methods

As discussed before, one major challenge in analyzing massive data sets is
computational efficiency. When the data size n is too large to be analyzed
entirely by one computer, or when datasets are already stored in distributed
database systems, it is natural to consider a “divide-and-conquer” strategy for
scalability. In such as strategy, one can split the entire dataset into K subsets
of smaller sample sizes such that each smaller subset can be analyzed by one
machine. Each subset is analyzed separately and K relevant subdata statistics
are aggregated to obtain the final estimator.
To illustrate the idea of the “divide-and-conquer” strategy, let us consider

the following linear regression model

yi = xTi β + εi , i = 1, 2, · · · , n, (25.13)

where yi ∈ R and xi = (Xi1, · · · , Xip)
T ∈ R

p are the response variable and
covariates vector for the i th observation, respectively, β = (β1, · · · , βp)

T is
a p-dimensional unknown regression coefficient vector, and εi is the random
error for the i th observation. Here the sample size n is huge and n >> p.
Denote by {(yi , xTi )}ni=1 the entire data. Let X = (x1, · · · , xn)T ∈ R

n×p
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and y = (y1, · · · , yn)T ∈ R
n be the design matrix and the response vector

for the entire data, respectively. Assume that p is finite and XTX is invertible,
the ordinary least squares estimator using entire data all at once is

β
∧(a) = (XTX)−1XT y.

When one splits the entire dataset into K subsets such that each subset can
be analyzed by one machine and assume XT

k Xk is invertible, the ordinary

least squares estimator from the k th subset is β
∧(k) = (XT

k Xk)
−1XT

k yk , where
Xk ∈ R

nk×p is the design matrix, yk ∈ R
nk is the response vector for the

data in the k th subset, and nk is the number of observations in the k th subset.
Write Sk = (XT

k Xk)
−1 for k = 1, · · · , K . Then one can combine these K

least-square estimators to obtain a new estimator

β
∧(c) =

(
K∑

k=1

S−1
k

)−1( K∑

k=1

S−1
k β

∧(k)
)

= (XTX)−1XT y (25.14)

since XTX = ∑K
k=1X

T
k Xk and XT y = ∑K

k=1X
T
k yk . Compared with

the traditional method, such a “divide-and-conquer” strategy utilizes the
computing power of multiple machines. We illustrate this strategy in
Fig. 25.1.

Fig. 25.1 The illustration of a divide-and-conquer strategy
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It is interesting to see that the new estimator β
∧(c)

is exactly same as β
∧(a)

in this particular example. Note that obtaining (XT
k Xk, β

∧(k)
) only needs to

use the data in the k th subset and do not need to access the entire data.
This means that using the divide-and-conquer approach, one can obtain the
same estimator obtained from the entire data (assuming that there is a super-

computer that could compute β
∧(a)

) when we pay a small price of requiring
that the Gram matrix XT

k Xk from each subset is invertible. Of course, this
assumption is slightly stronger than the original assumption on design matrix

that XTX is invertible. Note that the size of (XT
k Xk, β

∧(k)
) is p2 + p, so we

only need to save K (p2 + p) numbers, which significantly reduces commu-
nication cost since both K and p are far less than n in practice for massive
data.

Motivated by this interesting result, in the estimating equation framework
[56] developed a computation and storage efficient algorithm for massive data
using a similar “divide-and-conquer” strategy. To be more specific, suppose
that the entire data are n independent observations {zi }ni=1 and β ∈ R

p is
the parameter of interest. Assume that the data model involving β is specified
by

E[g(zi ,β0)] = 0, (25.15)

where g(z,β) = (g1(z,β), · · · , gp(z,β))T is a p-dimensional smooth esti-
mating function, and β0 is the unknown true value of β. In the above
Gaussian linear regression example, we have zi = (yi , xTi ) with response
variable yi and predictors xi and g(zi , β0) = (yi − xTi β0)xi . The esti-

mating equation estimator β
∧

is defined as the solution to the equation∑n
i=1 g(zi , β) = 0.
Partition the entire data set {zi }ni=1 into K subsets and denote by {zik}nki=1

the data in the k th subset. Let β̃
(k)

be the solution to the estimating equation
∑nk

i=1 g(zik, β) = 0 and write Dk = − ∑nk
i=1 ġ(zik, β̃

(k)
) where ġ = ∂g

∂β
is

the gradient of g with respect to β. Then the aggregated estimating equation
estimator is defined as

β
∧AEE =

(
K∑

k=1

Dk

)−1( K∑

k=1

Dk β̃
(k)

)

. (25.16)

The divide-and-conquer method has an obvious benefit on computational
efficiency because the entire data is processed subset by subset, and we only
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need to record (Dk, β̃
(k)

) for the k th subset. Under some regularity condi-

tions [56] showed that β
∧AEE

is consistent to the original full data estimation
equation estimator β

∧

when p is finite.
The divide-and-conquer approach is also applied to the generalized linear

model with high-dimensional data in [11] where the sample size n is exceed-
ingly large and the covariate dimension p is not small but n >> p. To be
precise, let the penalized estimator using the entire data be

β
∧(a)

PL = argmax
β

{

n−1
n∑

i=1

log f (yi |xi ,β) − p(β; λ)

}

, (25.17)

where f is the density function, p(β; λ) is the penalty function with tuning
parameter λ. Assume the entire dataset of size n is divided into K subsets and
the k th subset has nk observations. Let {(yki , xTki )}nki=1 be the data in the k th
subset. Similar to (25.17), the penalized estimator for the k th subset is given
by

β
∧(k)
PL = argmax

β

{

n−1
k

nk∑

i=1

log f (yki |xki , β) − p(β; λk)

}

, (25.18)

where λk is the tuning parameter for the k th subset. Since each β
∧(k)
PL is esti-

mated from a different subset of data, the sparsity of β
∧(k)
PL can be different

from one to another. In order to combine these K estimators β
∧(k)
PL , k =

1, · · · , K [11] suggested a majority voting method to obtain the final esti-

mator of β, denoted as β
∧SC = (β

∧SC
1 , · · · , β

∧SC
p )T . The proposed majority

voting method in [11] sets

β
∧SC
j = 0 if

K∑

k=1

I (β
∧(k)
j, PL �= 0) ≤ ω (25.19)

for each j = 1, · · · , p, where β
∧(k)
j, PL is the j th component of β

∧(k)
PL , I (·) is the

indicator function, and ω ∈ [0, K ) is another tuning parameter controlling

the number of zeros in the final estimator. Obviously, if ω = 0, then β
∧SC
j = 0

only if all β
∧(k)
j, PL are zero. If K − 1 ≤ ω < K , then β

∧SC
j = 0 only if any
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of β
∧(k)
j, PL is zero. [11] showed that under mild conditions the combined esti-

mator β
∧SC

still retains desired properties of many commonly used penalized
estimators, such as the model selection consistency and asymptotic normality.

They also proved that β
∧SC

and the entire data estimator β
∧(a)

PL are asymptotic
equivalent by showing that these two estimators have the same asymptotic
variances.

Some other related advances on the divide-and-conquer method include
[2, 47, 49, 76, 98, 103], among others. To be more specific [49] devised
a communication-efficient approach to distributed sparse regression in the
high-dimensional setting by averaging debiased lasso estimators. Zheng et al.
[98] suggested a new approach for statistical inference which divides the
entire sample set into subsamples for correcting the bias and constructs confi-
dence intervals by aggregating the estimates based on subsamples. Battey et al.
[2] investigated hypothesis testing and parameter estimation in the context of
the divide-and-conquer algorithm for high-dimensional linear and general-
ized linear models. Jordan et al. [47] presented a communication-efficient
surrogate likelihood framework for solving distributed statistical inference
problems. The proposed framework can be used for low-dimensional estima-
tion, high-dimensional regularized estimation, and Bayesian inference. Tang
et al. [76] proposed an alternative divide-and-conquer algorithm to fit gener-
alized linear models with an extremely large sample size and a large p by
combining debiased LASSO estimates from each subset. By approximating
the local objective function using a local quadratic form and combining
estimator using a weighted average of local estimators [103] developed a
distributed least-square approximation method which can solve a large family
of regression problems (e.g., linear regression, logistic regression, and Cox’s
model) on a distributed system. It has been proved that the resulting esti-
mator is statistically as efficient as the global estimator using entire data.
The divide-and-conquer methods have also been used in different models
and settings; see, for example [95] for kernel ridge regression [10] and [8]
for quantile regression [86] for linear support vector machine [55] for feature
screening [87] for sparse cox models [9] for principal component analysis [85]
for multivariate survival analysis, and [43] for high-dimensional correlated
data analysis.

25.3.2 Subsampling Methods

Although divide-and-conquer methods can take advantage of distributed and
parallel computing facility, it may not reduce computing time if we only



25 Recent Advances in Big Data Analytics 821

have a single computer. Another simple and widely used method for massive
data analysis with limited computing power is subsampling, which draws
a small subsample from the entire dataset and estimates the parameters of
interest using the chosen subsample only. To illustrate the idea of subsampling
methods, let us revisit the linear regression model (25.13) in Section 25.3.1,
that is,

yi = xTi β + εi , i = 1, 2, · · · , n,

where yi ∈ R and xi = (Xi1, · · · , Xip)
T ∈ R

p are the response variable and
covariates vector for the i th observation, respectively, β = (β1, · · · , βp)

T ∈
R

p is an unknown regression coefficient vector, and {(yi , xTi )}ni=1 is the
entire data. Algorithm 1 describes the general subsampling procedure for
linear regression.

The major challenge of the subsampling methods is how to select the
subsample. This is equivalent to how to choose πi . One might randomly
sample a small number of observations using uniform subsampling in which
πi = 1/n, meaning that every observation is treated equally no matter
how much information it carries. For many problems, it is easy to construct
“worse-case” input for which uniform random sampling will perform very
poorly [62]. Intuitively, one should choose a subsample with more informa-
tive observations. Motivated by this, there has been a great deal of work on
subsampling in the existing literature; see, for example [17, 62, 63, 82, 83],
among others. In what follows, we will concentrate on nonuniform subsam-
pling via leveraging, optimal subsampling, and information-based optimal
subdata selection.

25.3.2.1 Nonuniform Subsampling Via Leveraging

We start with nonuniform subsampling via leveraging, which was first devel-
oped in [17, 19] for linear regression problems. The main idea is to use the
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leverage scores to construct sampling probabilities {πi }ni=1. Ma et al. [62]
and Ma and Sun [63] further investigated the statistical properties of algo-
rithmic leveraging for linear regression for massive data in terms of biases
and variances of subsampling estimators.
To gain some insights for nonuniform subsampling via leveraging, consider

the Gaussian linear regression model (25.13). Assume that p is fixed andXTX
is invertible. Then the unknown regression coefficient β can be estimated via

β
∧

OLS = argmin
β

‖y − Xβ‖2 = (XTX)−1XT y

and the predicted response vector is given by y
∧ = (y

∧

1, · · · , y
∧

n)
T = Hy with

H = X(XTX)−1XT . Let hii = xTi (XTX)−1xi , which is the i th diagonal
element of H and typically called the leverage score of i th observation in
Statistics. It is easy to see that the predicted response of the i th observation
y
∧

i gets close to yi as hii approaches to 1. Therefore, the leverage score hii
measures how important the i th observation to the least squares estimator.
Drineas et al. [17, 19] suggested to use normalized leverage scores

πi = hii/
n∑

i=1

hii

to construct sampling probabilities in Algorithm 1. Then the resulting
leveraging estimator of β can be written as

β
∧

LEV =
(

r∑

i=1

x∗
i x

∗
i
T

π∗
i

)−1 r∑

i=1

x∗
i y

∗
i

π∗
i

. (25.20)

[62, 63] investigated the statistical properties of the leveraging estimator and
showed that β

∧

LEV is an approximately unbiased estimator of β
∧

OLS. Ma et al.
[64] established the asymptotic distribution of β

∧

LEV. It can be seen from
the definition of β

∧

LEV that the variance of β
∧

LEV may be inflated by the
observations with small sampling probabilities. To address this issue [62] also
proposed a shrinkage leveraging method which uses

πi = λ
hii

∑n
i=1 hii

+ (1 − λ)
1

n

with λ ∈ (0, 1) and empirically showed that the resulting estimator has
smaller mean squared error than β

∧

LEV when α is between 0.8 and 0.95.
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Although the above leveraging method is simple and easy to implement,
the computational cost can be expensive. The computing time of the lever-
aging method in [62, 63] comes from two sources: constructing the sampling
probabilities πi i and solving the least squares based on the subsample. The
former needs O(np2) time for the exact computation of leverage scores
hii , while the latter requires O(rp2) time to solve least squares based on
subsample of size r [62]. Thus the total computing time for the leveraging
method is dominated by O(np2), which can be large when n is huge or
p is large. There are some existing approaches to reduce the computational
burden of the leveraging method by fast approximation of leverage scores;
see, for example [18].

25.3.2.2 Information-Based Optimal Subdata Selection

Wang et al. [82] showed that the asymptotic variance of the resulting esti-
mator from the leveraging method discussed in Section 25.3.2.1 is typically
at the order of the inverse of subsample size r, meaning that the subsample
estimator is not consistent when r is fixed, regardless of how large the sample
size of the entire data. Motivated by this observation [82] proposed a novel
approach for the linear regression model, called information-based optimal
subdata selection (IBOSS), to solve this issue. Consider the following linear
regression model

yi = β0 + β1Xi1 + · · · + βpXip + εi , i = 1, 2, · · · , n,

where yi ∈ R and xi = (Xi1, · · · , Xip)
T ∈ R

p are the response variable and
covariates vector for the i th observation, respectively, and εi is the random
error for the i th observation. In this subsection, we slightly abuse the notation
by writing xi = (1, Xi1, · · · , Xip)

T and β = (β0, β1, · · · , βp)
T .

Unlike nonuniform subsampling via leveraging chooses data points
randomly, the IBOSS method deterministically selects the most informative
data points according to some optimality criterion so that subsample of a
small size preserves most of the information contained in the entire data.
Let S = {(y∗

i , x
∗
i
T )}ri=1 is a deterministic subsample of size r from the

entire data {(yi , xTi )}ni=1. Assume that the selection of S only depends on
the design matrix X = (x1, · · · , xn)T . Then the least-square estimator based
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on the subsample S , given by

β̃ =
(

r∑

i=1

x∗
i x

∗
i
T

)−1 r∑

i=1

x∗
i y

∗
i . (25.21)

is the best linear unbiased estimator of β. Denote by σ 2 the variance of the
random error εi in the linear regression model (25.13). It is well known that
the observed information matrix for β based on the subsample is

I (S) =
(

r∑

i=1

x∗
i x

∗
i
T

)

/σ 2,

which is the inverse of the covariance matrix of β̃. Intuitively, one should
select a subsample that minimizes the covariance matrix of β̃, which is
equivalent to maximize I (S). The idea of the IBOSS method is to select a
subsample that maximizes I (S) under some optimality criterion. Wang et al.
[82] showed that, under the D-optimality criterion, this can be cast as the
following optimization problem

argmin
δ

∣
∣
∣
∣
∣

(
n∑

i=1

δix∗
i x

∗
i
T

)

/σ 2

∣
∣
∣
∣
∣

subject to
n∑

i=1

δi = r,

where | · | is the determinant of a matrix, δ = (δ1, · · · , δn), and δi ∈ {0, 1}
indicates whether (yi , xTi ) is included in the subsample S , i.e., δi = 1 if
(yi , xTi ) ∈ S and δi = 0 otherwise. Obtaining the exact solution to this opti-
mization problem is computational infeasible because there are

(n
r

)
different

possible choices for δ. To overcome this issue [82] established an upper bound

of
∣
∣
∣
∑n

i=1 δix∗
i x

∗
i
T
∣
∣
∣ and showed that the resulting subsample is related to

the extremes of the covariates. To be more precise, they suggested to select
k = � r

2p� observations with the smallest values and k = � r
2p� observations

with the largest values of each covariate. Here �a� is the largest integer less
than a. Algorithm 2 describes the IBOSS method for linear regression.
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As we can see from Algorithm 2, the IBOSS method has the following
appealing properties: (1) the computing time for the IBOSS method is in the
order of np, which is significantly faster than the leveraging-based subsam-
pling method in Section 25.3.2.1; (2) the IBOSS method selects informative
data points by examining each covariate individually and thus can be imple-
mented via distributed parallel computing; (3) as shown in [82], the variances
of the slope parameter estimators converge to zero as the entire data size n
increases even if the subsample size r is fixed. Here the slope parameters mean
the parameters β1, . . . , βp. In addition, when the entire data volume exceeds
the capacity of available RAM of a single computer, one can first use the idea
of divide-and-conquer approaches to split the entire data into K subsets of
smaller sample sizes and then select data points from each partition using the
IBOSS method [79].

25.3.2.3 Optimal Subsampling

We have reviewed two different subsampling methods, both of which do
not use the information of the responses. Next, we will introduce optimal
subsampling method in which the optimal subsampling probabilities depend
on the responses and are obtained by minimizing the asymptotic mean square
error of the subsampling estimator under certain optimality criterion. Wang
et al. [83] first proposed an optimal subsampling method under the A-
optimality criterion for logistic regression. To be more specific, consider the
following logistic regression model

P(yi = 1|xi ) = exp(xTi β)

1 + exp(xTi β)
i = 1, 2, · · · , n,
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where yi ∈ {0, 1} is the response variable for the i th observation, xi =
(Xi1, · · · , Xip)

T ∈ R
p is the associated covariates vector, and β ∈ R

p is an
unknown regression coefficient vector. Given the entire data {(yi , xTi )}ni=1,
we can maximize the log-likelihood function to obtain the maximum likeli-
hood estimator of β, which is given by

β
∧

MLE = argmax
β

n∑

i=1

{
yixTi β − log

[
1 + exp(xTi β)

]}
,

where pi (xi ; β) = P(yi = 1|xi ). However, it is computationally difficult to
obtain β

∧

MLE when the available computing resource cannot handle the entire
data. Take a random subsample using sampling with replacement from the
entire data according to the sampling probabilities {πi }ni=1 such that πi ≥ 0
and

∑n
i=1 πi = 1. Denote by {(y∗

i , x
∗
i
T )}ri=1 the resulting subsample, with

associated subsampling probabilities {π∗
i }ri=1. Then the subsample estimator

of β based on {(y∗
i , x

∗
i
T )}ri=1 is

β
∧

sub = argmax
β

r∑

i=1

y∗
i x

∗
i
Tβ − log

[
1 + exp(x∗

i
Tβ)

]

π∗
i

. (25.22)

Wang et al. [83] proved that β
∧

sub is consistent to β
∧

MLE and the approxima-
tion error β

∧

sub − β
∧

MLE is asymptotically normal conditional on the entire
data. By using the A-optimality criterion, which minimizes the trace of the
asymptotic covariance matrix of β

∧

sub − β
∧

MLE [83] obtained the following
optimal subsampling probabilities

π
opt
i = |yi − p(xi ; β

∧

MLE)|‖M−1xi‖
∑n

i=1 |yi − p(xi ;β
∧

MLE)|‖M−1xi‖
,

where M = n−1 ∑n
i=1 p(xi ; β

∧

MLE)[1 − p(xi ; β
∧

MLE)]xixTi and ‖ · ‖ is the
Euclidean norm. Since these optimal subsampling probabilities depend on
β
∧

MLE, which is not available, one has to approximate β
∧

MLE first. In addition,
M can also be approximated by the pilot sample and pilot sample estimator to
reduce the computational complexity. Wang et al. [83] proposed a two-step
algorithm to approximate the optimal subsampling probabilities and obtain
the resulting subsample estimator β

∧

sub. In the first step, a pilot subsample
of size r0 is drawn to get a pilot estimate of β

∧

MLE, which is then used
to approximate the optimal subsampling probabilities for drawing another
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subsample of size r1. The pilot sample can be drawn from the entire dataset
by uniform subsampling with π0

i = 1/n for each i = 1, 2, . . . , n or case
control sampling with π0

i = (2n0)−1 if yi = 0 and π0
i = (2n1)−1 if yi = 1.

For the latter, n0 is the number of 0’s in all yi and n1 is the number of 1’s in
all yi . The details of the two-step algorithm are provided in Algorithm 3.

Wang et al. [83] showed that the final estimator β
∧

OS from the above two-
step algorithm is consistent and asymptotic normal distributed conditional
on the entire data and pilot sample estimator. It is worth pointing out that
Algorithm 3 is based on the assumption that the logistic regression model
is correctly specified. Therefore, the model selection or the covariate trans-
formation should be done before running this algorithm. In addition, the
second step sample size r1 should be always much larger than the pilot sample
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size r0 when implementing Algorithm 3. This is a theoretical requirement to
establish the asymptotic normality of the final estimator β

∧

OS.
Wang [80] proposed an improved estimation method for logistic regression

based on the optimal subsampling method in [83]. They theoretically and
empirically showed that the new estimator has a higher estimation efficiency.
The optimal subsampling method in [83] has been extended to different
model settings, including generalized linear models [1], multinomial logistic
regression [90], additive hazards models [106], and quantile regression [81].

25.4 Summary and Discussion

In this chapter, we have provided a selective overview of big data
analytics with the focus on two types of big data: ultrahigh-dimensional data
and massive data. For the former, we briefly described the idea of feature
screening and introduced the interaction screening procedures for regression
models and classification problems. For the latter, we presented two popular
strategies, divide-and-conquer approaches and subsampling methods.

However, the whole story of Big Data Analytics is far from complete.
Except for high dimensionality and large sample size, other issues, including
heterogeneity [72], measurement error [50], missing values [16], also arise
frequently in Big data. More new innovative techniques are required to
address these issues for big data analytics.

Acknowledgements We sincerely thank Professors Zvi Drezner and Saïd Salhi for
their kind invitation to write this article.
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26.1 Introduction to Humanitarian Logistics

Unexpected events and natural disasters frequently give rise to enormous
human and financial losses. In the recent decades, the severity of natural
disasters has been increased considerably which highlights the significance of
humanitarian relief operations [5], [46]. Humanitarian logistics is defined by
[8] as a “special branch of logistics managing response supply chain of crit-
ical supplies and services with challenges such as demand surges, uncertain
supplies, critical time windows and vast scope of its operations,” whereas [45]
refers to humanitarian logistics as “the process of planning, implementing and
controlling the efficient, cost-effective flow and storage of goods and mate-
rials, as well as related information, from the point of origin to the point of
consumption for the purpose of meeting the end beneficiaries’ requirements.”

In fact, humanitarian logistics relates to different operations for responding
to a variety of catastrophes. The common aim of these operations is survival
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of affected people when a disaster occurs. It should be mentioned that the
term “disaster” refers to unanticipated events with extreme suffering damage
which might be either a natural disaster (such as earthquakes, hurricanes,
flood, fires, etc.) or a man-made disaster (e.g. terrorist attacks, nuclear acci-
dents, etc.) [25]. The pivotal goal of disaster relief operations might be the
evacuation of injured individuals from affected areas in the shortest possible
time as well as distribution of sufficient relief commodities for satisfying the
initial needs of affected people at early post-disaster [12].

A humanitarian supply chain (HSC) is defined as the process of evacu-
ating people from affected regions to safe places, planning for efficient and
effective distribution of relief items, and collecting the related information
from the supply point to the point of consumption in order to alleviate the
suffering of affected people [13]. A conceptual framework of HSC is depicted
in Fig. 26.1.

According to Fig. 26.1, the main goal of the HSC is to deliver the
relief items to the affected regions from the supply points in a cost-effective
way. Therefore, the prepositioned items from the HOs’ warehouses or relief
suppliers’ warehouses are delivered to the affected regions through the central
warehouses and regional relief distribution centers. It should be mentioned

Fig. 26.1 A conceptual framework of HSC [23]
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that this framework is applied in most of the research in the HSC context,
however, other assumptions regarding the specific conditions of problems
are considered. Due to the high uncertainty and unstable environment of
disasters, HOs require specific strategies which provide them the opportu-
nity to respond to risks and uncertainties in the demand and supply data
of HSC in an efficient and effective manner. The main phases of the so-
called disaster management include: mitigation, preparedness, response, and
recovery phases, which are briefly illustrated in Fig. 26.2 [25]. Each phase
needs distinct strategies with different challenges while facing a high level
of uncertainty, which makes the planning of humanitarian relief chains very
complicated. Examples of logistics operations in different phases include:
strengthening the logistical infrastructure in the mitigation phase, preposi-
tioning of relief items in diverse while safe locations in the preparedness
phase, evacuation of affected people, and distributing the required relief
items to affected areas in the response phase, and debris management in the
recovery phase.
The main stakeholders of a relief supply chain include the affected people,

governmental organizations, business sector and commercial institutions,
non-governmental organizations (NGOs), military institutions, and donors.

Fig. 26.2 The main phases of disaster management [25]
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The governmental organizations undertake making the strategic decisions in
regard to, for example, establishing and strengthening of relief aid infras-
tructures, providing the relief prepositioning network, and determining the
budget for the humanitarian operations. The NGOs may participate in each
phase of disaster management according to their capabilities while they can be
outside or inside of the country where the disasters occur. Donors provide in-
kind donations including financial aids, relief items, and services which can
be used in humanitarian operations. Military institutions are capable of giving
some services at the onset of disasters like establishment of filed hospitals and
shelters for affected people.

Similarly, the business sector and commercial institutions can play a pivotal
role in the improvement of disaster relief operations as they possess consider-
able logistical knowledge, skill, expertise, and technology in managing their
supply chains. For example, they utilize modern distribution centers, efficient
transportation modes, and integrated decision support systems in their supply
chains for informed decision-making, which can be leveraged by HSCs.
Such a humanitarian-business partnership can enhance the effectiveness and
efficiency of HSCs by sharing facilities (e.g. warehouses), relief items, knowl-
edge, skill, and expertise of business sector in humanitarian operations. More
precisely, either a supplier as a partner can share its products or services, or a
logistics service provider (LSP) can help the HO by sharing its logistical capa-
bilities at the pre- or post-disaster phase [18, 31]. In this study, we focus on
the capabilities of business sector which can be employed in the humanitarian
logistics. Firstly, we identify the challenges of humanitarian operations which
HOs might face with and the main incentives of humanitarian-business part-
nership. Then, we review the recent OR/MS studies in the area of partnership
between HOs and business sector based on the capabilities of business sector.
According to the literature review, we perform a gap analysis in the context
of humanitarian-business partnership. Then, a basic mathematical model is
developed as a sample for quantitative modeling of decision problems related
to such partnership whose results are described briefly. Finally, we propose
some research avenues, which interested researchers can use in their future
studies.

26.2 Humanitarian Supply Chains and Their
Challenges

Humanitarian supply chains face unique challenges regarding the uncer-
tainty in supply and demand sides, which may pose some challenges in the
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commodity flow of relief operations. Challenges of a HSC mainly relate
to lack of sufficient and appropriate five entities, including commodities,
transportation, facilities, personnel and staff, and coordination [34].

In the aftermath of a disaster, relief commodities are often supplied by
HOs or donors. There is a high level of uncertainty in the in-kind donations
due to the uncertainty in what will be received and the delivery time of these
items. In addition, the delivered items could be perishable or unnecessary
and unwanted which can clog up the material flow. The uncertain demand
in the sudden-onset disasters make it too difficult to estimate the demand size
precisely, while the needs of affected people can change dramatically on each
day of post-disaster phase. Besides the high level of embedded uncertainty,
the lack of relief commodities at the right time and the right place could be a
huge challenge. The shortages of crucial items at the onset of a disaster could
increase the mortality rate significantly, so lack of appropriate proactive plans
to supply these crucial items could cause severe destructive damages [14].

Transportation has a significant role in the relief operations. The human-
itarian sector often struggles with the lack of appropriate fleet for trans-
portation of affected people, humanitarian staff, relief items (e.g. food and
non-food items), and equipment for construction and other activities. Due
to specific characteristics of developing countries (e.g. high population, dense
urban districts, and in some cases being located in an earthquake-prone area),
a natural disaster like an earthquake would result in a tragic mortality rate.
Also, destruction of urban infrastructures will make the relief operations more
difficult than it can be thought. Therefore, a mixed fleet of air and road trans-
portation vehicles such as trucks and helicopters will be indispensable for
evacuating the affected people and moving the relief items between different
nodes in the network. However, the HOs’ available fleets are not typically
sufficient enough to be useful in a disastrous situation [33]. An important
problem in the aftermath of disasters is the possibility of disruptions in the
facilities like warehouses and distribution centers (DCs) as well as part of the
road network. In some cases, it would be hard to find a place to store the relief
items both in the pre- and post-disaster phases. In the pre-disaster, HOs may
not afford to establish enough warehouses, especially for the prepositioning of
relief items. In the same way, at the post-disaster it would be difficult to find
some locations as a hub or DC to reconsolidate and distribute the delivered
items (e.g. in-kind donations or relief aids supplied by HOs) from different
regions to the affected areas [54].

Although the awareness and the experience of HSCs have been increased
during the last decades, most of the personnel in charge of HOs and NGOs
are not expert enough to immediately tackle the complex problems, mostly
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related to logistics and supply chain management issues. The low level of
personnel’s knowledge in some cases can cause delays in operations, waste of
limited resources and thereby reducing the efficiency of relief operations [14].

Having an efficient and effective coordination between the HOs is often
challenging. The problem becomes more complicated when cooperation with
the business sector also should be taken into account. The challenges often
ensue from lack of willingness to share information, different culture and
mandates, technology barriers, lack of performance measurement, and unde-
termined outcomes and goals. Obviously, HOs are able to make their supply
chain better by taking the advantages of the resources and expertise of the
business sector. By engaging in a partnership, the HOs can achieve outcomes
which are difficult to be reached individually [31].

According to the above issues, HSCs are dealing with different challenges
whereas the business sector has many capabilities in solving these issues. It is
expected that the potential contributions of the business sector to the human-
itarian sector would be tangible but there is still lack of research on how
this partnership should be formed, what contributions should be transferred,
and how OR/MS models can contribute to the management of partnership
between the humanitarian and business sectors. In the next section, we will
review the recent studies in the literature of humanitarian logistics to find out
how OR/MS models have been employed in humanitarian-business partner-
ship as one of the main possibilities to improve the humanitarian operations
and how the capabilities of business sector are employed to overcome the
challenges that HOs are dealing with.

26.3 The Incentives of Partnership During
the Disaster Phases

It can be indicated that the main reason for employing the business sector
is their ability to provide HOs with the expertise that HOs do not have,
or is not economical to have it themselves. The expertise, knowledge, and
infrastructures are the most driving reasons forcing the HOs to collaborate
with the business sector. This collaboration can reduce the capital investment
of HOs in equipment, facilities, and man power and enables them to focus
on their core competencies to scale up humanitarian response [37]. HOs’
operations managers mostly prefer to shape relationship with the business
sector in the pre-disaster phase to have more time for being ready to response.
However, it needs a lot of efforts and resources. Firstly, establishing and main-
taining a partnership needs financial supports, but most of HOs have faced
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with financial constraints and they are dependent on donations. Moreover,
in the business sector, LSPs or other commercial companies participate in
the humanitarian operations to generate profit, improve their social impacts,
and increase their reputation and brand visibility. Collaboration with a HO
can help the corporations to gain strategic customers. The private sectors
can leverage their capabilities, network, facilities, and skills to help the relief
partners in providing more effective preparedness plans [42].
The private companies also prefer to initiate the partnership during the

pre-disaster phase. They are willing to have initial confrontation with HOs
before their collaboration in the response phase because they feel more secure.
The agreement can be made in the pre-disaster phase to clarify the domains
and requirements of the partnership. In fact, the expectations of both sides
will be clearer if the agreement is made in the pre-disaster phase. In the
response phase, it seems the private sector has a tendency to attract a lot of
attention from the media. The private sector often offers some free services
in the early days after occurring a disaster and then they turn to normal
contracts. Finally, business companies can take part in the recovery phase
which seems to be a great opportunity for them to start their collaboration.
Table 26.1 summarizes the dimensions of humanitarian-business partnership.

26.4 Literature Review

The business sector can collaborate with HOs in different kinds of logis-
tics activities mainly including the procurement of relief items, warehousing,
distribution, and transportation. Here, we are going to focus on the studies
related to these logistical areas in which OR/MS tools have been used
to model the humanitarian-business partnership. In other words, we limit
our review to those studies using quantitative modeling techniques (espe-
cially optimization models) to analyze the humanitarian-business partnership
schemes.

26.4.1 Relief Procurement

One of the main activities which the commercial sector can take part in
humanitarian operations is the procurement of relief items. It should be
mentioned that other relief operations like warehousing, distribution and
transportation are directly affected by the procurement-related decisions [1].
Although some HOs prefer not to outsource the procurement due to having
specific procurement procedures, collaboration with a supplier as a partner
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and setting a procurement plan could facilitate the process and decrease the
possibility of shortages at the sudden onset of disasters. In addition, the
prepositioning of a huge amount of relief items by HOs could be ineffective,
because the disasters are not frequent and it can lead to unutilized resources
and waste of the limited budget. The procurement process could be different
for different types of disasters (i.e. the sudden-onset and slow-onset disas-
ters). In the slow-onset disasters, such as drought or famine, HOs have more
time to find the appropriate suppliers for relief procurement and they can
perform the supplier evaluation and selection process as it is employed in
the business logistics [21]. Nevertheless, in the case of sudden-onset disasters,
such as hurricane and earthquakes, HOs should decide to procure the relief
items at pre- or post-disaster phase. When procuring the relief items in the
post-disaster phase, HOs may face a variety of problems such as purchasing
of low-quality and high-cost items, long lead times, and lack of items in the
market [18]. However, pre-disaster relief procurement is very limited due to
limited budget and lack of facilities for prepositioning of items.

Major of the studies in the literature have used contractual agreements to
coordinate the supply of relief items. In the contractual agreements, HOs
and suppliers commit to collaborate with each other at a specific price,
delivery time, and payment term. Three major kinds of contracts which have
been applied in the context of humanitarian procurement include the frame-
work agreements, option contracts, and quantity flexible contracts. Balcik
[10] developed a framework agreement using a mixed integer programming
approach. In this agreement, the HO commits to purchase a minimum
amount of items from the supplier during the agreement period while the
supplier have to provide the items due to the agreement. Wang [50] proposed
using the bonus contract into the framework agreement between govern-
ments and suppliers for relief procurement to increase the motivation of
suppliers to enhance the quality of their services in the partnership. Falasca
[21] developed a procurement plan by using a two-stage stochastic model for
a HO. At the first stage, the demand of the items is unknown and in the
second stage the demand and the available resources are realized.

Procurement auctions have been used by several HOs such as Federal
Emergency Management Agency and Fritz institute [20]. For example, Ertem
and Buyurgan [19] developed an auction process for procurement of relief
items where they assumed the HO as the auctioneer and the suppliers as the
sellers. Their study illustrates the impacts of auction strategies on the effi-
ciency of relief procurement. Also, option contract is often used by signing a
contract between HOs and suppliers. In this mode, HOs get into a contrac-
tual agreement in the preparedness phase to streamline the procurement
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process. These contracts provide more flexibility for HOs in the procure-
ment process. Rabbani et al. [36] used the option contract mechanism for
buying relief items from a supplier. They sought to determine the option and
exercise price so as to motivate both parties to participate in the contract in
which they can negotiate on the price obtained by a mathematical model.
Hu et al. [24] introduced an option contract for relief supply chain manage-
ment. They compared the buy-back, option, and wholesale price contracts
in a collaboration between a supplier and public authorities and proved that
the designed contract achieve win-win situation. Torabi et al. [41] proposed a
specific option contract for vaccine supply through minimizing the procure-
ment and social costs using an epidemic model, Stackelberg game model,
and nonlinear programming approach. Wnag et al. [51] introduced a supply
chain methodology in humanitarian operations management. They deter-
mined that the pre-purchasing from a supplier with an option contract is
better than pre-purchasing with a buy-back contract and instant purchasing
with a return policy. HOs mostly use a mixed procurement approach to
both increase their efficiency and effectiveness. In this approach, HOs set
a plan in which a percentage of relief commodities should be preposi-
tioned at the pre-disaster phase and the supplier is committed to procure
up to a specific amount. Akbarpour et al. [3] designed a pharmaceutical
relief network under demand uncertainty using a framework agreement and
option contract with the suppliers. Torabi et al. [48] offered a two-stage
stochastic programming approach to determine prepositioning and procure-
ment decisions. They developed a mixed integer programming model for
relief procurement considering operational cost, inventory costs, purchasing
price, and supply scarcity. Aghajani et al. [2] proposed a novel two-period
option contract by using a two-stage stochastic programming approach. The
decisions related to supplier selection and inventory prepositioning are deter-
mined in their model. In another study, Aghajani and Torabi [1] developed a
mixed procurement/supply policy considering the possibility of spot market
sourcing as well as using a multi-attribute and combinatorial reverse auction.
The explored literature validates that in the area of relief procurement,

most of the studies have applied contractual agreement to coordinate
suppliers and HOs in humanitarian operations. Here, we raise a question:
Can the contractual agreement form a partnership? A partnership is “an
agreement between organizations, people, etc. to work together ” while a part-
nership agreement is “a contract between two or more individuals who would
like to manage and operate a business together in order to make a profit .” Each
partner shares a portion of the partnership’s profits and losses and is person-
ally liable for the debt and obligations of the partnership. In the vaccine of
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humanitarian relief procurement, partners are HOs and suppliers. The main
motivation of supplier engagement in the partnership can be the profit expec-
tation, but other reasons like supplier’s social responsibility cannot be ignored
as it has a great effect on the quality of partnership [43]. Additionally, HOs’
engagement in the partnership is to ensure the supply of relief items required
to meet the demands of each disaster. Since the aims of partnership here is
different than what we have in commercial logistics, it would be difficult to
make a partnership between the suppliers of relief items and HOs and it needs
some incentives such as bonus, options and privilege. In the literature, most
of the research only consider HO’s preferences and ignore the supplier side’s
desires and limitations. In a few studies, like Liang et al. [28] and Nikkhoo
et al. [30], the relief chains’ goals are taken into account. Here, we reviewed
the most recent while relevant studies in which the OR/MS tools have been
used for the relief procurement. For more information, the interested readers
can consult with [29].

26.5 Relief Warehousing, Transportation,
and Distribution

In this type of partnership between HOs and business sector, consolidation
can be utilized as the main approach to model the centralized coordination.
The consolidation in humanitarian logistics is expected to be different than
the one in the business sector. Consolidation often results in cost reduction
and performance improvement while it needs planning and specific infras-
tructure. In the business sector, the decisions about demand planning, access
to the resources are easily outsourced to third-party logistics companies while
in the humanitarian logistics it is complicated to plan about demand and
resource finding [4]. In addition, these issues could be doubled regarding
the poor infrastructures in the public sector of developing countries, which
makes the consolidation practices much harder in humanitarian logistics.
Warehousing and transportation can be considered as the main activities of
supply chains which can be consolidated. The consolidation of activities is
done regarding the trade-offs between the overall goals of HO as well as
controlling the costs in transportation and warehousing activities.
Transportation consolidation focuses on using the full capacity of transport

modes. Therefore, in these problems, shipping policies are used to optimize
the efficient use of vehicles. Interested readers can refer to [35], in which the
innovative consolidation techniques for improved transportation efficiency is
presented. Warehousing consolidation aims at managing the needs of clients
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and ensuring the availability of indispensable items in an appropriate time.
If the consolidation is occurred in a large warehouse, it will allow pooling
safety stocks and focusing on standard lead times while reducing holding
costs. However, the rise in transportation costs is possibly due to increase
in traveling distance [52]. In addition, decentralized warehouses allow the
use of smaller warehouses closer to the main clients implying bigger safety
costs, inventory costs, lower transportation costs, and less standardized lead
times. An example of consolidation in the area of humanitarian logistics is
what the United Nations Humanitarian Response Depot (UNHRD) do for
storing, transporting, and procuring prepositioned goods across a worldwide
network of warehouses. The cluster approach offered by the United Nations
Office for the Coordination of Humanitarian Affairs to coordinate UN and
non-UN agencies, additionally, managed the consolidation of items trans-
portation between Santo-Domingo and Port-au-Prince during the 2010 Haiti
earthquake.

In a review paper, Tomsini [47] reviewed the evolution of collaboration
between public and private sectors for the period of 2000 to 2015 which
is driven from analyzing the United Nation sets of policies related to the
private sector engagement in humanitarian operations. We found that, there
are limited studies in the area of humanitarian logistics which considered
the partnership of public and private sectors in sharing transportation, ware-
house, and distribution facilities while most of them have utilized the material
consolidation. Schulz and Blecken [39] introduced the potential avenues
for consolidation in sharing warehouse, transportation, and procurement
through using horizontal cooperation. This study determines the partnership
opportunities, while it mainly has focused on the coordination between HOs.
However, other actors like private transportation companies and third-party
logistics providers use consolidation to increase the productivity of their assets
[27, 44]. Rodman [38] and Sebbah et al. [40] focused on using consolidation
between HOs and military where warehousing and installation are shared in
humanitarian operations. Cozzolino et al. [15] explained the contribution
of LSPs to relief operations after investigating the difficulties of coordination.
Dufour et al. [17] developed a mixed integer linear programming approach to
analyze the potential costs of adding a DC to the network of United Nations
Humanitarian Response Depot (UNHRD) which is an important LSP that
manages a network of depots and provide multiple supply chain solutions to
its partners of the humanitarian community.

Baharmand and Comes [9] investigated the role of LSPs in improving the
efficiency and effectiveness of humanitarian assistance by proposing a block
chain-based smart contract. Venkatesh et al. [49] proposed a multi-criteria
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decision-making model for partner selection in continuous-aid procurement.
In another study, Kim et al. [26] developed a hybrid multi-criteria decision-
making model for LSP selection in the pre-disaster phase. Balcik et al. [11]
proposed a collaborative prepositioning strategy to strengthen the coun-
tries’ regional response capacity against hurricane. They proposed a two-stage
stochastic programming model to determine the locations and amounts of
relief supplies to store, as well as the investment to be made by each country.
Diehlmann et al. [16] contributed to the area of humanitarian logistics by
evaluating the public–private partnership in emergency logistics using logis-
tical and game-theory concepts. The incentives of private partner are modeled
through developing game-theory models. In a recent study, Zhang et al. [53]
developed a collaborative truck-and-drones system as an assessment tool for
collecting the information from both nodes and links of a transportation
network. The obtained information is then used by HOs in the routing
problem at the post-disaster phase.

26.6 Gap Analysis of Extant Literature

Reviewing the literature validates that most of the studies have focused
on the qualitative studies in the area of partnership between humanitarian
and business sectors in the setting of disaster relief operations. Most of the
studies highlight that humanitarian-business partnership enables HOs to
provide a customized response, reduce waste, optimize resources, and reduce
costs [49–32]. Although collaboration between HOs and private sector has
been suggested by many scholars in the literature, a few studies have devel-
oped mathematical models to investigate the effects of such partnership. In
addition, it can be found that HOs and private sector still have lots of part-
nership challenges which should be considered. It is hard to determine and
measure whether the partners have met their partnership goals or not while
there are not specific key performance indicators (KPIs) in the literature
of humanitarian-business partnership for this assessment. In addition, it is
highly needed to determine the affecting factors on this partnership.

As we mentioned before, partnership can take place in three main areas
including procurement, warehousing, and transportation. Based upon the
literature review, partnership in procurement is mostly modeled through
designing supply contracts and framework agreements as well as supplier
evaluation and selection. Partnership in warehousing and transportation
activities is rarely modeled through quantitative approaches. By now, the
researchers have mostly focused on the opportunities and barriers of the



850 A. Ghavamifar and S. A. Torabi

humanitarian-business partnership by doing qualitative studies. Our liter-
ature review shows a strong need for developing mathematical models for
assessing humanitarian-business partnership, considering the opportunities
and barriers identified in the literature. Considering the private sectors logis-
tical capabilities in the relief operations along with the HOs capabilities
through developing mathematical models enables the researchers and practi-
tioners to accurately analyze the role and the responsibilities of each partner as
well as their benefits. As a sample modeling, in the next section, we develop a
simple mathematical model for a specific humanitarian-business partnership.

26.7 AMathematical
Model for Humanitarian-Business
Partnership

Here, we model a specific partnership of humanitarian and business sectors
through developing a sample mathematical model Ghavamifar and Torabi
[22]. We assume that the partnership includes a HO, multiple suppliers, and
multiple LSPs as the partners. The HO needs to collaborate with its part-
ners for facilitating the procurement and storage of relief items. The suppliers
are responsible for supplying the relief items and LSPs are responsible for
providing warehousing space for storing the relief items. We assume that the
HO outsources part of its need for relief items and storage capacity to its
partner. The main assumptions made for the problem formulation include
the following ones:

• Suppliers and LSPs have entered into the partnership to earn revenue.
• The HO has a limited budget.
• Suppliers have limited supply capacity.
• LSPs have limited warehouse capacity.
• All the procured relief items from the suppliers should be stored in LSPs’

warehouses.
• At least one supplier and one LSP should be chosen.
• The HO can use more than one of the LSPs’ warehouses.
• The HO should satisfy both the suppliers and LSPs’ minimum expected

income, otherwise, the partners would not participate in the partnership.

The HO wants to know which suppliers and LSPs should be selected for
collaboration and how they can support the HO. We should mention that
our model is proposed for the pre-disaster phase, when the HO plans to
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increase its capability against the possible upcoming disasters. Furthermore,
the uncertainty in the parameters is not considered in our model as this is
just a basic quantitative model for modeling the single-item humanitarian-
business partnership aiming to show the problem setting of such partnerships
in practice. We utilize the framework agreement approach, which has already
been used by Wang et al. [50] and Balcik and Ak [10] in the context of
humanitarian logistics. The following notations are used to formulate the
partnership problem mathematically:

Set and indices:

i Set of suppliers
j Set of LSPs
n Set of warehouses

Parameters:
f si Fixed agreement cost with supplier i
f l j Fixed agreement cost with LSP j
D Estimated demand for the relief item
sci The supply capacity of supplier i
wcnj The warehouse capacity of LSP j at the capacity level n
msi The minimum acceptable income for supplier i
ml j The minimum acceptable income for LSP j
pi The procurement cost of relief item from supplier i
cnj The warehouse sharing costs of LSP j with capacity level n

Decision variables:
Xi 1, if the agreement with supplier i is executed; 0,

otherwise.
Y j 1, if the agreement with LSP j is executed; 0, otherwise.
Zn
j 1, if the warehouse of LSP j at capacity level n is selected;

0, otherwise.
Qi The quantity of relief item procured from supplier i

Now, the developed mathematical model is presented as follows:

minG =
∑

i

f si Xi +
∑

j

f s j X j +
∑

i

pi Qi +
∑

j

∑

n

cnj z
n
j (26.1)

The objective function (26.1) minimizes the total costs of setting a frame-
work agreement with suppliers and LSPs, the procurement costs, and the
warehouse sharing costs.

∑

i

Qi ≥ D ∀i ∈ I (26.2)
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Constraint (26.2) implies that the demand of HO should be satisfied with
the relief items delivered from the suppliers

Qi ≤ sci Xi ∀i ∈ I (26.3)

Constraint (26.3) considers the supply capacity of each supplier.

Qi ≤
∑

j

∑

n

wcnj Z
n
j ∀i ∈ I (26.4)

Constraint (26.4) takes into account the storage capacity of LSPs, where the
relief items procured from the suppliers should be stored.

∑

n

Zn
j ≤ Y j ∀ j ∈ J (26.5)

Constraint (26.5) indicates that a warehouse with specific capacity level can
be shared if the agreement is set with the respective LSP. It also indicates that
at most a specific capacity level can be chosen for each warehouse.

∑

i

Xi ≥ 1 (26.6)

∑

j

Y j ≥ 1 (26.7)

Constraint (26.6) and (26.7) guarantee that at least one supplier and LSP are
selected to collaborate with HO.

pi Qi ≥ msi Xi ∀i ∈ I (26.8)

∑

n

cnj Z
n
j ≥ ml jY j ∀ j ∈ J (26.9)

Constraint (26.8) and (26.9) consider the minimum acceptable income for
the suppliers and LSPs in the partnership.

Xi , Y j , Z
n
j ∈ {0, 1}, Qi ≥ 0∀i ∈ I, ∀ j ∈ J, ∀n ∈ N (26.10)

Finally, constraint (26.10) determines the domain of each variable.
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The proposed model is a basic mathematical model which consider the
potential capacity of the candidate suppliers and LSPs in procuring relief
items and storing them. As we mentioned in the literature review, there is
few studies focusing on mathematical modeling of humanitarian-business
partnership. In this section, we have just proposed a basic model to give
some clues about modeling of such partnerships while it can be extended
in different ways. For example, the model can be extended by considering
inherent uncertainties in the input data, incorporating other limitations of
LSPs and suppliers in the partnership, and considering multiple HOs among
other possibilities. The presented model has been solved for hypothetical data
using CPLEX in GAMS whose numerical details can be found in Ghavam-
ifar and Torabi[22]. Here, due to space limitation, we just explain the main
managerial implications based on the numerical results:

1. Although we have not considered the possible disruption scenarios in our
model, the HO would prefer to collaborate with more than one supplier
and LSP due to capacity limitations.

2. Considering the minimum acceptable income for suppliers and LSPs
forces the model to increase the items procuring from the suppliers, which
may be not needed. Therefore, using the game-theory approach would be
useful for modeling the problem.

3. The model selects the best set of candidate suppliers and LSPs for setting
an agreement based upon the framework agreement costs, supply costs,
and sharing costs. Considering other objective functions such as respon-
siveness measures (e.g. delivery time-related objective function) can be
useful to achieve more informative results.

4. The warehouse capacities of chosen LSPs for storing the procured items,
are not completely filled. So, by taking into account the location of
suppliers and LSPs’ warehouses, the results of our model can be improved.
In addition, as mentioned in the literature review, considering the material
consolidation between the suppliers and LSPs can reduce the total costs of
partnership.

5. As the warehouse capacity of LSPs are not completely filled, the HO can
use the additional capacity for storing the prepositioned items.

6. This model just considered the framework agreement concept for setting
a partnership, while other contractual agreements such as quantity flexible
and option contracts can be utilized in the modeling.
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26.8 Conclusion and Suggestions

The aims of this research are to understand and explore how partnership with
business sector can improve the humanitarian operations’ performance. We
have reviewed the literature to find out the opportunities of humanitarian-
business partnership and the main challenges that HOs are dealing with and
the barriers of the partnership between the partners. We observe that most
of the studies have utilized qualitative methods in investigating the partner-
ship of humanitarian and business sectors and have rarely applied quantitative
modeling. Therefore, in this study, a basic mathematical model is developed
by using the capability of some candidate suppliers and LSPs.

Our model is developed based upon the framework agreement concept
while it can be extended by incorporating more real constraints into the
model, which can be considered as avenues for the further research. As the
main implication for practice, our study suggests the use of collaboration
with the private sectors in the four disaster phases. With respect to the
current state-of-the-art literature in humanitarian logistics context, there are
various avenues for future research using OR/MS models. Among different
possibilities, we can refer to:

1. addressing and prioritizing the various capabilities of business sector
in the humanitarian operations using multi-attribute decision-making tech-
niques,

2. utilizing other OR/MS tools for modeling of humanitarian-business
partnership (e.g. game theory and dynamic programming),

3. using the capability of other partners like HOs, military, NGOs in the
modeling to do material consolidation in the partnership,

4. developing heuristics, meta-heuristics, or exact solution algorithms to
solve the developed mathematical models in the large-scale instances,

5. considering the possible disruptions in the modeling of humanitarian-
business partnership, and

6. developing performance analysis models to measure and analysis of
outcomes of humanitarian-business partnerships on the performance of
humanitarian operations.
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27
Drones and Delivery Robots: Models
and Applications to Last Mile Delivery

Cheng Chen and Emrah Demir

27.1 Introduction

In the last decade, the development of information technologies has shaped
our lives and shopping habits greatly. One of the results of such development
on economy is the huge volume of global parcel delivery activities in urban
areas. From an environmental perspective, last mile logistics is the important
part of a supply network and a significant source of negative externalities,
such as congestion and emissions. Therefore, several last mile delivery services
have emerged in recent years. For example, Sandra and Baptista [1] studied a
case of incorporating electric cargo bikes into traditional van delivery system
to improve traffic performance. In another application, to minimize traffic
congestion and associated negative externalities in central London, Freight
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Traffic Control 2050 [2] investigated the traditional portering system into
the delivery operations.

Automation and robotic technologies have brought sustainable and
efficient solutions in the context of last mile. For example, unmanned
(autonomous) aerial vehicles (UAVs) are utilized by several logistics and
online retailer companies, such as DHL international [3], United Parcel
Service (UPS) [4], and Amazon [5]. Similarly, Starship Technologies has
been trailing a delivery robot service (unmanned ground vehicle, UGVs) in
London since March 2020.
The integration of small autonomous vehicles, like drones or delivery

robots with delivery vans can offer greener solutions than using only diesel-
fueled vehicles. Since they are powered by electricity, these new assistants
do not produce CO2e emissions, even though the generation of electricity
may lead to emissions. In the study of Figliozzi [6], the authors showed
that UAVs are more energy and emissions efficient per unit distance for
low delivery density operations. Kirschstein [7] showed that the stationary
drone delivery system can create an energy demand which is comparable to a
standard delivery system with electric vehicles. Both these studies concluded
that drones may lead to greener solutions. The autonomous delivery robot is
another delivery service, which can cover limited areas under the surveillance
of a driver. Chen et al. [8] presented three types of robots which are used in
real-life traffic environments. These robots are also proved to be used as an
efficient last mile delivery service in densely populated urban areas.

Since most drones are powered by batteries that last less than half an
hour (on average), their loading capacities and flying ranges are limited.
Puglia et al. [9] identified that the hybrid system where delivery vans are
equipped with drones has the best tradeoffs between efficiency and envi-
ronmental performance, i.e., CO2e emissions and congestion. The authors
compared three different transportation systems: delivering parcels without
drone, deliveries performed solely by a fleet of drones, and the hybrid system.
Jennings and Figliozzi [10] studied delivery time and number of customers
served using delivery robots and a delivery van. Their results highlighted that
delivery robots provide significant reduction in costs and operational times
when compared with a standard parcel delivery system.

In the following sections, this chapter will investigate an innovative last
mile service: van-assistant delivery system. Specifically designed delivery van
loads assistants as well as goods for customer deliveries. While the van (driver)
visits a customer, the assistants equipped in the vehicle can be dispatched to
serve other nearby customers. When vans are used as the mothership and
drones as assistants, the system turns to be a van-drone delivery system.
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Similarly, when vans are used with delivery robots, the system turns to be
a van-robot delivery system. The studied routing problem is known as a
variant of the well-known Vehicle Routing Problem which aims to find a
set of vehicle routes to serve a set of customers [11]. In this chapter, first, a
brief discussion on the related studies and applications is presented. Then, a
mixed-integer linear programming (MILP) formulation and a metaheuristics
algorithm are introduced. Fourth, computational experiments and numerical
results are presented. And finally, conclusion section is provided.

27.2 Literature Review

We now provide a brief literature review on drones and delivery robots that
can be used collaboratively for the last mile delivery by retailers, logistics and
transportation companies.

27.2.1 Drones: Last Mile Delivery Applications

Last mile logistics can be improved by considering new technological delivery
resources, such as drones and delivery robots. In the study of Murray and
Chu [12], who addressed a case where a single drone is operated in coordi-
nation with a delivery truck for serving a set of customers. The studied two
types of vehicles may travel in tandem or independently and customers can
be visited by either the driver or the drone. The drone is paired with a tradi-
tional delivery truck which departs from a depot with all customers’ parcels
being loaded. As the driver makes deliveries, the drone is launched from the
truck. After its autonomous flight for the delivery, the drone rendezvouses
with the vehicle at another customer’s location in the same route. Then,
the drone will be recharged (battery replaced) and reloaded for its next trip.
The authors studied traveling salesman problem (TSP) that decides optimal
customer assignments for a drone working with a delivery truck, named as
flying sidekick traveling salesman problem (FSTSP). With an objective to
minimize the total time to finish all deliveries, MILP formulations for the
problem along with a heuristic algorithm are provided.

In another study, Agatz, Bouman, and Schmidt [13] analyzed a similar
optimization problem, named as TSP with drone (TSP-D). The objective
of the TSP-D is to minimize the costs of the tour. An integer program-
ming (IP) formulations and several heuristics for the TSP-D are provided
in the study. Carlsson and Song [14] determined the efficiency of a truck-
drone coordinated system. A drone provides service to customers and can
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make a return trip to a truck. The truck is acting as a moving depot and the
drone is dispatched and recovered at different locations. Based on continuous
approximation techniques, it is shown that the improvement on route time
is proportional to the square root of the ratio of the speeds of both truck and
drone.

A case of multiple vehicles was studied by Wang et al. [15]. Trucks
equipped with drones are employed to deliver packages to customers. The
authors formulated a min-max problem to minimize the maximum dura-
tion of the routes and showed that the highest savings can be achieved using
multiple UAVs. Schermer et al. [16] formulated the Vehicle Routing Problem
with Drones (VRPD) as a MILP. Besides introducing several sets of valid
inequalities to improve the performance of MILP solvers, they also proposed
a matheuristic approach to effectively exploit the problem structure. Finally,
based on extensive computational experiments, the potential of using drones
as assistants in traditional van delivery system is shown. Chiang et al. [17]
studied truck with drones for minimizing CO2 emissions, compared to truck-
only delivery system. A MILP model and a genetic algorithm are developed
to solve the studied problem. The computational results highlight the benefits
of using drones as assistants in last mile from cost saving and environmental
friendliness perspectives.

Other types of delivery systems using the combination of traditional vehi-
cles and drones are also investigated in the literature. Moshref-Javadi et al.
[18] studied a delivery system with a single vehicle that stops at a customer
site and launches self-driving drones to serve nearby customers. With an
objective to minimize the total waiting times of all customers, the related
routing problem is defined as multi-trip traveling repairman problem with
drones (MTRPD). The problem is mathematically modeled as a MILP
formulation and a hybrid algorithm with adaptive mechanism is developed to
solve it. The authors studied real-life instances which show substantial reduc-
tions in customer waiting times. Kitjacharoenchai et al. [19] studied a case
where a drone may visit several customers and the specific number of them
is limited by its capacity and battery duration in a sortie. A mixed-integer
programming is built and a large neighborhood search algorithm is devel-
oped. Sensitivity analyses have been conducted to show the improvement on
the objective brought by allowing simultaneous services in a single dispatch.

In the literature, docking hubs or stations are also introduced into the
delivery network. For example, Wang and Sheu [20] proposed a variant of
classic capacitated VRP, where a drone may travel with a truck, take off from
its stop and land at a docking hub to travel with another one. Also, backup
drones at docking hubs are assumed. In Karak and Abdelghany [21], a hybrid



27 Drones and Delivery Robots … 863

vehicle-drone routing problem is investigated. It is assumed that there are
several stations in the delivery network. Each station can be visited by the
vehicle only once to drop off or collect drones. Vehicles are used to trans-
port drones. A MILP is formulated to minimize the routing cost to serve all
customers and three heuristic algorithms are developed to solve the studied
problem.

In another study, Jeong et al. [22] extended the FSTSP to FSTSP
with energy consumption and no-fly zone (FSTSP-ECNZ) by integrating
payload-dependent energy consumption and restricted flight areas. A MILP
formulation and an evolutionary-based heuristic algorithm are proposed. Li
et al. [23] investigated the benefits of the vehicle-drone delivery system under
traffic restrictions, i.e., vehicle-type restriction and half-side traffic. Based on
a MILP formulation and a genetic algorithm, it is illustrated in the numer-
ical experiments that both cost saving and CO2 emissions reduction can be
achieved by applying the vehicle-drone delivery system, especially when there
is a vehicle-type restriction.

In a recent study, Ndiaye et al. [24] investigated the importance of the
drones in the context of green technology for logistics, agriculture and health-
care. The authors have also presented a review of the recent applications of
drone technology and discussed operational challenges. For more informa-
tion on delivery systems using cooperated vehicle and drone(s), readers are
referred to [25–27].

27.2.2 Delivery Robots: Last Mile Delivery Applications

Simoni et al. [28] investigated a van-robot delivery system. With a similar
typology with truck-drone system, the authors modified the TSP-D to TSP
with robot (TSP-R) by allowing the robot to visit multiple customers in a
single trip. A MILP model and a heuristic algorithm are proposed to solve
the studied problem. First, an initial truck-only route is created. Then, a
dynamic programming is applied to obtain the corresponding optimal robot
deployment. Last, the solution is improved using an adaptive perturbation.
Numerical experiments in the study showed that robot delivery systems can
be more effective if delivery robots are utilized in urban areas.

Chen et al. [8] studied an urban delivery problem using robots as assis-
tants. In their proposed delivery system, the traditional delivery van serves
customers and acts as a mothership for its robots at the same time. When the
van is parked up safely, robots can be dispatched to their target customer(s)
and return to the same place to rendezvous with the mothership van.
However, not every customer can be served by a robot because of various
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factors, such as customers’ preferences, geographical accessibility and regula-
tions. Taking the total time duration of all routes as the objective, a MILP
model and a two-stage matheuristic algorithm are developed. Although there
are time windows constraints, this kind of delivery system benefits from the
parallel delivery accomplished by delivery robots, especially when customers
are clustered. In a related study, Chen et al. [29] proposed an adaptive
large neighborhood search (ALNS) algorithm to solve the VRP with time
windows and delivery robots. The authors provided insights and computa-
tional experiments on the use of delivery robots as an alternative last mile
service.

In their study, Boysen et al. [30] considered trucks to transport
autonomous robots. A single truck with shipments and several small
autonomous robots travel from their starting point to their drop-off points.
When the truck stopped at a point, robots with a single shipment loaded on
each are launched to serve the customer before returning to a decentralized
depot. At any depot, it is assumed that there are enough number of robots in
the truck to replenish. With an objective to minimize the weighted number
of late deliveries, this problem is named as the truck-based robot delivery
scheduling problem (TBRD). A MILP formulation is provided for the TBRD
and a multi-start local search procedure is proposed as a solution method-
ology. The results show that the decentralized depots increase the efficiency
of delivery process. When there is no robot depot in the delivery network,
trucks also need to recover all dispatched robots and take them back to the
central depot.

In a recent study, Yu et al. [31] considered the routing of large vehicle-
small autonomous robots delivery system as a two-stage routing problem. In
the first stage, large vehicles carry robots and shipments for customers. Along
its route, the large vehicle drops off and picks up robots at the rendezvous
nodes. In the second stage, autonomous robots travel from drop-off nodes
to serve several customers, then to the predetermined pick-up points to be
recovered by large vehicles. Customers’ time windows are also considered
in the study. A construction heuristic for generating initial solutions and a
multi-start hybrid metaheuristic approach with backtracking are developed.
The sensitivity analysis reveals that the speed of robots has a very limited
impact on the total transportation costs, including large vehicles and robots.

In this study, we specifically investigated the environmental benefits of
a van-assistant delivery system where the assistant can be drone(s) or delivery
robot(s). To achieve the purpose, we proposed: i ) a so-called Green VRP with
time windows and delivery assistants (GVRPTW-DA) and its mathematical
model, ii ) an enhanced Adaptive Large Neighborhood Search algorithm to
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solve the proposed routing problem. And finally, iii ) several real-life instances
are solved to investigate the environmental benefits of these new last mile
delivery services.

27.3 Problem Description

The van-assistant delivery system (Fig. 27.1) studied here is a kind of
mothership delivery system. Both the traditional diesel-powered vehicle and
assistant(s) serve customers. The mothership van parks at a customer’s parking
place and releases assistants to make deliveries within a limited range. While
the driver is serving the chosen customer, the assistants can also carry out
deliveries in a certain proximity. After the completion of a single delivery, the
drone/delivery robot comes back to the van and the delivery van is driven to
next destination. With different parameter settings to capture assistants’ char-
acteristics, the van-assistant delivery system refers to van-drone or van-robot
delivery system.

Fig. 27.1 A feasible solution with 2 vans and 3 assistants installed in diesel-powered
delivery van to serve a set of 15 customers
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27.3.1 The Estimation of Emissions

Emissions can be calculated based on payload and traveling distance. For
assistants powered by electricity, like drones and robots, the energy consump-
tion can be calculated using equation (27.1).

Ea
i j (w) =εe(β0 + β1w)di j , (27.1)

where Ea
i j (w) is the amount of CO2e emitted if a delivery assistant travels

from node i to node j, di j is the corresponding distance (km), and w is
the payload (kg). Moreover, εe is the amount of CO2e generated from the
power generation facilities per Wh, β0 represents the required energy for the
assistant and β1 represents the required energy for the payload.

Because the forth-and-back route is assumed for assistants, the related
emissions, Ed

i, j (w), is calculated using equation (27.2), when customer j with
a demand w is served by an assistant launched/dispatched at customer i.

Ed
i j (w) =εe(β0 + β1w)di j + εeβ0di j (27.2)

=2εeβ0di j + εeβ1wdi j (27.3)

=2εe(β0 + β1w/2)di j (27.4)

=2Ed
i j (w/2). (27.5)

For the delivery van, a similar equation can be used. Equation (27.6) calcu-
lates the emissions of a delivery van traveling from a customer i to customer
j with a payload w in it.

Ev
i j (w) =(εv

0 + εv
1w)di j (27.6)

where εv
0 and εv

1 are the amounts of CO2e emitted from the delivery van and
the unit mass of the delivery van per kilometer, respectively.

27.3.2 Mathematical Formulation

The GVRPTW-DA can be shown on a graph G = (V, A), where A =
{(i, j)i, j ∈ V, i �= j} is used to represent the set of arcs. V = {0} ∪ N
denotes the set of nodes and includes a depot node and the customer set
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N = {1, 2..., n}. Time interval [li , ui ] is defined as the customer i ’s delivery
slot (time window). The customer can only be served within its time window.
The demand of customer i is denoted as qi , which must be satisfied in one
visit carried out by a van (driver) or an assistant (when possible).

Given that delivery robots and drones are emerging technologies, some
customers may decline to be served by them. Also, customers may live at
places where there are technical obstacles, or their demands may exceed the
assistant’s maximum payload capacity. Therefore, a binary parameter f di is
introduced to indicate situations mentioned above. If a customer i can be
visited by the assistant, we set the value of f di to be 1 and, 0 otherwise.

We consider a set of homogeneous diesel-powered vans K = {1, 2, ..., k}
and each van is installed with a set of delivery assistants D = {1, 2, ...,m}.
Each van has a maximum capacity Q and each assistant has a limited radius
rd . Average speeds velv and veld are assumed for the delivery van and assis-
tant, respectively. Accordingly, traveling times for each type of assistant on arc
(i, j ) are calculated as tvi j = (di j/velv)η and tdi j = (di j/veld)η. Following
de Freitas and Penna [32], a coefficient η is used to consider the time for
acceleration, deceleration, traffic lights and road network.

Moreover, when drones are used as assistants, the time needed by a driver
to prepare them for launch or to retrieve them is considered and defined by
a parameter sLR , and we have tdi j = (di j/veld) + sLR . Furthermore, sv

i and

sdi represent service times of customer i for the delivery van and assistant,
respectively. Finally, wd is the weight of a single assistant. When a van is
at parking place, it can launch/dispatch assistants to carry out nearby deliv-
eries. For safety reasons, it is reasonable to assume that assistants must be
recovered at the same place where they are launched or dispatched. More-
over, the assistant conducts only one delivery in each sortie to avoid longer
waiting times. Furthermore, each assistant is launched/dispatched only once
at a certain place. We now list all decision variables in Table 27.1.
The proposed GVRPTW-DA is formulated as a mixed-integer linear

program as below.

minimize εv
1 p

k
i j di j +

(
εv
0 + εv

1mwd
)
di j

∑
i∈V

∑
j∈V

∑
k∈K

xki j

+ Ed
i j (q j )

∑
i∈N

∑
j∈N

∑
k∈K

∑
d∈D

ykdi j (27.7)
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Table 27.1 A list of decision variables used in the model

Notation Description

ydki j Binary variable; equals to 1 if an assistant (drone or delivery robot) d
in delivery vehicle k is launched/dispatched at node i to serve node j,
and 0 o/w.

xki j Binary variable; equals to 1 if a delivery vehicle k goes from node i to
node j.

pki j Continuous variable; the payload on the delivery vehicle k between
nodes i to j.

ai Continuous variable; the arrival time at node i, either a delivery
vehicle or an assistant.

bi Continuous variable; the start time of service at node i.
wi Continuous variable; the waiting time at node i from the start time of

service.

Subject to:

∑
i∈V

∑
k∈K

xki j +
∑
i∈N

∑
k∈K

∑
d∈D

ykdi j = 1 ∀ j ∈ N (27.8)

∑
i∈N

∑
k∈K

∑
d∈D

ykdi j ≤ f dj ∀ j ∈ N (27.9)

∑
j∈N

∑
d∈D

ykdi j ≤ m
∑
j∈V

xkji ∀i ∈ N , k ∈ K (27.10)

∑
j∈N

∑
d∈K

ykdi j ≤ 1 ∀i ∈ N , d ∈ D (27.11)

∑
j∈N

xk0 j ≤ 1 ∀k ∈ K (27.12)

∑
i∈V

xki j =
∑
i∈V

xkji ∀ j ∈ V, k ∈ K (27.13)

∑
i∈V

∑
k∈K

pki j −
∑
i∈V

∑
k∈K

pkji = q j

∑
i∈V

∑
k∈K

xki j +
∑
i∈N

∑
k∈K

∑
d∈D

qi y
kd
ji ∀ j ∈ V

(27.14)

pki j ≤ (Q − qi −
∑
l∈N

∑
d∈D

ql y
kd
il )xki j ∀i ∈ V, j ∈ N , k ∈ K

(27.15)

bi − a j + wi + tvi j ≤ M(1 −
∑
k∈K

xki j ) ∀i ∈ N , j ∈ N (27.16)
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ai − bi − wi − tvi j ≤ M(1 −
∑
k∈K

xki j ) ∀i ∈ N , j ∈ N (27.17)

a j − a j + tdi j ≤ M(1 −
∑
k∈K

∑
d∈D

ykdi j ) ∀i ∈ N , j ∈ N (27.18)

wi ≥ sv
i

∑
j∈V

∑
k∈K

xkji ∀i ∈ N (27.19)

b j − bi + sdj + tdi j − wi ≤ M(1 −
∑
k∈K

∑
d∈D

ykdi j ) ∀i ∈ N , j ∈ N

(27.20)

bi ≥ ai ∀i ∈ N (27.21)

ui ≤ bi ≤ li ∀i ∈ N (27.22)

∑
i∈N

∑
j∈N

di j y
kd
i j ≤ rd ∀k ∈ K , d ∈ D (27.23)

xki j ∈ {0, 1} ∀i ∈ V, j ∈ V, k ∈ K (27.24)

ykdi j ∈ {0, 1} ∀i ∈ N , j ∈ N , k ∈ K , d ∈ D (27.25)

pki j ≥ 0 ∀i ∈ V, j ∈ V, k ∈ K (27.26)

ai ≥ 0 ∀i ∈ N (27.27)

bi ≥ 0 ∀i ∈ N (27.28)

wi ≥ 0 ∀i ∈ N . (27.29)

This mathematical formulation of the GVRPW-DA is developed by modi-
fying the model of VRPTWDR presented by Chen et al. [29]. Objective
(27.7) is considered to minimize the total amount of emissions for both vehi-
cles and assistants. Constraints (27.8) ensure that each customer is served
only once. Constraints (27.9) ensure that some customers cannot be served
by assistants. Constraints (27.10) and (27.11) restrict that each assistant can
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be dispatched at most once at a certain place. Constraints (27.12) make sure
that each van can be used no more than once. Constraints (27.13) balance
the flow at each node. Constraints (27.14) and (27.15) guarantee the payload
balance. Time windows are ensured by constraints (27.16)–(27.22), and they
also eliminate the possibility of generating subtours together with the payload
constraints. The maximum radius of each assistant is constrained by inequal-
ities (27.23). Constraints (27.24–27.29) are used to define the binary and
non-negativity constraints.

27.3.3 Solution Methodology

We now present an enhanced Adaptive Large Neighborhood Search (ALNS)
algorithm proposed by Ropke and Pisinger [33] and Chen et al. [29].
Figure 27.2 illustrates the general framework of the ALNS algorithm. It uses
different removal and insertion operators to achieve both diversification and
intensification. For each current solution s, a removal operator and an inser-
tion operator are chosen based on an adaptive mechanism. This leads to a
neighborhood solution s ’. The Simulated Annealing (SA) acceptance crite-
rion is used to decide whether to update s with s′: s′ is accepted definitely

Fig. 27.2 The framework of the enhanced ALNS algorithm
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when it has a lower objective value than s, otherwise it can be accepted with
a probability calculated as the well-known formula e − ( f (s′) − f (s))/T .
f (s) is the objective value of solution s. T is a parameter representing the
temperature. Let s0 denote the initial solution. The value of T is originally
set as T0 = η1 f (s0), where η1 is a coefficient. The temperature T decreases
as the iteration goes on and its value is revised at each iteration by multi-
plying a cooling rate c (0 < c < 1). The iteration lasts until the preset
termination criteria is satisfied. All iterations are bundled into segments to
facilitate the implementation of the adaptive mechanism for the selection of
used operators.

27.3.4 Initial Solution Generation

We use a Greedy Insertion algorithm to generate an initial (feasible) solution.
As assistants’ routes are based on vans’ routes, a customer who needs to be
visited by a van is selected and a new van route is built (Step 1). Then, in Step
2, the insertion cost is calculated for each customer. The cost of insertion for
a customer is the increase on the objective value after the customer is inserted.
Taking the cost of building a new route, the lowest insertion cost is searched.
During the search, every feasible position in route(s) is evaluated, including
assistant only and van-assistant positions. Step 2 is repeated until there is no
customer left out.

27.3.5 The Adaptive Mechanism for Deciding the Use
of Operators

We use a score for each operator to record its performance in the past itera-
tions, which is also used to calculate the probability to be selected in current
iteration. With a same value as initial value, this score is updated at the end of
every stage, using the following equation: wmi = wm,i−1(1−r)+rπmi/θmi
, where wmi is the score for operator m after segment i, r ∈ [0, 1] acts as a
factor, πmi is the accumulated reward score of operator m in segment i, and
θmi is the times that operator m is selected in segment i. The proposed scores
(i.e., σ1, σ2, σ3) are used to reward the pair of operators when the new solu-
tion obtained by them is accepted [33]. Specifically, the σ 1, σ2, σ 3 are used
when the new solution with an objective value that is lower than the best
solution, the current solution or otherwise, respectively.
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27.3.6 The Proposed Neighborhood Operators

The scheme of the ALNS algorithm is to destroy and reconstruct solutions for
searching a new one. Hence, two types of operators are used: removal oper-
ators and insertion operators. At each iteration, two operators are selected.
The removal operator destroys the current solution through removing some
customers from its routes and the insertion operator reinserts them into
existed routes or creates a new one. Seven removal and five insertion oper-
ators are proposed in this study, some of which are adapted by existing works
[35–37].

27.3.6.1 Removal Operators

In the studied delivery system, as several assistants may be
launched/dispatched at a certain customer’s parking place, customers served
by them need to be removed simultaneously when this specific customer is
removed. In this regard, although the removal operator is intended to pick
one customer, the total number of customers may exceed the predetermined
removal number �.

Worst removal : It removes customer nodes which contribute the most to
the objective value. The cost of customer i is defined as the decrease on
the objective value if it is removed.
Worst assistant removal : This operator focuses on customers visited by assis-
tants first. Then it turns to customers visited by vans when no customer
visited by assistants is left but more customers need to be removed.
Route removal : This operator removes all the customers in the randomly
selected route. It is useful for reducing the total number of routes (vans).
Shaw removal : This operator attempts to select customers that are related
in a predefined way. At the beginning, a customer is selected randomly,
and the related removal operation is applied. Then among customers in
routes, the customer who is the most closely related to already removed
customers is chosen and the removal operation is conducted. The process is
repeated until sufficient number of customers are removed. Four factors are
considered in the assessment of the relatedness in this study: geographical
distance, time window, demand volume and route. Specifically, equation
(27.30) is used to calculate the score.

RC(i, j) =ϕ1di j + ϕ2(|li − l j | + |ui − u j |) + ϕ3|qi − q j | + ϕ4sri j ,
(27.30)
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where RC (i, j ) represents the relatedness score between two customers i
and j. θ1, θ2, θ3, and θ4 are used to weight and harmonize the four aspects,
and sri j is introduced to indicate whether customers i and j belong to the
same route. If customers i and j are in the same route, we set sri j equal to
-1, and 0 otherwise. Two customers with the lowest value of RC (i, j ) are
with a highest relatedness.
Distance removal : With similar procedure to the Shaw removal, this
operator tries to remove customers that are geographically related.
Time window removal : This operator is also similar to the Shaw removal
operator. It focuses on the similarities among customers’ time windows as
the time window constraint plays an important role on the feasibility of a
solution.
Random removal : It randomly selects a customer and conducts the corre-
sponding removal operation. This process repeats until there are sufficient
number of customers removed.

27.3.6.2 Insertion Operators

We define an insertion cost of a customer as the increase on the objective
value after it is inserted. Fundamentally, a customer should be inserted into
the position with the smallest insertion cost. However, for different configura-
tion of current partial route, the best insertion position for a given customer
varies. That is to say, the insertion sequence of customers influences final
routes greatly. Therefore, we design a kind of best insertion operator based
on several different insertion sequences. Then, the greedy scheme is applied
to insert the customer with smallest insertion cost for current route config-
uration. We call this operator as a greedy insertion. Finally, minimum regret
criterion is used, and the regret insertion is deduced. In addition, to diver-
sify solutions for the myopic operators, a noise function is introduced, and
other two corresponding operators are resulted. A brief explanation of each
operator is provided below.

Best insertion: For each customer needs to be reinserted, this operator selects
the position with the smallest insertion cost. Three ways to determine the
insertion sequence are considered. The first one is to randomly select a
customer at each time. The second one is related to the width of time
window. Customers with smaller time window width have higher insertion
priority. In the third one, customer who can only be served by a van has a
higher priority.
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Best insertion with a noise: This operator attaches a noise value (distμε1) to
the insertion cost, where dist is the average van emissions value among all
customers, μ is introduced here as a noise parameter, and ε1 ∈ [−1, 1] is
a random number.
Greedy insertion: Based on the best insertion position of each customer,
this operator inserts the customer with the smallest insertion cost at each
iteration.
Greedy insertion with a noise: It is the variant of the greedy insertion with
the same noise procedure described above.
Regret insertion: 2-regret operator is used in this research. The customer
with the biggest difference between its first and second minimum costs is
selected and inserted at each iteration.

27.4 Numerical Analyses

27.4.1 Instances and Parameters

27.4.1.1 Benchmark Instances

Chen et al. [29] created a library of real-life instances based on postcodes
from Cardiff, United Kingdom. In these instances, customers’ demand, time
window and preference for assistants are randomly created. In this chapter,
we choose the 100-node instances from this benchmark set to investigate
the environmental benefits of the delivery system with autonomous delivery
assistants.

27.4.1.2 Emissions-Related Parameters

According to Figliozzi [38], the summary of the characteristics of assistants is
presented in Table 27.2. The emission parameters presented in this table are
extracted from several publications in the literature. In addition, for safety
consideration, the radius for both drone and robot is set to be 0.5 kilometers
to facilitate a manual supervision for the deliveries.
The summary of the characteristics of the delivery van and the related

emission parameters are presented in Table 27.3.
Furthermore, as drones need additional times for vertical takeoff and

landing, one minute is assumed for takeoff and landing, respectively. More-
over, for vans and robots traveling on urban streets where traffic lights exist,
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Table 27.2 Key parameters used for delivery assistants

Assistant
Speed
(km/h)

Capacity
(kg)

Radius
(km)

εe (kg
CO2e/kWh) β0 (Wh/km) β1 (Wh/km/kg)

Drone 65 5 0.5 0.3773a 18.72b 10.94b

Robot 6.4 10 0.5 0.3773a 10.56c 0.58c

aGoodchild and Toy [39]
bZhang et al. [40]
cBroderick et al. [41]

Table 27.3 Key parameters used for delivery van

Speed (km/h) Capacity (kg) εv
0 (kg CO2 e/km) εv

1 (kg CO2 e/km/kg)

40 1,890 0.266 0.00041

10 percent additional time is included in their total traveling times. The tare
weight of a single robot and a single drone is assumed to be 18 kg and 10 kg,
respectively.

27.4.1.3 Parameters Used in the Algorithm

The ALNS is a parameter sensitive algorithm, and all parameters need to be
prespecified. Preliminary experiments were conducted to decide the values
of these parameters. We cannot claim that the values decided in our experi-
ments is the best possible. However, we have decided parameters based on
other well-performing ALNS applications found in the literature and our
initial insights. We group all parameters used in our algorithm into three
categories: SA framework parameters, adaptive mechanism parameters and
operators’ implementation parameters. We list parameters along with their
values in Table 27.4.

27.4.2 Computational Results

In our experiments, we assumed three different delivery systems: van-only
system (m = 0), using only drones as assistants and using only robots as
assistants. Table 27.5 compares the total amount of emissions generated in
each case. All values in Table 27.5 are the average values of 20 instances.

Generally, powered by electricity, both drones and robots contribute to
emissions reduction. For the scenarios with assistants, the majority of carbon
emissions come from delivery vans and the total amount of emissions from
assistants just account for about 1% of that from delivery vans. When more
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Table 27.4 Parameters used in the ALNS algorithm

Category Definition Value

SA framework parameters Maximum iterations of non
improvement

2,000

Initial temperature parameter (η1) 0.001
Cooling rate (c) 0.99975

Adaptive mechanism
parameters

Scores (σ1, σ2, σ3) (30, 10, 20)

Reaction factor (r) 0.1
Number of iterations in each
segment (Maxiter )

200

Parameters used in
operators

Weights used in Shaw removal (8, 2, 1, 1)

Weights used in Best insertion (0.5, 0.2, 0.2,
0.1)

Randomization parameter 16
Noise parameter 0.08

Table 27.5 The comparison of three scenarios

Number
of
assistants
installed
on a van

Total
emissions
(kg
CO2e)

Emissions
from
vans (kg
CO2e)

Emissions
from
assistants
(kg
CO2e)

Customers
visited by
assistants
(%)

Reduction
in total
emissions

Van-only – 16.75 – – – –
With
drone

1 15.18 15.03 0.15 20.5 9.37

2 15.28 15.10 0.18 24.4 8.76
3 15.39 15.21 0.18 25.0 8.08

With
robot

1 14.71 14.61 0.09 35.0 12.17

2 14.26 14.14 0.12 44.4 14.87
4 14.04 13.90 0.14 50.4 16.18
6 14.86 14.71 0.15 52.0 11.30

assistants are installed in a van, more customers can be allocated to be served
by them. However, the total emissions may increase because of the increased
payload resulting from more assistants installed in the van. As far as those
instances used in this study, a single drone or four robots installed in each
delivery van provided the best performance in terms of emissions reduction.

Compared to the number of customers served by drones, almost twice
more customers are allocated to robots when the same number of assistants
installed. That is because with a very limited capacity, the drone is restricted
to a smaller set of customers. This is the main reason to explain the reduced
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environmental benefits of the van-drone delivery system than that of the van-
robot delivery system in this study.

27.4.3 Sensitivity Analysis

27.4.3.1 Drone Capacity

The limited payload capacity is one of the main deficiencies that weaken the
advantage of drone in delivery operations. In this regard, the influence of the
drone capacity on total emissions is investigated in this study. We set different
values for the drone capacity: 2.5 kg, 5 kg, 7.5 kg and 10 kg. Then, selected
instances are solved under three scenarios with different number of drones
installed in each van. The results are illustrated in Fig. 27.3.

When the drone has a larger capacity, more customers can be served by
this service. As a result, lower total amount of emissions and more environ-
mental benefits are achieved. Furthermore, when the drone has an ability to
carry a weight up to 10 kg, installing more drones in each van becomes more
beneficial. On the contrary, one drone is enough for each van to collaborate
for the deliveries.

Fig. 27.3 Influence of the drone capacity (in kg) on total emissions
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Fig. 27.4 Influence of the drone speed on total emissions

27.4.3.2 The Speed of Delivery Robot

Compared to the drone, delivery robots travel slowly. To this end, we look
at the robot’s speed on the environmental benefits. Based on primary speed
setting, three additional scenarios with different changes on the robot speed
are assumed: 10% decrease, 10% increase and 20% increase. Thus, besides
the base speed (6.4 km/h), the deduced speeds are chosen accordingly: 5.76
km/h, 7.04 km/h and 7.68 km/h. Also, experiments are conducted with
different number of robots installed in each van. Fig. 27.4 presents the results.

As expected, with higher speed of the robot, we obtained better solutions
with lower total amount of emissions. It is noted that when the speed goes
up by 20%, increasing the number of robots installed in each van from 4 to 6
leads to no improvement on total emissions. It is shown that installing more
robots in a van compensates the disadvantage of robots to some extent.

27.5 Conclusions

In this chapter, drones and delivery robots are used in conjunction with a
delivery van to serve customers. This could be a viable way to eliminate
the negative externalities in last mile delivery as it can significantly reduce
traveling distance of delivery vans.

Using drones and delivery robots as assistants in parcel delivery is a new
service option, as seen in Amazon, UPS, Walmart, Alibaba, etc. With their
joint work as assistants, the delivery services would be carried out more
efficiently and environment friendly. When adequately number of assistants
deployed, the cooperated delivery system would reduce the required energy
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consumption and the generated amount of CO2e emissions. In addition,
the improvements on the payload capacity of the drone or the speed of the
robot would strengthen the benefits brought by those assistants and provide
additional CO2e reduction for last mile parcel delivery.

Studying optimization problems related to last mile logistics is essential
for efficient and green parcel deliveries. It is important to explore different
ways that efficiently cooperate multiple available resources including tradi-
tional vehicles and new autonomous vehicles under different circumstances.
For example, a delivery fleet can consist of drones, robots and various
types of vehicles (trucks or vans). Mathematical models should better reflect
the characteristics of actual operations. First, characteristics of newly intro-
duced delivery resources should be included into the modeling. Specifically,
the assistant range constraints, such as the fundamental range limits (time
and/or distance) should be based on realistic energy consumption func-
tions. Second, actual application areas always result in different objectives
and new constraints. Although minimizing total time duration or total
cost are common practices in routing optimization problems, minimization
of emissions, weighted number of late customer deliveries or the sum of
customers’ waiting times may also be investigated by decision-makers. Third,
customers’ acceptance of autonomous vehicles, technological accessibility to
customers’ location and other emergencies, like pandemic, would restrict
delivery resources for those customers. Meanwhile, traffic legislation may
influence the availability or the speed of delivery resources. Fourth, models
and solution methods should be developed to handle stochastic factors of
actual operations (e.g., travel times, delivery times, etc.). And finally, effi-
cient metaheuristic algorithms are essential to solve routing problems rising
in those cooperated delivery systems because exact algorithms may not work
well for even medium-sized instances.
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28
Evaluating the Quality of Radiation Therapy
Treatment Plans Using Data Envelopment

Analyis

Matthias Ehrgott, Andrea Raith, Glyn Shentall,
John Simpson, and Emma Stubington

28.1 Introduction

Apart from surgery and chemotherapy, the third main treatment modality for
cancer is treatment with external high-energy ionising radiation. The radi-
ation can alter the structure of cells, in particular their DNA. Externally
generated radiation is beamed from outside the body through the skin to
enter the body and interact with the cancer cells. Its goal is to damage the
cancer cells and destroy them. Naturally, the radiation will have the same
effect on healthy cells as well, i.e. healthy cells can be destroyed, too. However,
healthy cells have a higher ability to recover from damage than cancer cells.
Radiation therapy exploits this “therapeutic advantage” to destroy cancer cells
while limiting damage to healthy cells.
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Before a patient undergoes a course of radiation therapy, the treatment
has to be planned. This process starts with imaging the patient using CT
and/or MRI scans. These images are used to build a 3D model of the
patient’s anatomy around the tumour site. Healthy tissues such as organs
at risk (OAR), other normal tissue and cancer tissues are outlined in the
images. A treatment planning software is then used to determine the angles
and intensities of the radiation beams to be applied in the treatment. This
planning problem can be considered as an optimisation problem (see [8,
18] for more information on the use of optimisation in radiation therapy
treatment planning). The dilemma of trying to deliver a high dose to the
tumour volume and at the same time a low dose of radiation to OARs
and normal tissue puts this problem firmly into the field of multi-objective
optimisation. Most treatment planning systems in fact optimise a parame-
terised model that is a single objective optimisation problem derived from
the actual multi-objective optimisation problem of the treatment planning
problem. Consequently, the treatment planning process often requires an iter-
ative trial-and-error approach of computing a plan, evaluating the quality of
this plan, identifying areas of improvement and modifying the parameters of
the optimisation model to compute an improved plan of better quality.

In this process, the evaluation of the quality of the treatment plan in terms
of the effect of the radiation dose delivered to the patient is essential and
needs to be performed several times. This will be the focus of this chapter.
Treatment planning follows a clinical protocol, which prescribes a dose of

radiation to the tumour, more precisely one or more planning target volumes
(PTVs) outlined on the scans of the patient. For example, a typical prescrip-
tion is to deliver a dose of 74Gy to the PTV of a prostate cancer case. The
quality of a treatment plan is also described by indicators in the clinical
protocol in terms of indicators Dx , the dose received by x% of the volume
of a PTV, and Vx , the percentage of the volume of an OAR that receives a
dose of x Gy. For prostate cancer, the clinical protocol may specify 20 such
indicators. A plan that satisfies all of the indicators or criteria is considered
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acceptable and would be signed off for treatment. However, this is unlikely
to be possible.

In this chapter, we describe how the management science method of data
envelopment analysis can be used to support the radiation therapy treatment
planning process. In Sect. 28.2 we introduce the orientation and returns to
scale of the DEA model used in this process. In Sect. 28.3 we consider the
problem of feature selection, i.e. the selection of the inputs and outputs of
the DEA model. Next, we address the inevitable issue of uncertainty in the
values of the features and how uncertainty affects the results of the analysis
(Sect. 28.4). Finally, we illustrate how the results of DEA can be used to
provide guidance to treatment planners on how to improve treatment plans
either in an offline manner or as an integral part of the planning process.

28.2 The DEAModel

There is not only a trade-off between achieving tumour control and OAR
sparing, but even between different OAR criteria. Each of the goals of treat-
ment could be achieved individually if the effect of the treatment on the other
goals was ignored. Radiation therapy treatment planning is difficult because
it is precisely this trade-off between the goals that has to be managed prop-
erly. It is very difficult to determine what the best choice of trade-off for an
individual patient is [14]. This is one of the reasons why treatment plan-
ning is difficult. However, treatment centres do have a lot of experience with
planning radiation therapy for cohorts of patients over time. Hence there is
generally data about treatment plans, which have been delivered in the past.
This makes it possible to compare a plan for a new patient to those of former
patients with similar circumstances which have been considered “good”.
This brings the problem of the evaluation of the quality of a treatment

plan into the context of peer evaluation of a set of entities under a common
set of criteria. This is the domain of data envelopment analysis (DEA). In
an economic context, DEA aims at evaluating the performance of a set of
“decision-making units” (DMUs) (such as hotels, bank branches etc.) in
their ability to transform a set of inputs (e.g. number of employees, avail-
able capital) to a set of outputs (e.g. profit, customer satisfaction). A DMU
is called efficient if there is no other DMU that achieves higher outputs with
lower inputs, otherwise inefficient. DEA in its modern form goes back to [3]
and a good introduction can be found in [5]. An important feature of DEA is
that deciding whether a DMU i is efficient or not involves only the solution
of a linear optimisation problem of the form (28.1) or (28.2). Let the number
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of DMUs be I , each DMU i having N inputs is summarised in the vector
xi and M outputs summarised in the vector yi . The inputs of all DMUs are
then collected in N × I matrix X , the outputs in M × I matrix Y .

min
{
θ : −yi + Yλ ≥ 0; θxi − Xλ ≥ 0; λ ∈ �

}
, (28.1)

max
{
ϕ : −θyi + Yλ ≥ 0; xi − Xλ ≥ 0; λ ∈ �

}
. (28.2)

In (28.1) and (28.2), θ ∈ R, ϕ ∈ R and λ ∈ R
I are the decision variables.

A DMU is considered efficient if the optimal value of either of these linear
optimisation problems is 1. This implies it is impossible to proportionally
decrease the inputs (28.1) or proportionally increase the outputs (28.2). An
optimal value different from 1 indicates that this is possible, i.e. either inputs
can be decreased or outputs increased without affecting outputs or inputs
adversely. The set � determines the returns to scale of the DEA model, i.e.
whether a proportional increase of inputs leads to a smaller, constant or larger
proportional increase of outputs.
Thinking about radiation therapy, there is a clear similarity: If the radiation

therapy plans are considered the DMUs, the goal is to determine whether a
plan is efficient among a set of plans for the same cancer type treated at the
same treatment centre using the same treatment protocol (to ensure compa-
rability). Then the inputs are the doses delivered to OARs (and healthy tissue
in general), reported by Vx indicators, and the outputs are the doses to the
PTVs, reported by Dx indicators. Hence, if the optimal value of θ or ϕ of a
treatment plan is 1, we conclude that there is no evidence in the data set that
any plan in the data set is better. If it is different from one, the solution will
identify a subset of plans (those plans j for which λ j �= 0 in an optimal solu-
tion to (28.1) or (28.2) that in combination have features that outperform
the current plan, therefore providing guidance on how the current plan may
be improved.

We now need to identify the type of DEA model that is appropriate for
the radiation therapy treatment planning context. In Sect. 28.2.1 we identify
the orientation and returns to scale for the DEA model. We then devote
Section 28.3 to methods to determine the features, i.e. the inputs and outputs
to be used as well as other factors that may be considered as influential for
the quality of a plan, but that are not part of the treatment planning process.
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28.2.1 Orientation and Returns to Scale

Working with clinical staff in the UK and New Zealand, we have learned
that treatment planners are very good at using the treatment planning system
to design plans that meet the primary prescriptions for a PTV (such as
74 Gy in a prostate cancer case). Hence planners focus on achieving tumour
control. Since increasing dose to the tumour beyond the prescribed dose is
not desirable they will in subsequent iterations of the planning process focus
on reducing the dose to organs at risk to meet more criteria for Vx indicators.
We have therefore used input-oriented model (28.1) in all work conducted
on this topic, see [12, 16].

Because of the physics of radiation it is possible to obtain a constant
increase of the dose to PTV for each unit change of dose to OARs by scaling
the entire dose distribution we could assume constant returns to scale (CRS)
in the DEA model. However, scaling the entire dose distribution may result
in undesirable doses, such as hot spots in OARs or cold spots in a PTV. This
implies that the CRS model might identify plans as efficient that are not
clinically acceptable. Therefore, the assumption of variable returns to scale
(VRS), in which linear combinations of DMUs that are most preferable for
the corresponding input level, is more appropriate. Assuming that the DMUs
with different input levels are all clinically acceptable plans, a VRS model
offers a better approximation of what is clinically attainable for a given input
level than a CRS model.

28.3 Feature Selection

In this section we describe the selection of features (inputs and outputs)
considered in the DEA model. Recognising that we have already settled on
an input-oriented model, we select inputs related to doses delivered to organs
at risk and outputs related to doses delivered to PTVs.

28.3.1 Expert Opinions

In the first study [12] on this topic, we consulted clinicians on which indi-
cators are most significant to determine the quality of a radiation therapy
treatment plan for prostate cancer. The DEA model needs at least one input
and one output. We decided to select DPTV

95 , i.e. the dose received by 95%
of the PTV volume, as the single output. Clinicians consider the rectum as
the OAR that most influences the ability to achieve the best dose to the PTV.
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Hence the generalised equivalent uniform dose to the rectum was selected as
the single input. Generalised equivalent uniform dose (gEUD [15]) is a theo-
retical dose value that if delivered uniformly would have the same effect as the
actually delivered non-uniform dose distribution. Hence, the purpose of the
DEA model is to compare plans in their efficiency to generate a dose distri-
bution that matches the prescription dose in the PTV as closely as possible
while maximising rectal sparing.

In [19] the study described in [12] has been extended to use different
inputs and outputs and to gauge the technical requirements for using DEA
for plan assessment.

Prostate cancer is of course the main type of cancer for males, so treatment
centres usually have a lot of experience with planning radiation therapy for
prostate cancer cases. The situation is very different for cancers in the head
and neck area of a patient. Raith et al. [16] describe research that considers
the DEA approach to plan evaluation for the more complex case of head and
neck cancers.

In head and neck cancer cases often, two main PTV structures are defined:
PTV70, which is treated with a prescription dose of 70 Gy and a larger
volume denoted PTV54 with a prescription dose of 54 Gy. PTV70 is the
target volume that contains the primary tumour and involved lymph nodes
and therefore represents the primary treatment volume. Therefore, DPTV 70

98
has been chosen as an output. Clinicians identified tumour volume, i.e. the
volume of PTV70, as an important indicator of expected side effects and so
it has been chosen as a second output. In an input-oriented DEA model,
this means that any DMU (RT plan) is only compared to a benchmark plan
with at least the same tumour volume, i.e. the volume of PTV70 acts as a
non-discretionary environmental variable.
The inputs considered in this study are the average dose received by the

oral cavity and the total swallowing volume. These values are adjusted statis-
tically to model closeness of the OAR and PTV70. To include many other
criteria relevant in quality assessment, two additional inputs are considered.
These are aggregate scores for criterion attainment/violation modelled by
empirical cumulative distribution functions. Further details on how these
inputs and outputs are computed can be found in [16].

28.3.2 Principal Component Analysis

A drawback of relying on clinical expertise of physicians to define inputs
and outputs is that the measures that are identified are not necessarily auto-
matically computed for a plan once it has been created. On the other hand,
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indicators described in the clinical protocol will be computed and reported
on for every plan. Therefore, selecting inputs and outputs from the indicators
reported in the clinical protocol in an objective way makes this selection inde-
pendent of the clinical expertise present at a particular treatment centre and
enables comparisons to be made between treatment centres with similar clin-
ical protocols. This also avoids additional effort to compute other measures
not reported on by default.

Subington et al. [22] describe a procedure to use principal component
analysis (PCA), see Joliffe [11] to select the inputs and outputs for the DEA
model from a set of ten input and nine output indicators reported in the
clinical protocol for a treatment centre in the UK. Let us first note that it
is not possible to select all the criteria in the clinical protocol for the DEA
model. This is because if the number of features (M+N ) is high in relation to
the number of DMUs I , the DEA model loses its discrimination power and
many DMUs will be classified as efficient because they perform particularly
well for a single input or output. Dyson et al. [7] suggest that I > 2×M×N
DMUs are required to achieve a reasonable level of discrimination and [4]
suggest I > max{M × N , 3 × (M + N )}.

In PCA, the variables in the data set (here the indicators reported due
to the clinical protocol) are transformed into new variables called the prin-
cipal components. These are directions in which the data are most dispersed.
Subington et al. [22] describe an algorithm called AutoPCA that, for a cohort
of radiation therapy treatment plans for prostate cancer from the treatment
centre investigated selects one input variable each for the bladder and rectum
as well as one output variable.

28.3.3 Environmental Factors

The quality of a radiation therapy treatment plan may be influenced by
factors outside of the delivered radiation. These factors are called environ-
mental variables or non-discretionary variables, to indicate that they are
relevant for the performance of a plan but their values are outside the control
of the DMU, i.e. they are not affected by the plan. For example, Lin et al.
[12] consider the percentage volume of the rectum that overlaps the PTV as
an environmental variable: The higher the overlap the more difficult it is to
achieve good PTV coverage and low OAR dose simultaneously. In the input-
oriented DEA model, an environmental variable is considered in the same
way as an output:

−zi + Zλ ≥ 0. (28.3)
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In (28.3), like X and Y in (28.1) and (28.2), Z is an L× I matrix containing
the data of all L environmental variables for all I DMUs, zi is the i th column
of Z and λ is a vector of decision variables. (28.3) guarantees that DMU i is
only compared to DMUs Zλ the value of which is at least as high as that of
DMU i. In the same way, as PTV-rectum overlap in [12], the output tumour
volume in [16] is essentially an environmental factor.

28.4 Dealing with Uncertainty

It is well known in radiation oncology that the doses delivered to structures
are usually (slightly) different from those calculated during treatment plan-
ning. This uncertainty in predicting radiation dose delivered to PTVs and
OARs has many sources. The first is the inherent uncertainty in the compu-
tational models for radiation dose. These are mathematical models of the
physical interaction of radiation (photons, electrons) with biological tissue
representing the deposition of dose in the body. This process accounts for
some inaccuracy. Further factors are the physical design of the treatment
machines delivering the radiation. Small amounts of radiation leakage cannot
be prevented.

Apart from these mathematical and engineering factors, a compounding
issue arises due to the delivery of the treatment over several fractions. Since
patients return for treatment over a number of days, it is inevitable that
the positioning of the relevant structures differs slightly from day to day.
Roeske et al. [17] explore changes in size and location of the prostate, bladder,
and rectum during a course of external beam radiation therapy. The authors
conclude that the prostate volume can change by ±10% and the rectal and
bladder volumes can change by up to ±30%. Moiseenko et al. [13] report
changes in bladder volume from 419 cm3 to 90 cm3 during the treatment
and [2] investigate changes in prostate volume throughout treatment and
find that averaged over all patients and not including setup errors, the mean
displacements are slightly less than 0.5cm. However, for individuals the range
of displacement is from 0.03cm to more than 1.5cm. Das et al. [6] observe
high variability among planners and institutions, reporting that the median
dose to the tumour can vary by ±10% of the prescribed dose across 96% of
the patient population.
The standard assumption is that uncertainty is proportional to the dose.

The international commission on radiation units and measurements [1]
conclude that the available evidence for certain types of tumour points to
the need for accuracy ±5%. Combining the standard uncertainty value for
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dose determination and the uncertainty associated with Pinnacle (a treat-
ment planning system) for multileaf collimators [10] suggest an uncertainty
of 3.6%

28.4.1 Simulation

One way of dealing with uncertain data is to run the DEA analysis several
times with simulated data, fixing uncertainty sets, and randomly selecting
values for X and Y from those uncertainty sets. This is the approach taken
in [20]. The authors consider a data set of 51 radiation therapy treatment
plans for prostate cancer. They replicate the DEA analysis for dose values
v ± ε with ε ≤ u for the values of u ∈ {0.1, 0.5, 1, 1.8, 3.6, 5} 1000 times
for each value of u. They record the largest efficiency score for each u and
observe that this increases as the value of u increases. The interpretation of
the results allows differentiating between treatment plans that are inefficient
assuming the data are exact, but become efficient with 5% uncertainty: These
plans are probably good but have been classified as inefficient due to the
uncertain data. In [20], 13 plans are efficient with an uncertainty level of u
= 0.1%, 17 with u = 0.5%, 21 with u = 1%, and 23 with u = 1.8%. This
increases to 37 when the uncertainty increases to 3.6% and 45 for u = 5%.
Six treatment plans are still inefficient even with 5% uncertainty. Re-planning
of those might in fact resolve structural problems with the original plans and
improve them.

28.4.2 Uncertain DEA

A formal model of dealing with DEA in the presence of uncertain (input and
output) data is developed in [9]. Following the principles of robust optimisa-
tion, rather than assuming exact values for X and Y , input and output values
are chosen from an uncertainty set. For given uncertainty sets, the robust
efficiency score of DMU i is defined by changing the constraints in (28.1) to
hold for all data in the uncertainty set. The authors show that as uncertainty
increases (uncertainty sets get bigger in terms of set inclusion), the robust
efficiency score increases, too. They introduce the notion of the amount of
uncertainty and pose the uncertain DEA (uDEA) problem of determining
the largest possible robust efficiency score and the minimal amount of uncer-
tainty at which that can be obtained. If this value is 1, a DMU is termed
capable, otherwise incapable. For the case of ellipsoidal uncertainty sets [9]
propose a first-order algorithm to solve the uncertain DEA problem.
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The model in [9] is rather general, even allowing relationships between
the uncertainty sets for different inputs and outputs. Therefore [21] consider
uncertain DEA for the case of box uncertainty, i.e. the uncertainty sets for
each input and output are boxes. They demonstrate that without limit on
the allowable amount of uncertainty all DMUs are capable in uncertain DEA
with box uncertainty. Hence an interesting question in the application of
DEA to radiation therapy treatment planning is to determine those plans that
are capable under given upper bounds on the allowable amount of uncer-
tainty in dose values reported in radiation therapy, e.g. those mentioned
in Sect. 28.4. Because the robust DEA model of [9] reduces to a linear
optimisation problem for fixed uncertainty sets, [21] propose an iterative
linear optimisation procedure to solve the uncertain DEA problem for box
uncertainty to some pre-specified accuracy.

28.5 Application in Practice

The ultimate goal of this research on evaluating the quality of radiation
therapy treatment plans is to guide the treatment planning process to steer it
towards a plan that is as good as possible for the individual patient. As indi-
cated before, this involves identifying plans that are inefficient, respectively
incapable and exploiting the information provided by the optimal solution
of the (uncertain) DEA problem to provide the treatment planners with
information that allows them to improve the plans.

28.5.1 Informing the Treatment Planning Process

The study of [12] works with a set of 37 plans for prostate cancer cases
from a treatment centre in Auckland, New Zealand. Five inefficient plans
were selected for re-optimisation. A planner was then instructed to further
improve rectal sparing while maintaining overall clinical acceptance for the
selected plans without access to the results of DEA. The efficiency scores of
the selected plans were less than the original average efficiency score (0.985).
The re-optimisation of plan 31 produced an additional efficient plan in the
dataset. This plan extends the efficient frontier slightly and results in lower
or equal efficiency scores of all other plans compared to those of the orig-
inal dataset. The efficiency scores of the re-optimised plans were higher than
those of the original plans, with an average improvement of 0.026. This
improvement is quite substantial since the standard deviation of the efficiency
scores was only 0.012. All of the re-optimised plans achieved an efficiency
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score higher than the re-optimised average efficiency score (0.98). A clinical
peer review of the plans was performed by an independent radiation oncol-
ogist, who was not the clinician originally involved in the planning. In this
review, clinical and DVH parameters not included in the DEA (i.e. bladder,
femoral heads, dose maxima, hot spot percentage and site, etc.) were also
taken into account. The review confirmed that three re-optimised plans were
deemed superior when compared with the original plans. The other two were
considered to be of similar quality than the original ones.

Figure 28.1 shows the DEA results with all plans plotted with their values
of DPTV

95 against the values of gEUDrectum . The environmental variable
of PTV-rectum overlap is indicated by colour. Figure 28.2 shows the dose
volume histograms (DVH) for one of the originally inefficient plans and its
re-optimised version. A DVH plots the percentage volume of a structure of
interest that receives at least a certain dose of radiation. The diagram shows
that the PTV coverage of both plans is essentially the same. However, the
curve for dose to the rectum of the re-optimised plan is below the curve for
the original plan, illustrating the additional rectal sparing achieved.

Fig. 28.1 (Figure 2(b) in [12]) Plot of the data points where colour represents PTV
rectum overlap after re-optimisation of a subset of the plans. Red numbers indicate
treatment plans considered efficient in the DEA analysis. Black numbers indicate
treatment plans selected for re-optimisation
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Fig. 28.2 (Figure 4(b) in [12]) Dose volume histogram for a radiation therapy
treatment plan before and after re-optimisation following DEA

Considering uncertainty, in particular box uncertainty as described in [21]
all of these 42 treatment plans (the 37 original ones plus five re-optimised
ones) have been considered to determine what is the minimum amount
of uncertainty required to deem each plan efficient. Figure 28.3 shows the
nominal efficiency score (assuming DPTV

95 and gEUDrectum values are
exact) on the horizontal axis versus this minimal amount of uncertainty on
the vertical axis. These calculations have been performed with the iterative
linear optimisation method using the method described in [21]. Note that
plans that are efficient with the nominal data are all located at (1, 0) in this
diagram.
The software to extract the inputs and outputs for use in the DEA analysis

has also been deployed at a treatment centre in the UK.

28.5.2 Integration in the Treatment Planning Process

Considering the use of DEA analysis as an integral part of the planning
process that provides immediate feedback on the quality of a treatment plan
to improve the next iteration, we refer to [16]. Similar to [12], five plans have
been randomly selected for further improvement. The planner selected one of
the final plans and aimed to improve plan quality as viewed holistically based
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Fig. 28.3 (Figure 2(b) in [21]) Plot showing the minimal amount of uncertainty for
which the 42 plans considered in [12] become capable

not only on the usual clinical criteria used for evaluation, but also the DEA-
based feedback. The planner performed between two and four iterations and
accepted the results for four out of the five plans, while the fifth was rejected
due to remaining concerns regarding some OARs. This experiment demon-
strates that the integration of the DEA tool in the planning process can lead
to improved treatment plans without consuming additional time.

Acknowledgements The authors would like to acknowledge the contribution of
other colleagues to prior research that has been published in references listed below.
Thanks go to Fariza Fauzi, Kuan-Min Lin, Andrew Macann, Rachel Norris, Paul
Rouse and Giuseppe Sasso. While the writing of this paper was not supported by
any grant, the authors are grateful to EPSRC and Auckland Medical Foundation for
their support in prior research.

References

1. Andreo, P., Cramb, J., Fraass, B., Ionescu-Farca, F., Izewska, J., Levin, V., Mijn-
heer, B., Rosenwald, J., Scalliet, P., Shortt, K., et al. (2004). Commissioning and
quality assurance of computerized planning systems for radiation treatment of
cancer. International Atomic Energy Agency Technical Report Series, (430).



896 M. Ehrgott et al.

2. Antolak, J. A., Rosen, I. I., Childress, C. H., Zagars, G. K., and Pollack,
A. (1998). Prostate target volume variations during a course of radiotherapy.
International Journal of Radiation Oncology Biology Physics, 42(3), 661–672.

3. Charnes, A., Cooper, W., and Rhodes, E. (1978). Measuring the efficiency of
decision making units. European Journal of Operational Research, 2(6), 429–444.

4. Cooper, W., Seiford, L. M., and Tone, K. (2006). Introduction to data envel-
opment analysis and its uses: with DEA-solver software and references. Springer
Science & Business Media.

5. Cooper, W., Seiford, L., and Zhu, J. (2011). Data Envelopment Analysis: History,
Models and Interpretations. Handbook on Data Envelopment Analysis. Springer
Science and Business Media.

6. Das, I. J., Cheng, C.-W., Chopra, K. L., Mitra, R. K., Srivastava, S. P., and
Glatstein, E. (2008). Intensity-modulated radiation therapy dose prescription,
recording, and delivery: Patterns of variability among institutions and treatment
planning systems. Journal of the National Cancer Institute, 100(5), 300–307.

7. Dyson, R., Allen, A., Camanho, A., Podinovski, V., .Sarrico, C., and Shale, E.
(2001). Pitfalls and protocols in DEA. European Journal of Operational Research,
132(2), 245–259.

8. Ehrgott, M., Güler, c., Hamacher, H. W., and Shao, L. (2008). Mathematical
optimization in intensity modulated radiation therapy. 4OR, 6(3), 199–262.

9. Ehrgott, M., Holder, A., and Nohadani, M. (2018). Uncertain data envelop-
ment analysis. European Journal of Operational Research, 268(1), 231–242.

10. Henríquez, F. and Castrillón, S. (2008). A novel method for the evaluation
of uncertainty in dose-volume histogram computation. International Journal of
Radiation Oncology*Biology*Physics, 70(4), 1263 – 1271.

11. Joliffe, I. (2002). Principal Component Analysis. Springer Series in Statistics.
Springer, second edition.

12. Lin, K.-M., Simpson, J., Sasso, G., Raith, A., and Ehrgott, M. (2013).
Quality assessment for VMAT prostate radiotherapy planning based on data
envelopment analysis. Physics in Medicine & Biology, 58(16), 5753.

13. Moiseenko, V., Liu, M., Kristensen, S., Gelowitz, G., and Berthelet, E. (2007).
Effect of bladder filling on doses to prostate and organs at risk: A treatment
planning study. Journal of Applied Clinical Medical Physics, 6(1), 55–68.

14. Moore, K. L., Brame, R. S., Low, D. A., and Mutic, S. (2011). Experience-
based quality control of clinical intensity-modulated radiotherapy planning.
International Journal of Radiation Oncology* Biology* Physics, 81(2), 545–551.

15. Niemierko, A. . (1999). A generalized concept of equivalent uniform dose.
Medical Physics, 26, 1100.

16. Raith, A., Ehrgott, M., Fauzi, F., Lin, K.-M., Macann, A. amd Rouse, P., and
Simpson, j. (2022). Integrating data envelopment analysis into radiotherapy
treatment planning for head and neck cancer patients. European Journal of
Operational Research, 296(1), 289–303.

17. Roeske, J. C., Forman, J. D., Mesina, C., He, T., Pelizzari, C. A., and Fontenla,
E. e. a. (1995). Evaluation of changes in the size and location of the prostate,



28 Evaluating the Quality of Radiation … 897

seminal vesicles, bladder, and rectum during a course of external beam radia-
tion therapy. International Journal of Radiation Oncology, Biology, Physics, 33(5),
1321–1329.

18. Shepard, D., Ferris, M., Olivera, G., and Mackie, T. (1999). Optimizing the
delivery of radiation therapy to cancer patients. SIAM Review, 41(4), 721–744.

19. Simpson, J., Raith, A., Rouse, P., and Ehrgott, M. (2017). Considerations for
using data envelopment analysis for the assessment of radiotherapy treatment
plan quality. International Journal of Health Care Quality Assurance, 30(8), 703.

20. Stubington, E., Ehrgott, M., Shentall, G., and Nohadani, O. (2018). Evalu-
ating the Quality of Radiotherapy Treatment Plans for Prostate Cancer, chapter 2,
pages 41–65. Springer Science & Buisness Media.

21. Stubington, E., Ehrgott, M., and Nohadani, O. (2021a). Uncertain data
envelopment analysis: Box uncertainty. Technical report, Lancaster University.

22. Stubington, E., Ehrgott, M., Shentall, G., and Norris, R. (2021b). Variable
selection methods to evaluate the quality of radiotherapy treatment plans.
Technical report, Lancaster University.



Index

0–9
2E-CVRP 76, 90, 92–97
2E-VRP 76, 91, 92, 95
2L-CVRP 76, 79, 81–87, 89
3L-CVRP 76, 79, 81, 86–89

A
Adaptive Large Neighborhood

Search (ALNS) 76, 89, 95, 97,
870

Advice 551, 554, 555
Agreements to act 740
Analogies 543
Anchoring 549, 550
Ant Colony Optimisation (ACO)

381
Ant System 382
Apprenticeship 763
Approximation 512, 523, 526
Artificial Intelligence (AI) 721
Assembly Scheduling 472
Attractiveness 213

B

B&C 76, 84, 86, 97, 98
Bee Algorithm 384
Behavioural economics 725
Behavioural game theory 724
Behavioural interventions 725
Behavioural operations management

(BOM) 722
Behavioural OR (BOR) 722
Behavioural research 725
Behavioural sciences 724
Behaviour beyond models 723
Behaviour in models 723
Behaviour with models 723
Bias estimation 598
Big data 514, 515, 522, 726, 806,

816, 828
Bilevel optimisation 3, 4, 6, 8–10,

14
Bilevel problem 8, 9, 11
Bipartite Quadratic 474
Bootstrap 586
Bootstrapping 332
Boundary object 759

© The Editor(s) (if applicable) and The Author(s), under exclusive
license to Springer Nature Switzerland AG 2022
S. Salhi and J. Boylan (eds.), The Palgrave Handbook of Operations Research,
https://doi.org/10.1007/978-3-030-96935-6

899

https://doi.org/10.1007/978-3-030-96935-6


900 Index

Branch-and-bound 238, 241, 242,
258

Branch-and-Cut 76, 84, 86, 97, 98
Bucket order 164

C
Cannibalization 223
Capacitated Modular Hub Location

473
Capacitated Vehicle Routing

Problem 76, 80, 84
Capacitated Vehicle Routing

Problem with
Two-dimensional Loading
constraints 76, 79, 81–87, 89

Capacitated Vehicle Routing
Problem with
Three-dimensional Loading
constraints 76, 79, 81, 86–89

Chemical engineering applications
393

Circle packing 409
Civil engineering applications 393
Cluster order 164
Cognitive biases 549
Compartmentalized knapsack

problem 132
Competences 763
Competitive Location 209
Complexity 743
Compromise Programming 195,

196, 198, 200, 202
Computational complexity 5, 16,

20, 28, 30
Conditional decomposition 681
Conditional Location 278
Conflict 743
Continuous knapsack problem 107
Continuous knapsack problem with

setups 114
Continuous Location 269
Continuous location problems 412
Continuous Optimization 473

Cover Based Model 212
Cover Model 280
Cutwidth minimization problem

411
CVRP 76, 80, 84

D
Data envelopment analysis 307, 345
Data mining 513
Data structure 523, 525
Decision analysis 724
Decision-making 725
Decision-making transparency 727
Decision tree 516
Decomposition 555–557
Deep learning 514, 515, 521, 529
Delivery robots 860
Delphi 559, 560
Delta method 578
Democratising forecasting 705
Density forecasts 542, 550, 556
Deterministic FSS 413
Differential Dispersion 471
Diffusion limit 676, 683, 684
Digital transformation 781, 785,

787, 795
Directional distance function 336,

337
Directional returns to scale 345
Discounted 0-1 knapsack problem

109, 112
Discrete covering location problem

49
Discrete facility location 44
Disjunctively constrained knapsack

problem 120
Disorder 169, 170
Distance Correction 214
Distributionally robust optimization

595
Double-bootstrap 334
Drones 860
Duplication 525, 526



Index 901

E
Educational timetabling 391
Engineering psychology 725
Equity Model 275, 284
Ethics 782, 787, 789, 790, 795
Evaluation 761
Evidence 760
Experimental research 724
Explainable AI 727

F
Facilitated modelling 744
Facilitation 737
Fast-and-frugal-heuristics 726
Feedback 553, 554, 559, 560
Filtering 243, 252, 253
Fluid limit 681, 683
Forecasting beneficiaries 696
Forecasting education 695, 700, 707
Forecasting for social good 696, 697
Frame 741
Fuzzy AHP 640
Fuzzy DEA 328, 329
Fuzzy ELECTRE 643
Fuzzy MADM 623–627, 638
Fuzzy measures 632, 635, 638
Fuzzy preference relations 638–640
Fuzzy PROMETHEE 641, 642, 644
Fuzzy TODIM 644
Fuzzy TOPSIS 635, 646
Fuzzy VIKOR 636, 637

G
Generating Test Problems 285
Genetic Algorithms (GA) 377
Global optimization 608
Goal Programming 192, 194
Graph coloring 411
Gravity Model 211
Gravity Rule 227
Gray Pattern 487
Greedy Insertion 871

Greedy Randomised Adaptive Search
Procedure (GRASP) 363

Green simulation 583
Green technology 860, 863, 879
Green VRP 864
Group forecasting 560
Groups 743
Groupthink 552, 553
Guided local search 370
GVRPTW-DA 867

H

Hard OR 721, 725, 729, 740
Head and neck cancer 888
Heuristic concentration 511
Heuristics 156, 357, 545, 549, 725
Heuristics-and-biases 726
HFS 623, 647
High point relaxation 8, 11
Hill-Climbing Methods 360
Hindsight bias 544
Hub location problem 54
Human behaviour 724
Human factors 725
Humanitarian logistics 835
Humanitarian supply chain 836
Hybridisation 501, 504, 505, 507,

510
Hyper-heuristics 502, 503
Hyper parameter optimisation 529,

531

I

IFS 622, 639, 647
Implementation issues 523
Infinite-server 684
Information cues 541
Input Uncertainty 574
Integer knapsack problem with

setups 114
Integrated routing problems 73



902 Index

Integrated Vehicle Routing Problem
(IVRP) 74, 76

Integrating exact within heuristics
511

Integrating heuristics with exact 505,
509

Integrating heuristics with heuristics
502

Intentions surveys 542
Interaction Screening 807, 810, 813,

814
Interval analysis 238, 241
Inventory Routing Problem (IRP)

76–78
Iterated Local Search 366

J
Judgement 725

K
Kemeny problem 159
Kendall-tau distance 156, 159
Kernel search 508
Knapsack constrained maximum

spanning tree problem 116
Knapsack problem 105
k-out-of-n system 662

L
Lagrangean relaxation 506, 507
Large Neighborhood Search (LNS)

76, 85, 86, 89, 90, 95–97, 369
Last mile logistics 859
Leader-follower problem 26
Less is More 469
Lifetime importance 665
LIMA Algorithm 474
Linear ordering problem 155, 164,

168
List-based threshold accepting 374
Local branching 510

Local FSS 413
Location and Design 220
Location applications 392
Location on a Sphere 276, 292
Location Routing Problem (LRP)

76, 78, 79
Logistics 861
Lost Demand 222

M
Machine learning 514–516,

529–531
Massive Data Analysis 821
Mathematical model 850
Maximum expected covering

location problem 51
Maximum min-sum dispersion

problem 411
Maximum weighted independent set

problem 121
Max-Mean Diversity 472
Mechanisms 754
Memetic algorithm 504
Metaheuristics 13, 164, 168, 353,

375, 377, 387, 389, 447, 448,
454, 456, 502, 505, 511, 861

Metamodeling 581
MINLP 238, 247, 259
Mixed linear knapsack problem 107
Model 741
Model-based 741
Modelling 737
Monte-Carlo FSS 412
Multidimensional knapsack problem

111, 122, 128
Multidimensional knapsack problem

with demand constraints 126
Multidimensional multiple-choice

knapsack problem 109, 129
Multi-item capacitated lot-sizing

problem 410
Multi-Level Composite Heuristic

366



Index 903

Multi-objective Evolutionary
Algorithm 188, 189, 201

Multi-Objective Optimization 181,
183, 189

Multiple-choice knapsack problem
109

Multiple-class integer knapsack
problem with setups 114

Multiple comparisons with the best
607

Multiple Criteria Decision-Making
182

Multiple knapsack problem 128
Multiple knapsack problem with

color constraints 134

N

Negative data 339
Neighbor knapsack problem 115
Neighbourhood reduction 527, 528
Network DEA 308, 317
Neural network 515, 519, 531
Nonlinear Equations 473
Nurse rostering 391

O

Obnoxious Facility 274, 282, 291,
293, 483

Obnoxious p-Median 472
One Center 274, 290
Open-source forecasting software

699
Optimism bias 546, 551
Optimistic solution 6, 7
Optimization 447, 448, 450–454,

457, 459, 460, 463, 464
OR actors 722
OR in practice 722
OR methods 722
OR praxis 722
Overconfidence 544, 550, 556

P

Packing unequal circles 409
Parallelisation 517, 523, 531
Parallel System 662
Pareto Set 183, 185, 202
Partially ordered knapsack problem

115
Particle Swarm Optimisation (PSO)

386
Pattern recognition 549
P-Center 280, 293
Permutation 154, 156, 161, 164
Pessimistic solution 6, 7
P-HFS 623, 624, 647
P-Median 279, 292, 479
Point forecasts 551, 553, 556–558,

562
Population-based algorithm 447,

448
Population-Based Heuristics 377
Practice 765
Precedence constrained knapsack

problem 115, 119
Prediction interval 542, 548, 550,

554, 556
Prediction markets 560
Predictive analytics 541
Preference matrix 154, 157, 163
Principal component analysis 889
Problem decomposition 512
Problem Perturbation Heuristic 367
Problem structuring 741
Problem structuring methods 737,

785
Product knapsack problem 121
Products 754
Prostate cancer 888
Proximity Rule 211
Public-private partnership 838

Q

Quadratic knapsack problem 106



904 Index

R
Radiation therapy 886
Radio therapy 390
Random forest 515, 516, 532
Random Noise 369
Random walk FSS 413
Rank aggregation problem 154, 159,

164
Ranking 154, 159, 169
Ranking and selection 602
Record to record heuristic 374
Reduced FSS 413
Reformulation descent 414
Reformulation local search 419
Reliability 660
Reliability importance 664
Research 766
Retrial queue 682
Returns to scale 345
Risk achievement worth 667
Risk reduction worth 667
Routing applications 391

S
“Sciences of the artificial” 725
Scripts 765
Selection rule 245, 254
Series System 661
Set-union knapsack problem 117
Setup knapsack problem 113
Setup time 675, 676, 678–684
Simon, Herbert 725
Simulated Annealing (SA) 76, 85,

370, 870
Simulation 724
Simulation optimization 599
Sine Cosine Algorithm 447, 448,

450, 453, 456, 457, 459, 461
Single-source capacitated location

problem 44
Sociology 727
Soft OR 721, 785, 787
Sport management 390

Stackelberg Equilibrium 217
Stackelberg game 3, 4, 9
Stakeholders 743
Steepest descent FSS 414
Stochastic DEA 324
Stochastic FSS 412
Strategic choice approach 784, 788,

790
Strategic Oscillation 368
Structure importance 663
Subdivision rule 246, 255
Subset selection 606
Subset-union knapsack problem 115
Superforecasters 544, 545
Support vector machine 515, 518

T
Tabu Search (TS) 76, 84, 87, 89,

374
Teaching 764
Threshold-Accepting Heuristics (TA)

373
Threshold Objective 216
Timetabling problem 410
Trade-off 885
Transitional object 759
Traveling Repairman 472
Traveling Salesman Problem (TSP)

76, 81
Two-Echelon Capacitated Vehicle

Routing Problem 76, 90,
92–97

Two-Echelon Vehicle Routing
Problem 76, 91, 92, 95

U
Unbounded knapsack problem 107
Uncertain DEA 891
Uncertainty 55, 743
Undesirable factors 342
Use 754
Utility Function 211



Index 905

V
Valid inequalities 528, 533
Van-assistant delivery system 865
Variable formulation search 417
Variable Neighborhood Formulation

Space Search/Variable
Neighborhood FSS 415

Variable Neighbourhood Search
(VNS) 76, 84, 85, 89, 97, 364

Variable Objective Search 416

Variable Selection 807, 808
Variable space search 419
Vehicle Routing Problem (VRP) 74,

76, 79–81, 89–91

W
Weber Problem 270, 289
Workload 676, 678
Workshop 743


	Preface
	Acknowledgments
	Contents
	Contributors
	List of Figures
	List of Tables
	Part I Discrete (Combinatorial) Optimisation
	1 Bilevel Discrete Optimisation: Computational Complexity and Applications
	1.1 Introduction
	1.2 Main Definitions and Properties
	1.3 Computational Methods
	1.3.1 Exact Methods
	1.3.2 Metaheuristics

	1.4 Computational and Approximation Complexity
	1.4.1 Polynomial Hierarchy
	1.4.2 Σ2P-Hard Bilevel Programming Problems
	1.4.3 Approximation Hierarchy

	1.5 Applications
	1.6 Conclusion
	References

	2 Discrete Location Problems with Uncertainty
	2.1 Introduction
	2.2 The Single-Source Capacitated Facility Location Problem with Uncertainty
	2.3 Covering Location Problems with Uncertainty
	2.3.1 Set Covering Models with Uncertainty
	2.3.2 Maximum Covering Models with Uncertainty
	2.3.3 Other Covering Location Models

	2.4 Hub Location Problems with Uncertainty
	2.4.1 Demand, Cost, and Time Uncertainty
	2.4.2 Network Reliability and Resilience
	2.4.3 Hub Interdiction and Fortification

	2.5 Conclusions
	References

	3 Integrated Vehicle Routing Problems: A Survey
	3.1 Introduction
	3.2 Inventory Routing Problems
	3.3 Location Routing Problems
	3.4 Routing in Combination with Packing: Routing with Loading Constraints
	3.4.1 Introduction to the Class of Problems
	3.4.2 The Capacitated Vehicle Routing Problem with Two-Dimensional Loading Constraints
	3.4.2.1 Recent Trends in the Literature on the 2L-CVRP

	3.4.3 The Capacitated Vehicle Routing Problem with Three-Dimensional Loading Constraints
	3.4.3.1 Recent Trends in the Literature on the 3L-CVRP


	3.5 Routing in Combination with Routing: Two-Echelon Routing Problems
	3.5.1 Introduction to the Class of Problems
	3.5.2 The Two-Echelon Capacitated Vehicle Routing Problem
	3.5.3 Recent Trends in the Literature on 2E-VRPs

	3.6 Conclusions
	References

	4 The Knapsack Problem and Its Variants: Formulations and Solution Methods
	4.1 Introduction
	4.2 Variants with a Single Knapsack Constraint
	4.2.1 The Multiple-Choice Knapsack Problem
	4.2.2 The Discounted Knapsack Problem
	4.2.3 The Knapsack Problem with Setup
	4.2.4 The Knapsack Problem with Neighbor Constraints
	4.2.5 The Knapsack Constrained Maximum Spanning Tree Problem
	4.2.6 The Set Union Knapsack Problem
	4.2.7 The Precedence Constrained Knapsack Problem
	4.2.8 The Disjunctively Constrained Knapsack Problem
	4.2.9 The Product Knapsack Problem

	4.3 Variants with Multiple Knapsack Constraints
	4.3.1 The Multidimensional Knapsack Problem
	4.3.2 The Multidimensional Knapsack Problem with Demand Constraints
	4.3.3 The Multiple Knapsack Problem
	4.3.4 The Compartmentalized Knapsack Problem
	4.3.5 The Multiple Knapsack Problem with Color Constraints

	4.4 Conclusion and Suggestions
	References

	5 Rank Aggregation: Models and Algorithms
	5.1 Introduction
	5.2 Ranking of Elements
	5.2.1 Linear Ordering Problem
	5.2.2 Rank Aggregation Problem in Cyclic Sequences
	5.2.3 Target Visitation Problem
	5.2.4 The Center Ranking Problem

	5.3 Ranking of Sets from a Ranking of Elements
	5.3.1 The Optimal Bucket Order Problem
	5.3.2 The Linear Ordering Problem with Clusters
	5.3.3 The Linear Ordering Problem of Sets
	5.3.4 The Center Ranking Problem of Sets

	5.4 Feasible Regions Similarities and Differences Through a Small Example
	References

	Part II Continuous (Global) Optimisation
	6 Multi-Objective Optimization: Methods and Applications
	6.1 Introduction to Multi-Objective Optimization
	6.2 Solving a Multi-objective Problem
	6.2.1 Basic Concepts
	6.2.2 Pareto Set Generation
	6.2.2.1 ε-Constraint Method
	6.2.2.2 Multi-Objective Evolutionary Algorithms
	6.2.2.3 Quality of the Pareto-Optimal Set


	6.3 Goal Programming
	6.4 Compromise Programming
	6.5 Applications and Usage
	6.5.1 Application of Techniques
	6.5.2 Use of Techniques

	6.6 Conclusions
	References

	7 Competitive Facilities Location
	7.1 Introduction
	7.2 Approaches to Estimating Market Share
	7.2.1 Deterministic Rules
	7.2.2 Probabilistic Rules
	7.2.3 Estimating Attractiveness

	7.3 Distance Correction
	7.4 Extensions
	7.4.1 Minimax Regret Criterion
	7.4.2 The Threshold Objective
	7.4.3 Leader-Follower Models
	7.4.4 Location and Design
	7.4.5 Lost Demand
	7.4.6 Cannibalization

	7.5 Solution Methods
	7.5.1 Single Facility
	7.5.2 Multiple Facilities
	7.5.3 The TLA Method

	7.6 Applying the Gravity Rule to Other Objectives
	7.6.1 Gravity p-Median
	7.6.2 Gravity Hub Location
	7.6.3 Gravity Multiple Server

	7.7 Summary and Suggestions for Future Research
	References

	8 Interval Tools in Branch-and-Bound Methods for Global Optimization
	8.1 Introduction
	8.1.1 Interval Analysis
	8.1.2 Aim of the Chapter

	8.2 Prototype Interval B&B Method
	8.2.1 Bounding Rule
	8.2.2 Elimination/Filtering Rules
	8.2.3 Selection Rule
	8.2.4 Division Rules
	8.2.5 Termination Rule
	8.2.6 Interval B&B Methods for MINLP Problems

	8.3 Bounding Techniques
	8.4 Discarding Tests
	8.5 Selection of the Next Box to Be Processed
	8.6 Subdivision Rule
	8.7 Software
	8.7.1 Libraries
	8.7.2 Packages with Interval B&B Implementations

	8.8 Interval B&B Methods for MINLP Problems
	References

	9 Continuous Facility Location Problems
	9.1 Introduction
	9.2 Single Facility Location Problems
	9.2.1 The Weber (One-Median) Location Problem
	9.2.1.1 Extensions to the Basic Weber Problem

	9.2.2 The Minimax (One-Center) Location Problem
	9.2.3 The Obnoxious Facility Location Problem
	9.2.4 Equity Models
	9.2.5 Location on a Sphere
	9.2.5.1 Calculating Spherical Distances
	9.2.5.2 Various Location Models on the Sphere


	9.3 Multiple Facilities Location Problems
	9.3.1 Conditional Models
	9.3.2 The p-Median Location Problem
	9.3.3 The p-Center Location Problem
	9.3.4 Cover Models
	9.3.4.1 Gradual Cover Models

	9.3.5 The Multiple Obnoxious Facilities Location Problem
	9.3.6 Equity Models
	9.3.7 Not Necessarily Patronizing the Closest Facility

	9.4 Solution Methods
	9.4.1 Generating Replicable Test Problems
	9.4.2 Solving Single Facility Problems
	9.4.2.1 Solving with the Solver in Excel
	9.4.2.2 Voronoi Diagram and Delaunay Triangulation
	9.4.2.3 General Global Optimization Algorithms
	9.4.2.4 Solving the Weber Problem
	9.4.2.5 Solving the One-Center Problem
	9.4.2.6 Solving the Obnoxious Facility Problem
	9.4.2.7 Solving Spherical Problems

	9.4.3 Multiple Facilities Solution Methods
	9.4.3.1 p-Median
	9.4.3.2 p-Center
	9.4.3.3 Multiple Obnoxious Facilities Solution Methods


	9.5 Summary and Suggestions for Future Research
	References

	10 Data Envelopment Analysis: Recent Developments and Challenges
	10.1 Introduction
	10.2 Background
	10.2.1 The CCR Model in the Envelopment and Multiplier Forms
	10.2.2 The BCC Model in Envelopment and Multiplier Forms
	10.2.3 The Additive Model

	10.3 A Short Literature Survey and Trend of Publications on DEA
	10.3.1 Statistics Based on Publication Years
	10.3.2 Statistics Based on Journals
	10.3.3 Statistics Based on Authors
	10.3.4 Statistics Based on Keywords
	10.3.5 Statistics Based on Page Numbers (Size)

	10.4 Recent Theoretical Developments in DEA
	10.4.1 Network DEA
	10.4.2 Stochastic DEA
	10.4.3 Fuzzy DEA
	10.4.4 Bootstrapping
	10.4.5 Directional Measure and Negative Data
	10.4.6 Undesirable Factors
	10.4.7 Directional Returns to Scale in DEA

	10.5 Recent Applications and Future Developments
	10.6 Conclusions
	References

	Part III Heuristic Search Optimisation
	11 An Overview of Heuristics and Metaheuristics
	11.1 Introduction
	11.1.1 Optimisation Problems
	11.1.1.1 Local vs Global Optimality
	11.1.1.2 Modelling Approach

	11.1.2 The Need for Heuristics
	11.1.3 Some Characteristics of Heuristics
	11.1.4 Performance of Heuristics
	11.1.4.1 Computational Effort

	11.1.5 Heuristic Classification and Categorisation

	11.2 Improvement-Only Heuristics
	11.2.1 Hill-Climbing Methods
	11.2.2 Classical Multi-Start
	11.2.3 Greedy Randomised Adaptive Search Procedure (GRASP)
	11.2.4 Variable Neighbourhood Search (VNS)
	11.2.5 Iterated Local Search (ILS)
	11.2.6 A Multi-Level Composite Heuristic
	11.2.7 Problem Perturbation Heuristics
	11.2.8 Some Other Improving Only Methods

	11.3 Not Necessarily Improving Heuristics
	11.3.1 Simulated Annealing
	11.3.2 Threshold-Accepting Heuristics
	11.3.3 Tabu Search

	11.4 Population-Based Heuristics
	11.4.1 Genetic Algorithms
	11.4.2 Ant Colony Optimisation
	11.4.3 The Bee Algorithm
	11.4.4 Particle Swarm Optimisation (PSO)
	11.4.5 A Brief Summary of Other Population-Based Approaches

	11.5 Some Applications
	11.5.1 Radio-Therapy
	11.5.2 Sport Management
	11.5.3 Educational Timetabling
	11.5.4 Nurse Rostering
	11.5.5 Distribution Management (Routing)
	11.5.6 Location Problems
	11.5.7 Chemical Engineering
	11.5.8 Civil Engineering Applications

	11.6 Conclusion and Research Issues
	11.6.1 Conclusion
	11.6.2 Potential Research Issues

	References

	12 Formulation Space Search Metaheuristic
	12.1 Introduction
	12.2 Literature Review
	12.3 Methodology
	12.3.1 Stochastic FSS
	12.3.2 Deterministic FSS
	12.3.3 Variable Neighborhood FSS and Variants

	12.4 Some Applications
	12.4.1 Circle Packing Problem
	12.4.1.1 Reformulation Descent
	12.4.1.2 Formulation Space Search

	12.4.2 Graph Coloring Problem
	12.4.3 Continuous Location Problems
	12.4.3.1 Preliminaries
	12.4.3.2 Reformulation Local Search for Continuous Location


	12.5 Conclusions
	References

	13 Sine Cosine Algorithm: Introduction and Advances
	13.1 Introduction
	13.2 Sine Cosine Algorithm (SCA)
	13.3 Parameters Involved in the SCA
	13.4 Advances in the Sine Cosine Algorithm
	13.4.1 Extension of SCA
	13.4.1.1 Multi-Objective
	13.4.1.2 Binary
	13.4.1.3 Discrete
	13.4.1.4 Constrained
	13.4.1.5 Miscellaneous


	13.5 Conclusion
	References

	14 Less Is More Approach in Heuristic Optimization
	14.1 Introduction
	14.2 Literature Review of LIMA Implementations
	14.3 LIMA Algorithm
	14.3.1 What Is More and What Is Less in Algorithm Design
	14.3.2 Steps of the LIMA Algorithm

	14.4 Applications of LIMA
	14.4.1 Minimum Differential Dispersion Problem
	14.4.2 Planar p-Median Problem
	14.4.3 Multiple Obnoxious Facility Location Problem
	14.4.4 Gray Patterns
	14.4.5 Discussion

	14.5 Conclusions
	References

	15 The New Era of Hybridisation and Learning in Heuristic Search Design
	15.1 Hybridisation Search
	15.1.1 Hybridisation of Heuristics with Heuristics
	15.1.1.1 Hyper-Heuristics
	15.1.1.2 Memetic Algorithm and Its Variants
	15.1.1.3 A Brief Summary of Other Metaheuristic Hybridisations

	15.1.2 Integrating Heuristics within Exact Methods
	15.1.3 Integration of ILP within Heuristics/Metaheuristics
	15.1.3.1 Heuristic Concentration (HC)
	15.1.3.2 Problem Decomposition
	15.1.3.3 Data Mining


	15.2 Big Data and Machine Learning
	15.2.1 Decision Trees and Random Forest (RM)
	15.2.2 Support Vector Machines (SVM)
	15.2.3 Neural Networks (NN)
	15.2.4 MLs Evaluation Measures

	15.3 Deep Learning Heuristics
	15.4 Implementation Issues in Heuristic Search Design
	15.4.1 Data Structure
	15.4.2 Duplication Identification
	15.4.3 Cost Function Approximation
	15.4.4 Reduction Tests/Neighbourhood Reduction
	15.4.5 Parameters and Hyper Parameters Optimisation
	15.4.6 Impact of Parallelisation

	15.5 Conclusion and Research Issues
	References

	Part IV Forecasting, Simulation and Prediction
	16 Forecasting with Judgment
	16.1 Introduction
	16.2 Why Is the Use of Judgment so Widespread in Forecasting?
	16.2.1 The Benefits of Judgment in Forecasting
	16.2.2 The Drawbacks of Using Judgment in Forecasting
	16.2.2.1 Motivational Biases
	16.2.2.2 Cognitive Factors


	16.3 Strategies for Improving the Role of Judgment in Forecasting
	16.3.1 Providing Feedback
	16.3.2 Providing Advice
	16.3.3 Restrictiveness
	16.3.4 Decomposition
	16.3.5 Correcting Forecasts
	16.3.6 Other Improvement Strategies
	16.3.7 Improving Forecasts from Groups
	16.3.8 Integrating Judgment with Algorithm-based Forecasts

	16.4 Conclusions
	References

	17 Input Uncertainty in Stochastic Simulation
	17.1 Introduction
	17.2 Characterizing Input Uncertainty
	17.3 Confidence Interval Construction and Variance Estimation
	17.3.1 Parametric Methods
	17.3.1.1 Central Limit Theorem and Delta Method
	17.3.1.2 Bayesian Methods
	17.3.1.3 Metamodel-Based Methods
	17.3.1.4 Green Simulation

	17.3.2 Nonparametric Methods
	17.3.2.1 Bootstrap: Elementary Schemes
	17.3.2.2 Bootstrap: Computational Enhancements
	17.3.2.3 Batching, Sectioning, and Sectioned Jackknife
	17.3.2.4 Mixture-Based and Nonparametric Bayesian
	17.3.2.5 Robust Simulation

	17.3.3 Empirical Likelihood

	17.4 Other Aspects
	17.4.1 Bias Estimation
	17.4.2 Online Data
	17.4.3 Data Collection vs Simulation Expense
	17.4.4 Model Calibration and Inverse Problems

	17.5 Simulation Optimization under Input Uncertainty
	17.5.1 Selection of the Best under Input Uncertainty
	17.5.1.1 Ranking and Selection
	17.5.1.2 Subset Selection and Multiple Comparisons with the Best

	17.5.2 Global Optimization under Input Uncertainty
	17.5.3 Online Optimization with Streaming Input Data

	17.6 Future Research Directions
	References

	18 Fuzzy multi-attribute decision-making: Theory, methods and Applications
	18.1 Introduction
	18.2 Literature Review of Fuzzy MADM
	18.3 Fuzzy MADM Based on the Information Integration
	18.3.1 Information Integration and Fuzzy MADM
	18.3.2 Fuzzy Aggregation Operators
	18.3.3 Supplementary Instruction

	18.4 Fuzzy Measures and MADM
	18.4.1 Fuzzy Measures
	18.4.2 Application of Fuzzy Measures in MADM

	18.5 Fuzzy Preference Relations and MADM
	18.5.1 Fuzzy Preference Relations
	18.5.2 Fuzzy Analytic Hierarchy Process

	18.6 Some Other Classical Synthetic Fuzzy MADM Methods
	18.6.1 Fuzzy PROMETHEE
	18.6.2 Fuzzy ELECTRE
	18.6.3 Hesitant Fuzzy TODIM

	18.7 Prospects for Future Research Directions
	References

	19 Importance Measures in Reliability Engineering: An Introductory Overview
	19.1 Introduction
	19.2 Basic Concepts of Reliability
	19.2.1 Reliability Function
	19.2.2 System Reliability Analysis

	19.3 Importance Measures
	19.3.1 Technology-Based Measures
	19.3.1.1 Structure Importance
	19.3.1.2 Reliability Importance
	19.3.1.3 Lifetime Importance

	19.3.2 Utility-Based Importance Measures
	19.3.3 Importance Measures Based on the Survival Signature
	19.3.4 Importance Measures and Some Important Concepts
	19.3.4.1 Importance Measures and Risk
	19.3.4.2 Importance Measures and Resilience


	19.4 Information Needed for Importance Measures
	19.5 Applications of Importance Measures
	19.6 Concluding Remarks
	References

	20 Queues with Variable Service Speeds: Exact Results and Scaling Limits
	20.1 Introduction
	20.2 Queues with Vacation/setup time
	20.2.1 Vacation Models
	20.2.2 Models with Workload /Queue-Length-Dependent Service
	20.2.3 Models with Setup Time
	20.2.3.1 Multiserver Model with Setup Time
	20.2.3.2 Retrial Model with Setup Time 

	20.2.4 Open Problems

	20.3 Infinite-Server Queues with Changeable Service
	20.3.1 Stability Condition
	20.3.2 Exact Analysis
	20.3.2.1 Two Types of Service Speeds
	20.3.2.2 More than Two Types of Service Speeds

	20.3.3 Limit Analysis
	20.3.3.1 Limit analysis for a queue length distribution
	20.3.3.2 Limit analysis for a queue length process


	References

	21 Forecasting and its Beneficiaries
	21.1 Background
	21.2 Forecasting for Social Good
	21.3 Barriers to Sharing the Benefits of Forecasting
	21.3.1 Access to Resources
	21.3.2 Access to Expertise
	21.3.3 Communication Issues

	21.4 More Effective Communications
	21.4.1 Forecast Producers
	21.4.2 Commercial Software Developers
	21.4.3 Forecasting Academics

	21.5 Democratising forecasting
	21.5.1 Data Science Initiatives
	21.5.2 Democratising Forecasting Initiative
	21.5.3 Benefits and Impact of Democratising Forecasting
	21.5.4 Challenges in Delivering Democratising Forecasting Workshops
	21.5.5 Limitations of the Democratising Forecasting Initiative
	21.5.6 Future Agenda for Democratising Forecasting

	21.6 Conclusions
	References

	Part V Problem Structuring and Behavioural OR
	22 Behavioural OR: Recent developments and future perspectives
	22.1 Introduction
	22.2 Recent Developments
	22.2.1 Conceptual Framework of BOR
	22.2.2 Comparison between BOR and BOM
	22.2.3 Empirical Basis of BOR
	22.2.4 Behavioural Science and BOR

	22.3 Future Developments
	22.3.1 BOR and AI
	22.3.2 Theoretical and Methodological Resources for BOR
	22.3.3 Education Resources for BOR

	22.4 Conclusions
	References

	23 Problem Structuring Methods: Taking Stock and Looking Ahead
	23.1 Introduction
	23.2 The Characteristics of PSMs
	23.2.1 PSM Tools
	23.2.2 PSM Process

	23.3 The Use of PSMs in Practice
	23.3.1 Sample of PSM applications
	23.3.2 Evidence of Use and Applications
	23.3.2.1 Surveys of PSM use in practice
	23.3.2.2 Academic Reviews of PSM Applications


	23.4 PSM Products, Mechanisms, Supporting Evidence
	23.4.1 Claimed Products and Facilitative Mechanisms
	23.4.2 Supporting Empirical Evidence

	23.5 The Future of PSMs
	23.5.1 Becoming a Competent PSM Practitioner
	23.5.2 Becoming a Competent PSM Researcher

	23.6 Conclusion
	References

	24 Are PSMs Relevant in a Digital Age? Towards an Ethical Dimension
	24.1 Introduction
	24.2 Where Are We Now?
	24.2.1 What Is the Nature of the Problem Today?
	24.2.2 PSMs Today
	24.2.3 So What’s the Issue?

	24.3 The Ethical Boundary
	24.3.1 Case Vignette: Comparison of Two PSMs’ Remote Applications
	24.3.1.1 Analysis of the Case Vignette: Shaping
	24.3.1.2 Analysis of the Case Vignette: Design
	24.3.1.3 Analysis of the Case Vignette: Comparison


	24.4 Conclusions
	References

	Part VI Recent OR Applications
	25 Recent Advances in Big Data Analytics
	25.1 Introduction
	25.2 Ultrahigh-Dimensional Data Analysis
	25.2.1 Feature Screening
	25.2.2 Interaction Screening for Regression Models
	25.2.3 Interaction Screening for Classification

	25.3 Massive Data Analysis
	25.3.1 Divide-and-Conquer Methods
	25.3.2 Subsampling Methods
	25.3.2.1 Nonuniform Subsampling Via Leveraging
	25.3.2.2 Information-Based Optimal Subdata Selection
	25.3.2.3 Optimal Subsampling


	25.4 Summary and Discussion
	References

	26 OR/MS Models for the Humanitarian-Business Partnership
	26.1 Introduction to Humanitarian Logistics
	26.2 Humanitarian Supply Chains and Their Challenges
	26.3 The Incentives of Partnership During the Disaster Phases
	26.4 Literature Review
	26.4.1 Relief Procurement

	26.5 Relief Warehousing, Transportation, and Distribution
	26.6 Gap Analysis of Extant Literature
	26.7 A Mathematical Model for Humanitarian-Business Partnership
	26.8 Conclusion and Suggestions
	References

	27 Drones and Delivery Robots: Models and Applications to Last Mile Delivery
	27.1 Introduction
	27.2 Literature Review
	27.2.1 Drones: Last Mile Delivery Applications
	27.2.2 Delivery Robots: Last Mile Delivery Applications

	27.3 Problem Description
	27.3.1 The Estimation of Emissions
	27.3.2 Mathematical Formulation
	27.3.3 Solution Methodology
	27.3.4 Initial Solution Generation
	27.3.5 The Adaptive Mechanism for Deciding the Use of Operators
	27.3.6 The Proposed Neighborhood Operators
	27.3.6.1 Removal Operators
	27.3.6.2 Insertion Operators


	27.4 Numerical Analyses
	27.4.1 Instances and Parameters
	27.4.1.1 Benchmark Instances
	27.4.1.2 Emissions-Related Parameters
	27.4.1.3 Parameters Used in the Algorithm

	27.4.2 Computational Results
	27.4.3 Sensitivity Analysis
	27.4.3.1 Drone Capacity
	27.4.3.2 The Speed of Delivery Robot


	27.5 Conclusions
	References

	28 Evaluating the Quality of Radiation Therapy Treatment Plans Using Data Envelopment Analyis
	28.1 Introduction
	28.2 The DEA Model
	28.2.1 Orientation and Returns to Scale

	28.3 Feature Selection
	28.3.1 Expert Opinions
	28.3.2 Principal Component Analysis
	28.3.3 Environmental Factors

	28.4 Dealing with Uncertainty
	28.4.1 Simulation
	28.4.2 Uncertain DEA

	28.5 Application in Practice
	28.5.1 Informing the Treatment Planning Process
	28.5.2 Integration in the Treatment Planning Process

	References

	 Index

